Научная статья на тему 'КОРОНАВИРУС – СТИМУЛ ДЛЯ РАЗВИТИЯ ФИНАНСОВЫХ ТЕХНОЛОГИЙ'

КОРОНАВИРУС – СТИМУЛ ДЛЯ РАЗВИТИЯ ФИНАНСОВЫХ ТЕХНОЛОГИЙ Текст научной статьи по специальности «Экономика и бизнес»

CC BY
76
22
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Амберд
Область наук
Ключевые слова
финансовые технологии / искусственный интеллект / машинное обучение / интернет вещей / большие данные / технология распределенного реестра / пандемия / financial technologies / artificial intellect / machine learning / internet of things / big data / distributed ledger technology / pandemic

Аннотация научной статьи по экономике и бизнесу, автор научной работы — Альберт Айрапетян

Кризис, обусловленный новой пандемией коронавируса, оказывает влияние и на сферу финансовых технологий. Ограниченный доступ к финансам препятству¬ет деятельности стартапов и новаторских компаний. В то же время финтех-компании с устоявшимися бизнес-моделями пересматривают свои стратегии развития, чтобы справиться с кризисом. В статье представлены изменения, произошедшие в финтех-секторе за 2019-2020 гг. с целью выявления траектории дальнейшего развития сектора.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

CORONAVIRUS AS A STIMULUS FOR THE DEVELOPMENT OF FINANCIAL TECHNOLOGIES

Economic crisis which is the direct consequence of COVID-19 pandemic has not bypassed the sphere of financial technologies. The access to financial means significantly impairs the activities of startups and newly set-up businesses. At the same time, financial companies with sustainable business models revise their development strategies to be able to withstand the crisis. The paper discusses the changes in the field of financial technologies from March, 2019 till the time of writing. It aims to outline the future developments of the field.

Текст научной работы на тему «КОРОНАВИРУС – СТИМУЛ ДЛЯ РАЗВИТИЯ ФИНАНСОВЫХ ТЕХНОЛОГИЙ»

MnnnLU4hP^UC nP^bU fchLULUU^UL SbtoLnLnq-hULbPh

aUP^USJUL tofc-UL

<^^wpwnbp. fyfrbwbuwLiwb sbfcibn[nqfrwbbp, LuphbuyiML/uih pubuiubmpjmb, dhpbbuijuiLiuib nLumgnLiJ, Ipbpl huiugubg, bbd sl/uubbp, pui2friLlui& qpuibguiiJuisjuibbbpfr sbfribn[nqfrui, huiiJuiluipuiLi

COVID-19 huiiJuiluipuiLinl u/uijiJuibuilnplui& 6qbuiduiitti lp Luqq.bgmpjmbb t pnqbniJ tyfrbuibuui-Lub sbfabninqfruibbpfr (tyfrbsbfri) n[npsl lpui: ¡bfr-buibuuiLiuib iffrpngbbpfr uuihiJuibui^uiLi hutuuibbipm-pjmbp lvnjpbq.nsnLiJ t usuipsui^bpfr, frbju/bu bub bnpuusbqd LiuqiuLbp^mpjmbbbpl qnpdmbbm-pjmbp: UfruiduiiJuibuiLi, Liujugud plqbbu ilnq.b[ ni-bbgnq tyfrbuibuuisbfribfrLiuiLiuib pbibpmpjmbbbpp 6qbuiduiirfib r}liuLujb[m huiup Ibpubujmi bb Ipbbg qupqugiub nuqiulupmpjmbp:

Cnq.ludmJ bbpiujuglmi bb 2019-2020 pp. pb-puigprniJ tyfrbsbfri ninpsnuJ sb^l nibbgud ipn^n-limpjmbbbpp' bu/uisuiLi mbbbu[nl Ibpinidbini b pu-guhujsbim r}pui hbsuqu qupqugiub hbsuiqfr&p:

C

OVID-19 whnihQ urnwgwS hwdw^wpwlh Qh^.w^hQ ^ fwhh wdu^w QhpwgfnLd hh^n^hh ^n^bg hwdw2^wphwj^h wnn^w^whwlwh, fw^wfw^wh, mhmbuwlwh hpn^mpjmhhbpQ: 2020 p.-h hwdwp Iwh^wrnbu^wS 3% mhmbuwlwh w6h ^n^w-pbh' dwp^lwhg Ijwhfh ^ wnnqgmpjwh ^wh^whdwh hlwmwnnL^bpn^ Ihpwn^wS uwhdwhw^wlrn^bph wnwghh bnwdujw^md hwhqbgpbghh 3% mhmbuwlwh wh^dwh' qbpwqwhgb|n^ 2008-2009 pp. hwdw2^wp-hwjhh ^hhwhuwrnhrnbuw^wh 6qhwdw^ Qhpwgpmd qpwhg^wS gmgwhh2hbpQ]: U~hwdwdwhwl, hwdw2^wp-hwjhh mhmbumpjwh ^bpw^whqhdwh dwuhh Iwh^w-

World economic outlook, The great lockdown, p.1, IMF World economic outlook reports, April 2020, hwuwhb[h) It https://www.imf.org/~/media/Files/Publications/ WE0/2020/April/English/text.ashx, ^bpghh Jmrnp' oqnusnuh 31, 2020 p.:

U|_pbpm <U3PUL^IbS3UL

Shmbuwqhrnmpjwh pbl|hwdnL, wufiurnbhrn

2012 p. Lulwpsb[ t C^ISC pu-Lwulplusp' s^sbuuql sm-pjub sbumpjmb iuubu qfrsm~

pjuip: CC 9-U.U. qfrsuiLippuiLiuib lifigwqqwjlb iLbbspnhmi usu-gb[ t sbsbuwqlsmPjub ifw-qluspnul npuiwlnprnif «Wb-bbg^bp» ifwubwqlsnLPjwip, 2017 p.' sbsbuwqlsmPjub pbibwdml qlsu^wh uuusl-6uib: 2018 p.-lg qwuwlwbqmi t C^ISC lifigwqqwjlb s^sbuu-Lub huipuipbpnLpjmbbbpfr uid-pfrnbnLJ: CbqpbwL t 12 qlsu-Lub hnqlwdbbpl:

o

I

<

1= K s

CL

O

a Jo n

CO .D V n

=5

c.

3

mburn^bpp rçbnUu ^mpni.p4mô bb mbn-pn2ni.pjmb 2T.mp2n4, hbb, hP hbpphb, mb-^nwm^bihnpbb m^^pm^mrtbrnd t bmU $hbmb^ n[nprnh qmpqmgJmb 4pm:

&hbmbum^mb mb^bninqhmbbpp, np-^bu ^mbnb, hmbrçbu bb qmihu np^bu 2m-hnLjp hbmm^brç.n^ bm^mSbnbnLpjnibbbp' mrç^mô hmdm^msmu^ml 2nL^mjh mjb hmm4môbbph u^mump^Jmbp, npnbf rç.mp-Ôb[ bb n^ qpm^h^ ^mJ ôm^ummmp m4mb-rçw^mb ^hbmbum^mb hbumhmmmbbph hmJmp2: Pmqbjmb ^n^mbh $hbmbum-^mb ^mjnibnLpjmb ^nphmp^p (Financial Stability Board) $hbmb^p umhJmbni.J t np-^bu «^hbmbum^mb ômnmjnLpjnLbbbph mb^bninqhwhbbp bnpwpwpnLpjnLb»' rçpw-bni.J bbpmnbin4 U ^hbmbum^mb mprçjnib-fp (^pnrç.ni^mp), U ômnmjnLpjnLbbbpp (tib^mpnbmjhb 4^mpni.^bp, tlb^mpnbm-jhti rçpmJm^mbm^bbp, $hbmb^ 4mp^bp, nnpnmmg4mô ^nphprç.mmni.bbp U t[b^m-pnbmjhb 4^mpm^gngbbp (mpdnijpbbp)), U rçpmbg hhJpmJ mn^m mb^bninqhmbbpp: Cbrç.hmbni.p mnJmJp, ^hbmbum^mb mb^bninqhmbbpp ^mpb[h t ^mum^mpqb[ hbmUjm[ ^bp^'

• hw^b^wôh ôpmqpmjhb ^gbpbu (Application program interface, API). umh-Jmbrn^bph, qnpôhfm^mq^ U hmrçnprçw-^mpqbph (protocol) hmJm^mJp, nph gngn^ ^mpqm4np4mJ t mmppbp ôpmqpmjhb m^mhn^^^bph hmJmqnpôm^gm-pjm^p3: Uju^hun^, hbmpm4np t J2m^b[ mlhmmm^mb ^hbmbum^mb ^gngbbph ^mnm4mpJmb hm4bi4môbbp' hmumbb-ihmpjmb m^mhn^bLn^ hm6m^np^h Imbum^ml ^gng^bph ^wnw4wpJwb qnp-ôhftibphti mbhpmdb2m mbrçb^mm4m.pjm-bp (pmb^mjhb hm2h^bp, bnijbm^mbmg-

Jmb m4jm|bbp U mj|b):

• Uphbumm^mb pmbm^mbnLpjnib (Artificial Intelligence). qhrnmmb^bn|nqhm^mb

nph hhJmb ^pm umbq&4m& Spmqpb-pp ^mpn^ bb hbfbnLpnLjb ^bp^n4 hpm^m-bmgbb| mmppbp qnp&mnnLjpbbp' ^b^hp-bbph Lmfcrnd (problem solving), npn2ni.^b-ph pb^nLbrnJ (decision making), pmpqJm-bnLpjnib, hm6m^np^h ^^J^m^m^mgmJ1

Smjbh, ^hJm6mbm^Jmb,Jmmbmhbmeh 2ngn4 U mj|b: LJmbmmh^ pmqJmph4 hm-

4b|4m6bbp |mjbnpbb ^hpmn4nLJ bb spb-mbunLpjmb ^hbmbum^mb hmm^mSmJ (nnpnm-^nphp^.mmnibbp, qnpSmpfh bnLj-bm^mbmgniJ U mj|b^:

• ^bpbbmjm^mb mumgmJ (machine learning)1 np^bu mphbumm^mb pmbm^m-bnLpjmb mmpp, npp ^bbmpnbmbni.J t hm-Jm^mpqh^^bph «hhfhnLpnLjhwpwp un^n-pb|m» m^m^mpjm^ 4pm' wnwhg ^m^m-^bu Spmqpm^npJm^5:

pmn^^J t m^jmi^bph m^mnJmmmg^mS hm^wpwqpJwh U h^^^bu

^mU wp^jnLhphbph hhJm^ 4pm ^m^^m-mbum^bph hpw^whwgJwh hmJmp: C^^-qp^mJ t m4jw|hbph J2m^Jm^ mmppbp ^pn^^bp' ^bpmnjm| hbjpnhwjh^ gm^gbpp (neural networking) U ^npmg4m6 mumgmJp (deep learning)6: h mmppbpmpjm^ mphbu-sm^mb pm^m^m^mpjm^, nph wnwhg-fmJ mpmJmpmbm^mb U ^mbnbm4np pn^.bbpb bb, 4bp2hbu hh^4mJ t Sm4m| m4jm|bbph mum^muhpmpjmb U ^pm mp^.jmbfmJ h hmjm b^m6 qmpqmg-Jmb hbsmqSh 4pm, npp ^mpmm^hp ^t, np |hbh hbmmhmh4 ^mJ nmghnbm|: <mm-^mb2m^mb t, np m4jm|bbpp ^mpn^ bb bbp^mjmg4m6 |hbb| gmb^mgmS SUm^m-^n47:

Fintech and Innovations, Basel committee, hwuwbbih t' https://www.bis.org/topic/fintech.htm, ^bp£hb Jmmf' oqnumnuh 30, 2020 p.:

Shrikant Srivastava, How Does the Fintech and Banking Sector Use APIs?, August 2020, Appinventive blog, hwuwbbih t' https://appinventiv.com/blog/use-of-apis-in-fintech/, ^bp£hb Jmmf' oqnumnuh 30, 2020 p.:

B.J. Copeland, Artificial intelligence, last updated: Aug 11, 2020, Encyclopedia Britannica, hwuwbbih t' https://www.britannica. com/technology/artificial-intelligence, ^bp£hb Jmmf' oqnumnuh 31, 2020 p.:

Oxford Dictionary definition, hwuwbbih t' https://www.oxfordlearnersdictionaries.com/definition/english/machine-learning#:~:-text=machine%20learning-,noun,being%20programmed%20to%20do%20them, ^bp£hb Jmmf' oqnumnuh 31, 2020 p.:

"Artificial Intelligence vs. Machine Learning vs. Deep Learning: What's the Difference" by Serokell, April 10, 2020, hwuwbbih t' https://medium.com/ai-in-plain-english/artificial-intelligence-vs-machine-learning-vs-deep-learning-whats-the-difference-dc-cce18efe7f, ^bp£hb Jmmf' oqnumnuh 31, 2020 p.:

"Applications of Machine Learning in FinTech" by Medici, April 6, 2016, hwuwbbih t' https://medium.com/@gomedici/appli-cations-of-machine-learning-in-fintech-838ab09af87d#:~:text=Machine%20learning%20is%20a%20type,learn%20without%20 being%20explicitly%20programmed.&text=Many%20startups%20have%20disrupted%20the,learning%20as%20their%20key%20 technology., ^bp2hb Jmmf' oqnumnu 31, 2020 p.:

• hpbph hmJmgmbg (Internet of Things, IoT)' hmjbgm^mpq. ^m4npni.J t mmppbp rnb^bninqhmbbp' ^m4m6 m^bopjm oq-mmqnpSJmb umpf m4npm^bph (^bbgm-^mjhb mb^bh^m, m4sn^f bbmbbp, hb-nm^nubbp U mj|b) ^mubm^mb hmumbb-Lhmpjmb m^mhn4Jmbp hmJmgmbgnLJ' hm6m^np^bbphb mbhmmm^mb Smnmjm-pjmbbbph JmmnLgJmb' ^nJmbm| 4^mpmJ-bbph, mb4mmbqmpjmb m^mhn4Jmb U mj| b^mmm^bbpn48:

• m4jm|bbph 4bpL^Smpjmb (Big data analitics). hmu^mgmpjmb, np ^hpmnb|h t ^hmJm^mpq4m6 (t|b^mpnbmjhb ^num, hmJmgmbgmjhb mpm$h^) U hmJm^mpq-4mS (m4jm|bbph pmqmbbp) 6m4m|h m4jm|bbph 4bpLm6mpjmbp pbmpmqpb|m hmJmp: Cb^. npni.J, bJmbmmh^ m4jm|-bbph 4bpLnL&nLpjnLbp hbmpm4np ^t hpm-^mbmgbb| m4mb^m^mb ^pn^.bbpn4: Uju mb^bn|nqhmjh ^b^pmJ oqmmqnpS-4mJ bb hmJmgmbghg ^mJ mb^mjhb (|n-^m|) gmbgbphg ummg4n^. U ^mqJm^bp-^mpjmbbbph ^n^^g hm4mpmqp4n^ U oqmmqnp64nT. m4jm|bbpp' pmgmhmjmb-|n4, ophbm^, hbmmqSbph, ^nnb|jmghm-bbph U m4jm|bbph ^mrn^bpp: Mmpn^ t hh^4b| ^fbbmjm^mb ni.uni.gJmb ^mJ mj| mb^bn|nqhmbbph 4pm9:

• Pw2^4wS qpwbgwJwmjwbbbph mb^-bn|nqhm ^mJ p|n^bjb (Distributed ledger technology, blockchain). ^ fmbh ^n^^ph ^2U pm2^4m6 m4jm|bbph pmqm, npb oq-mwqnp&4nLJ t hwJw5wjbbg4w& qnp&wpg-bbph hpm^mbmgJmb hmJmp: UnmbSbm-hmmm^ t bpmbn4, np pn|np ^n^^pb m-bbb ^mubn U/^mJ ^mmbum^ m4jm|bbp ^bbmpnbm^mjmbh hbm: Uju mb^bn|n-

qhmb m^mhn4ni.J t hmum|h ^m2m^m-bmpjmb ^hpbnhmpSm^m^bphg U mb^b-^mm4m^mb mpmmhnuphg™:

• ^b|mgh ^mjJmbmqpbp (Smart contacts). t|b^mpnbmjhb ^mjJmbmqph SU, npp ^mpn^ t hbfbmpmjb ^bp^n4 m4mpm4b| ^mjJmbmqprnJ b24m6 ^mjJmbbbph m-4mpm4b|mb ^bu: Uju mb^bn|nqhmb ^m-pn^ t hbmpm4np oqnimbbp m^mhn4b| qnp&mnbm^mb Sm^ubph b4mqbgJmb, o^bpmmh4 hm Jmqnp&m^gnipjmb mbu-mb^jmbhg":

• UJ^mjhb hm4mpmqpmJ (Cloud computing). gmbgmjhb Smnmjmpjmbbbph Jm-mm^mpmpbbph ^n^^g mpmJm^p4n^. t|b^mpnbmjhb ^mhngbbp, npnbf $hbmb-um^mb ^mqJm^bp^mpjmbbbphb hbmpm-4npmpjmb bb mm|hu hm4mpmqpb|m U 4bp[nL6b|m m4b|h ^6m6m4m| m4jm|bbp' b4mqbgbb|n4 qnygh U mb^bh^w^wb mqm-hn4Jmb Sm^ubpp12:

• Mph^mnqpm^hm. ^hpwn4nLJ t m4jw|-bbph ^m2m^mbmpjmb hmJmp13:

• Mbbum^m^mpjmb (Biometrics). ^h-pmn4nLJ t mbhmmm^mb ^bbum^m^m-^mb 6mbm^Jmb hmJmp (Jmmbmhbmf, ^hJm6mbm^mJ, Smjbmjhb 6mbm^mJ U mj|b)' b^mumb|n4 Jmp^mbg mb4mmb-qnipjmb m^mhn4JmbpM:

<mJmSmjb Pmqb|jmb ^n^mbh U Toronto ^bbmpnbh pbnpn2Jmb' ^hbmb^bbpp ^mpn^ bb ^pm^mb mq^bgmpjmb mbbbm| ^hbmbum^mb hmm4m6h 4pm ^npu hh J-bm^mb m^^mpjmbbbpn4.

1. Jpgw^gnipjwb ^npwgmJ, nphb b^wu-mni.J bb ^hbmbum^mb nbumpubbph hm-umbb|h^pj^bp U ^bbmpnbmgmJp hm6m-^np^bbph mbhmmm^mb bm^muhpm-

The internet of things: An overview, Investopedia terms and definitions, hwuuibb[f) t' https://www.investopedia.com/terms/i/in-ternet-things.asp#:~:text=The%20Internet%20of%20Things%20(IoT)%20is%20a%20network%20of%20physical,information%20 about%20the%20human%20body., i^bpgfib dmmf' oqnumnu^ 31, 2020 p.:

"Big Data', Investopedia terms and definitions, t' https://www.investopedia.eom/terms/b/big-data.asp, ijbpgfib

dmmf' oqnumnu 31, 2020 p.:

"Blockchain 101: Overview', Builtin topic guide, hwuuibb[f) t' https://builtin.com/blockchain, ijbpgfib dmmf' oqnumnu^ 31, 2020 p.:

"Smart Contracts", Investopedia terms and definitions, hmumbb[^ t' https://www.investopedia.com/terms/s/smart-contracts.asp, lbp2fib dmmf' oqnumnu^ 31, 2020 p.:

"Cloud computing", Investopedia terms and definitions, hwuuibb[f) t' https://www.investopedia.com/terms/c/cloud-computing. asp, ibpgfib dmmf' oqnumnu^ 31, 2020 p.:

"Definition of Cryptography, The Economic Times Definitions, hwuuibb[f) t' https://economictimes.indiatimes.com/definition/ cryptography, ibpgfib dmmf' oq.numnufi 31, 2020 p.:

"Biometrics", Investopedia terms and definitions, hwuuibb[f) t' https://www.investopedia.com/terms/b/biometrics.asp#:~:tex-t=Biometrics%20refers%20to%20digitally%20encoding,both%20consumer%20and%20commercial%20use., ^bpg^^ dmmp' oqnumnufi 31, 2020 p.:

a

10

ii

12

13

£ o

i

<

i= n; s

CL

o

a JD n

CO ■D V n

=5

c.

3

pjnLllbph m ^mppmqöh ^pm:

2. 9-npömnlm^ml mp^jnLlm^bmnLpjmli dm^mp^.m^h pmpäpmgmd lnpmpmpm-^ml hudw^ummu^ml mb^ln|nqhmlb-ph, dmulm^npm^bu'

- ^ömpmjhl hmdm^mpqbph, ^mp^mjhl U hmlpmjhl nbqhumplbph ^gngn^,

- ^^Imlum^ml ^mqdm^bp^nLpjnLllb-ph pbp-o^hu (back-office) U $pnlm-o$hu (front-office) qnpömnnyplbph mp^jni.lm-^bmnLpjml dm^mp^.m^h pmpöpmgdmdp, npl, hp hbpphl, blpm^.pni.d t n^u^bpfi ^mnm^mpdml, ^bpmhu^n^nLpjml, hm2-4bm4nn.m^mlnLpjml, hl^bu lmU npn-2ni.^bph pl^nildml qnpöplpmglbph pm-pb[m^^d: <m4b|blp ImU, np pbU pml^b-pp, np^bu ^mlnl, hpblg hm6m^np^.lbph U qnpömpflbph ^bpmpbpjm[ rnlbl ^öm-öm^m[ mb^b^mpjmllbp, mjlmm^lmj-

Ipmlf ^bl rn^pm^brnmd hmdm^m-mmu^ml mb^ln|nqhm^ml hqnpmpjml-lbph' ^m^mö m^jm[lbp^ ^bp[mömpjml, phqlbu hbmm^mqmpjml U mj[ qnpöm-nnijplbph ub^d dmd^bmlbpmd hpm^m-lmgdmlp: Uj^ ^mmömnn^ t[ ^bpnl2jm[ qnpömnnLjplbpp 2ms hm6m^ mpmm-^mrn^hp4md bl dmulmqhmmgmö $hl-mb^ ^mqdm^bp^mpjmllbphl:

3. ^hlmlum^ml ^bpmhu^n^mpjml pm-

4. Lnp lbp^pm^bph lbpqpm^dml hlmpm^npmpjmllbp ^mjmgmö $hlml-um^ml ^mqdm^bp^mpjmllbph hmdmp:

^hlmlum^ml ^gnglbph hmumlb-ihnLßjml ^pömmmdp U lbp^prn^bph ^blmpnlmgrndp ^mjmgmö phqlbu dn^b[ nilbgn^ ^hlmb^lbpmd pmp^mglmd bl hmm^m^bu $hlmb^ ummpmm^bph lmlum^nprndp (qöm^mm^bp 1):

^öm^mm^bp 1 -hg bpUmd t, np lbp-^pm^bph öm^m[Q 2020 p. mnmghl bnmd-uj m^rnd l^mqb[ t' hmulb|n^ 2017 p. dm-^mp^m^hl: Um hh^m^mlmd ^m^mö t lnp $hlmb^ ^mqdm^bp^mpjmllbpmd U ummpmm^bpmd lbp^prn^bph l^mqdmli hbm: U"hmdmdmlm^, ^hlmlum^ml hlu-mhmmmlbpl pl^[mjlmd bl $hlmb^ n|np-mmd lbp^pm^bpp1 ^mjdmlm^np^mö bl-pm^mnmg^möflbph p^mjlmgdml mlhpm-db2mmpjmdp, ^blmpnlmlmin^ hh^m^ml ^mpn^mpjmllbph (core competencies) qmp-qmgdml ^pm:

<mdm2^mphmjhl mlmbumpjml ml-gni.^ mpmq mpömqmlfdml hm^möqlm-dmdmjhl pmj|bphg T-b^h ^bpm^mlqln-^m^ml qmpqmgdml ^gngmnm^bp lnp hlmpm^npmpjmllbp t plöbnmd $hl-mb^ n[npmh qmpqmgdml hmdmp (oph-lm^1 unghm[m^ml hbnm^npmpjml ^mh-^mldml mlhpmdb2mmpjmlQ l^mumb[

525.000

$20.000 $15,000 £10,000 $5. 000

$-

1 ll.lllll Ii Ii II 1

X>. iX ¡¡J, Ä i), A > A S. Si a !>. lÄk Ä

^ ^ ^ ^ ^ ^ ^

# # # ^ # ^ ' ^ ^

^ ///////////// ^ ^ ^

Ni

f -F f

^ÖU^USMbP 1

iS-

55

<*/' v . v

# ^ 'V

2016-2020 pp. ^^bmb^ LjwqJw^bp^mpjmbbbpmJ ^mrnup^wd bbp^pm^bpQ15 (d[h Utfb q.n[wp)

15 State Of Fintech Q1'20 Report: Investment & Sector Trends To Watch", t2 11, hmumlb[h t' https://www.cbinsights.com/reports/ CB-Insights_Fintech-Report-Q1-2020.pdf, ^bp£hl dmmf' oqnumnuh 30, 2020 p.:

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2019 :-anutihijuiif 2019 2-onwrfiijuiif 2019 3-hr, unhiju2019 4-onunhijuiif 2020 : -snuiiiitjuiLj

q-ou^usLibn 2

^faum^mnLmfabp^ fabpq.pnLrffabpQ bh^m^mnnLg^mdfhbpnLJ16

t tLb^spnhwjhh pwh^wjhh qnpôwpfhbph U tLb^spnhwjhh wnUmph ôw^wLhbph w-^bLwgdwhh wdpnrç^ m2^rnphmJ)'7:

ûqhwdw^ wqrç.bgni.pjwh ^bqnpwgdwh h^wmw^n^ $hhsb^ ^wqdw^bp^nLpjnLh-hbpp ^.bpwhwjrnd bh hpbhg nwqdw^w-pm.pjni.hp. ophhw^ w^whn^wqpw^wh U wjl ^hhwhuw^wh 0wnwjrn.pjni.hhbp dwrnni.-gnrçhbpp h^wqbghnLd bh hh^w^wh U ^n-^wnm ^w^hmwLh ôw^WLP, ^nphprçwm^w-^wh m^^^wômpjmh mhbgn^hbpp1 ^p6w-rnrnd w2^wmwmbrçbpp1 ÔqrnbLn^. ^w^w-ubghbL hwurnwrnrnh ôw^ubpp:

Mwjwgwô phqhbu dnrç^n^ $hhsb^-

hbph qbph^wrnw^p qnpômhbmpjwh 2w-pmhw^w^whmpjwh w^whn^nL^ t, pwhw2^.wp^wjhh U ^.wp^wjhh nLrç^wônL-pjmh mhbgn^hbphhp1 hbp^pm^bph w^b-LwgJwJp bhpw^wnnLg^wôphbph qwp-qwgrndp, hh^h 2hnphh4 hhwpw^np ^Lhhh ^wh^whbL qnpôwpfhbph hhfhwpdbpp, f whh np rç.p whg qnpômhbmpjmhp ^ w^^wô t hh^w^whmJ qnpôwpfhbph ôw^wLhg'8: Uju w^hp hnp hnphqnhhbp t pwgrnd qpwhgw Jwmjwhhbph rnb^hnLnqhwhbph hwJwp, npnhf wju qnpôphpwgmd rnhbh wnwhgpwjhh rç.bpw^wrnwpni.d:

2.

3.

"World Economic Outlook, The Great Lock-down", p.1, IMF World Economic Outlook Rreports, April 2020, https://www.imf.org/-/ media/Files/Publications/WEO/2020/April/English/ text.ashx

"Fintech and Innovations", Basel committee, https://www.bis.org/topic/fintech.htm Shrikant Srivastava, "How Does the Fintech and Banking Sector Use APIs?", August 2020, Appinventive blog, https://appinventiv. com/blog/use-of-apis-in-fintech/ B.J. Copeland, "Artificial intelligence", last updated: Aug 11, 2020, Encyclopedia Britannica, https://www.britannica.com/technology/ artificial-intelligence

Oxford Dictionary definition, https://www. oxfordlearnersdictionaries.com/definition/english/

7.

machine-learning#:~:text=machine%20learn-

ing-,noun,being%20programmed%20to%20do%20

them

"Artificial Intelligence vs. Machine Learning vs. Deep Learning: What's the Difference" by Serokell, April 10, 2020, https://medium. com/ai-in-plain-english/artificial-intelligence-vs-ma-chine-learning-vs-deep-learning-whats-the-differ-ence-dccce18efe7f

"Applications of Machine Learning in Fin-

Tech" by Medici, April 6, 2016, https://medi-

um.com/@gomedici/applications-of-machine-learn-

ing-in-fintech-838ab09af87d#:~:text=Machine%20

learning%20is%20a%20type,learn%20without%20

being%20explicitly%20programmed.&text=Ma-

ny%20startups%20have%20disrupted%20the,learn-

ing%20as%20their%20key%20technology

о

I

<

1= к s

CL

О

8. "The internet of things: An overview", Investopedia terms and definitions, https:// www.investopedia.com/terms/i/internet-things. asp#:~:text=The%20Internet%20of%20Things%20 (IoT)%20is%20a%20network%20of%20physical,in-formation%20about%20the%20human%20body

9. "Big Data", Investopedia terms and definitions, https://www.investopedia.com/terms/b/ big-data.asp

10. "Blockchain 101: Overview", Builtin topic guide, https://builtin.com/blockchain

11. "Smart Contracts", Investopedia terms and definitions, https://www.investopedia.com/terms/s/ smart-contracts.asp

12. "Cloud computing", Investopedia terms and definitions, https://www.investopedia.com/

13

14

terms/c/cloud-computing.asp "Definition of Cryptography, The Economic Times Definitions, https://economictimes.india-times.com/definition/cryptography "Biometrics", Investopedia terms and definitions, https://www.investopedia.com/terms/b/ biometrics.asp#:~:text=Biometrics%20refers%20 to%20digitally%20encoding, both%20consumer%20 and%20commercial%20use 15. State Of Fintech Q1'20 Report: Investment & Sector Trends To Watch", t2 11, hwuwhb|Ji t' https://www.cbinsights.com/reports/CB-Insights_ Fintech-Report-Q1-2020.pdf https://www2.deloitte.com/us/en/pages/finan-cial-services/articles/beyond-covid-19-new-opportu-nities-for-fintech-companies.html

16

a JO n

CO .D V n

=5

c.

b b

v

Альберт АИРАПЕТЯН

Ассистент кафедры международных экономических отношений АГЭУ, кандидат экономических наук

ТРАЕКТОРИЯ ПАНДЕМИИ

КОРОНАВИРУС - СТИМУЛ ДЛЯ РАЗВИТИЯ ФИНАНСОВЫХ ТЕХНОЛОГИИ

Кризис, обусловленный новой пандемией коронавируса, оказывает влияние и на сферу финансовых технологий. Ограниченный доступ к финансам препятству-ет деятельности стартапов и новаторских компаний. В то же время финтех-компании с устоявшимися бизнес-моделями пересматривают свои стратегии развития, чтобы справиться с кризисом. В статье представлены изменения, произошедшие в финтех-секторе за 2019-2020 гг. с целью выявления траектории дальнейшего развития сектора.

Ключевые слова: финансовые технологии, искусственный интеллект, машинное обучение, интернет вещей, большие данные, технология распределенного реестра, пандемия

Albert HAYRAPETYAN

PhD in Economics, Assistant Professor in the Chair of International Economics of ASUE

PANDEMIC TRAJECTORY

CORONAVIRUS AS A STIMULUS FOR THE DEVELOPMENT OF FINANCIAL TECHNOLOGIES

Economic crisis which is the direct consequence of COVID-19 pandemic has not bypassed the sphere of financial technologies. The access to financial means significantly impairs the activities of startups and newly set-up businesses. At the same time, financial companies with sustainable business models revise their development strategies to be able to withstand the crisis. The paper discusses the changes in the field of financial technologies from March, 2019 till the time of writing. It aims to outline the future developments of the field.

Key words: financial technologies, artificial intellect, machine learning, internet of things,

big data, distributed ledger technology, pandemic

i Надоели баннеры? Вы всегда можете отключить рекламу.