7. Blevins G.S., Jache A.W., Gordy W. Millimeter wave spectra ofAsH3 and AsD3 // Phys. Rev. - 1955. - V. 97. - P. 684-692.
8. Helminger P., Beeson Jr E.L., Gordy W. Microwave spectra and molecular constants of arsine and stibine // Phys. Rev A. - 1971. - V. 3.
- P. 122-135.
9. McRae G.A., Gerry M.C.L., Wong M., Ozier I., Cohen E.A. Microwave spectra of deuterated arsines: distortion moment transitions ofAsD3, microwave spectra ofAsH2D and AsHD2, and the structure of arsine // J. Mol. Spectrosc. - 1987. - V. 123. - P. 321-331.
10. McConaghie V.M., Nielsen H.H. A study of the high frequency fundamental bands in the spectrum of AsH3 and AsD3 // Phys. Rev. -1949. - V. 75. - P. 633-642.
11. Bürger H., Jerzembeck W., Ruland H., Wirtz M. High resolution FTIR spectra of AsD3 in the 20-1000 cm-1 region. The ground, v2=1 and v4=1 states // Molec. Phys. - 2000. - V. 98. - № 9. - P. 589-597.
12. Ulenikov O.N., Malikova A.B., Alanko S., Koivusaari M., Anttila R. High-resolution study of the 2 vV hybrid band of the CHD3 Molecule // J. Mol. Spectrosc. - 1996. - V. 179. - P. 175-186.
13. Улеников О.Н. Обратные задачи молекулярной спектроскопии: Дис. ... докт. физ.-мат. наук. - Томск, 1984. - 375 c.
14. Ulenikov O.N. On the determination of the reduced rotational operator for polyatomic molecules // J. Mol. Spectrosc. - 1986. -V. 119. - P. 144-157.
УДК 544.52
ФОТОЛИЗ СИСТЕМ АЗИД СЕРЕБРА - МЕДЬ
Э.П. Суровой, С.М. Сирик, Л.Н. Бугерко
ГОУ ВПО «Кемеровский государственный университет»
E-mail: [email protected]
Масс-спектрометрическим и спектрофотометрическим методами исследованы кинетические и спектральные закономерности формирования продуктов фотолиза систем AgN3(A) - Cu в зависимости от интенсивности падающего света (2,8-'0’4...3,'7-'0’5 квант-см~2-с) при 1=365 нм и времени экспонирования. Создание систем AgN3(A) - Cu, предварительная обработка их светом 1=365 нм наряду с увеличением скорости фотолиза и фототока в области собственного поглощения AgN3(A) приводит к расширению области спектральной чувствительности азида серебра. Предложена модель фотолиза систем AgN3(A) - Cu, включающая генерацию, рекомбинацию и перераспределение в контактном поле электрон-дырочных пар, формирование микрогетерогенных систем азид серебра - серебро (продукт фотолиза) и образование азота. Показано, что диффузия подвижного иона серебра к нейтральному центру лимитирует процесс фотолиза систем AgN3(A') - Cu. Рассчитаны удельная скорость, скорость и константа скорости фотолиза.
Решение задач направленного регулирования фотохимической и фотоэлектрической чувствительности неорганических солей представляет для физики и химии твердого тела многосторонний интерес [1-6]. Постановка подобных исследований, наряду с их технической актуальностью [3, 4, 6], может быть полезным инструментом для выяснения механизма процесса разложения твердых тел [1, 2, 4, 5]. Среди разнообразных светочувствительных соединений особое место занимают азиды тяжелых металлов (АТМ) [7]. Относительно несложный состав и структура, высокая фоточувствительность, значительный внутренний фотоэффект, простой состав конечных продуктов фотолиза делают АТМ удобными модельными объектами исследований [8, 9]. Ранее [10] было установлено, что создание контактов азида серебра с полупроводниками, наряду с увеличением скорости фотолиза и фототока в области собственного поглощения азида серебра, приводит к расширению области спектральной чувствительности.
В настоящем сообщении приведены результаты цикла работ, направленного на исследование кинетических и спектральных закономерностей фотолиза систем AgN3(A1) - Cu до, в процессе и после предварительного разложения и выяснение причин, вызывающих наблюдаемые изменения медью фотохимической и фотоэлектрической чувствительности азида серебра.
Объекты и методы исследования
Азид серебра марки А1 (А§ЩА;)) синтезировали методом двухструйной кристаллизации, одновременно сливая водные 0,2 н растворы дважды пере-кристаллизованного технического азида натрия и нитрата серебра (марки хч) при рН 3, 7=293 К. ^N3^) прессовали в таблетки массой 150 мг при давлении Ф103 кгсм-2. Системы готовили: 1) перемешиванием дозированных количеств азида серебра и меди (Си) в сухом состоянии и в этиловом спирте, с последующей сушкой и прессованием таблеток при давлении Ф103 кгсм-2, 2) нанесением Си на таблетки азида серебра методом термического испарения при давлении Н0-4 Па, используя вакуумный универсальный пост (ВУП-5М). Толщина слоев кадмия варьировалась в пределах 500...1500 А. При сопоставлении результатов и построении кривых спектрального распределения скорости фотолиза (Уф) и фототока (/ф) пропускание света через Си учитывалось.
Измерения кинетических кривых Уф и /ф образцов проводили при давлении Н0-5 Па. В качестве датчика при измерении Уф использовали лампу РМО-4С оме-гатронного масс-спектрометра ИПДО-1, настроенного на частоту регистрации азота. Измерения /ф проводили на установке, включающей электрометрический вольтметр В7-30 либо электрометр ТР-1501 [11]. Спектры диффузного отражения (ДО) до и после
облучения образцов измеряли при давлении Н0-4 Па [10], используя специально сконструированное устройство [12], на спектрофотометре СФ-4А с приставкой ПДО-1, и при давлении 101,3 кПа на спектрофотометрах СФ-10 и SPEСORD-M40 с приставкой на отражение 8°ё. В качестве источника света применяли ртутную (ДРТ-250) и ксеноновую (ДКсШ-1000) лампы. Для выделения требуемого спектрального диапазона излучения использовали монохроматор SРМ-2 и набор светофильтров. Актинометрию источников света проводили, используя радиационный термоэлемент РТ-0589. Контактную разность потенциалов (КРП) между азидом серебра, Си и относительным платиновым электродом измеряли, используя модифицированный метод Кельвина [13].
Результаты и обсуждение
При исследовании кинетических закономерностей фотолиза и фототока ^N3^) и систем А§ЩА^ - Си в зависимости от интенсивности (2,8.1014...3,17.1015 квант.см-2.с-1) и спектрального состава падающего света (1=300... 1500 нм) было установлено, что кинетические кривые Уф и гф коррелируют (рис. 1).
Создание контактов А§ЩА;) с Си приводит к увеличению Уф и гф азида серебра. При экспонировании образцов светом 1=365 нм в интервале интенсивностей от 2,8.1014 до 3,17.1015 квантсм-2х-1 реализуются кривые, состоящие из пяти участков:
I - начального (с максимумом), II - стационарного, III - ускорения, IV - насыщения, V - темново-го постгазовыделения. Предварительный прогрев систем АЭД^) - Си при давлении Р=Ы0-5 Па,
продолжительное хранение образцов в атмосферных условиях, засветка рассеянным белым светом приводят к уменьшению максимума на кинетических кривых Уф и гф. Повторное (после прерывания света на I и II участках) освещение образцов не приводит к заметному изменению Уф и гф на II, III, IV участках кинетических кривых Уф и ц (рис. 1), при этом значения Уф и гф на участке I уменьшаются (рис. 1, кривая 3). Предварительное экспонирование образцов в течение времени достижения участка IV приводит к монотонному увеличению Уф и гф до постоянных значений (рис. 1, кривая 4). Хранение в течение 12 ч и более при давлении Н0-1 Па предварительно экспонированных образцов приводит к частичному восстановлению формы кривой (максимум на участке I не восстанавливается). Кривые темнового постгазовыделения спрямляются в координатах 1пС^=Дт). По тангенсу угла наклона зависимости 1пСК2=Дт) оценили значения констант скорости (к) после прерывания освещения на разных участках кинетических кривых Уф (табл. 1).
Таблица 1. Константы скорости постгазовыделения
Образец Константа к, с-1
Участок I Участок II Участок III
АдМ3(Л1)-Си Ад^Д) (1,30±0,04).10-2 (1,20±0,05).10-2 (1,42±0,05)-10-2 (1,28±0,05)-10-2 (1,19±0,04).10-3 (1,30±0,05)'10-3
Закономерности формирования твердофазного продукта фотолиза систем АЭД^) - Си изучали путем измерений ДО образцов в процессе обработки их светом из области собственного поглощения азида серебра в интервале интенсивностей падающего света (2,8.1014.3,17-1015 квантсм-2.с-1). Было
Рис. 1. Кинетические кривые скорости фотолиза и фототока систем АдМ-3(А1) - Си до (1) и после прерывания света на I (2), II (3), IV (4) участках, рассчитанная кривая Vф (5) при 1=365 нм, 1=3.17■ 105 квантсм~2-с~1. Стрелками обозначены моменты выключения света
установлено, что формирование систем А№(А[) -Си приводит к уменьшению ДО по сравнению с индивидуальным азидом серебра в области А=400...900 нм. Длинноволновый край ДО систем А§ЩА^ - Си совпадает с измеренным для индивидуального азида (А=365 нм).
Обработка образцов А§ЩА^ - Си светом из области собственного поглощения азида серебра приводит к существенным изменениям спектральных кривых ДО. При временах облучения образцов, соответствующих временам реализации нестационарного (I) и стационарного (II) участков кинетических кривых Уф и /ф, наряду с уменьшением ДО диапазоне 400.900 нм на спектральных кривых ДО систем А§ЩА^ - Си (также как и для азида серебра [15]) появляются максимумы при А=440 и 600 нм. Дальнейшее увеличение времени световой обработки до участка возрастания Уф и /ф (III) приводит к уширению полос и смещению максимумов в длинноволновую область спектра. При временах освещения, соответствующих достижению участка (IV) на кривых Уф и /ф, заметных изменений в спектрах ДО не наблюдается. Хранение облученных образцов в течение 24 ч при 293 К и Р=101,3 кПа приводит к частичному восстановлению ДО образцов в длинноволновой области спектра. Было установлено [14], что изменения в спектрах ДО А§ЩА^ связаны с образованием фотолитического серебра, а широкие полосы с максимумами при А=420 и 600 нм - с образованием частиц серебра со средним размером ¿=40 и 100 А. На рис. 2 представлены результаты сопоставления кинетических зависимостей изменения концентрации фотолитического металла (СмЕ), рассчитанные по результатам измерений кинетических кривых Уф при различных ин-
тенсивностях падающего света, со значениями площадей (Я), соответствующих изменению диффузного отражения систем А§ЩА^ - Си в процессе облучения. Совпадения зависимостей, а также результаты работ [9, 14] свидетельствуют о том, что наблюдаемые в результате облучения образцов изменения на спектральных кривых диффузного отражения систем А§ЩА^ - Си обусловлены образованием серебра - продукта фотолиза азида серебра, а максимумы - формированием частиц серебра соответствующих размеров. Твердофазный (серебро) и газообразный (азот) продукты фотолиза систем А§ЩА^ - Си образуются в стехиометрическом соотношении, в основном, на поверхности образцов.
В табл. 2 приведены константы Уф А§ЩА^ и систем А§ЩА!) - Си, оцененные по тангенсу угла наклона зависимостей 1п$=Дт), 1пСме=Дт).
Таблица 2. Константы скорости фотолиза систем АдЫ3(А1) -Си, рассчитанные по кинетическим кривым скорости фотолиза (кф) и спектрам диффузного отражения (кДО), при 1=3,17-10’5 квантсм~2-с-1
Образец 'и 'и о
О Л < < 2 го ^ ^ < < (2,20±0,15).10-2 (4,50±0,35)10-2 (2,40±0,18)10-2 (4,8±0,50)10-2
Из табл. 2 видно, что константы скорости фотолиза азида серебра и систем ^ЩА^ - Си удовлетворительно совпадают. На рис. 3 приведены кривые спектрального распределения Уф и /ф, построенные по стационарным значениям Уф и /ф (участок
II кинетических кривых Уф и /ф). Видно, что создание систем А§Щ^) - Си наряду с увеличением Уф и /ф в собственной области поглощения азида сере-
Рис. 2. Зависимость количества фотолитического серебра (ЫАд) и площадей (S), соответствующих изменению диффузного отражения образцов АдЫ3(А1) - Си, от интенсивности падающего света I, квант-см^-с1:1 - 3,7-Ю'5, 2 - 2,6-Ю'5,3 - 1,6-Ю'5, 4 - 2,8■ 1014, при Х=365 нм
бра приводит к расширению области спектральной чувствительности А№(А[). Для выяснения энергетического строения контактов азида серебра с Си и причин, вызывающих наблюдаемые изменения медью Уф и /ф азида серебра в разных спектральных областях, были выполнены измерения вольтампер-ных характеристик (ВАХ) и КРП между азидом серебра, Си и относительным платиновым электродом. Из анализа ВАХ и результатов измерений контактной разности потенциалов (табл. 3) было установлено, что в области контакта А§ЩА^ - Си возникает потенциальный барьер. Контакт А§ЩА^ -Си проявляет выпрямляющие свойства (прямому направлению соответствует внешнее напряжение, приложенное в направлении противоположном контактной разности потенциалов - плюс источника подан со стороны А§ЩА^).
Таблица 3. Контактная разность потенциалов междуАдЫ3(А), Си и относительным платиновым электродом
Образец КРП, В (Т=293 К)
Р=И05 Па Р=И0-5 Па
АдЫз(А,) +0,54 +0,52
Си +0,07 +0,08
ния Уф и /ф (рис. 3), контактной разности потенциалов [13] (табл. 3), внешней фотоэмиссии из азида серебра [15], спектров диффузного отражения АЭД^) [14] и А§ЩА[) - Си, приведена на рис. 4. При воздействии на системы А§ЩА^ - Си света из области собственного поглощения азида серебра имеет место интенсивная генерация неравновесных носителей заряда а азиде серебра (переход 1)
и фотоэмиссия дырок из металла в валентную зону азида серебра (переход 2). Генерированные в области пространственного заряда АЭД^) пары носителей перераспределяются в контактном поле, обусловленном несоответствием работ выхода электронов из контактирующих партнеров и наличием собственных поверхностных электронных состояний (СПЭС) [13], с переходом электронов на уровни СПЭС (Т+) или непосредственно в металл (переходы 3, 4) Т++е^Тп,
М++е^Мо.
Полученные в настоящей работе и ранее [8-10, 14] результаты исследований свидетельствуют о том, что фотохимические проявления фотоэлектрических процессов в системах А§ЩА^ - Си могут быть вызваны:
1. фотоэмиссией электронов (дырок) из металла в азид серебра;
2. перераспределением под действием контактного поля генерированных в ^ЩА^ светом неравновесных электрон-дырочных пар;
3. компенсирующими потоками равновесных носителей заряда.
Эти процессы приводят к тому, что добавка металла может выступать в качестве донора или акцептора электронов.
Диаграмма энергетических зон систем А§ЩА^ - Си, при построении которой использовали результаты исследований спектрального распределе-
АдИз Си
Рис. 4. Диаграмма энергетических зон систем ~ Си,
Е/ - уровень потолка валентной зоныI, ЕС - уровень дна зоны проводимости, Е^ - уровень Ферми, Е0 -уровень вакуума, Т - центр рекомбинации
Так как квантовый выход фотолиза, оцененный по начальному участку кинетической кривой Уф, составляет «0,002.0,01, то часть фотоиндуцируемых носителей заряда рекомбинирует (переходы 5, 6) Т++е^То,
То+р^Т+,
где Т+ - центр рекомбинации. Концентрация дырок в области пространственного заряда азида серебра по сравнению с концентрацией их в индивидуальном азиде будет возрастать. Возрастание концентрации дырок в области пространственного * азида серебра приводит к соответствующему увеличению /ф и Уф по принимаемым для фотолиза АТМ реакциям образования азота: р+^г^,
Х+^2+2 Х++^-, где Х+ и V“ - анионная и катионная вакансии.
При фотолизе систем А§ЩА^ - Си одновременно с выделением азота образуется и фотолити-ческое серебро. Формирование частиц фотолити-ческого серебра, по нашему мнению, происходит с участием СПЭС
Тп°+Ав+^(ТпАв)++е^...^(ТпАви)+.
Наблюдаемое уменьшение Уф и /ф на начальном участке (I) кинетических кривых в процессе и после экспонирования образцов (рис. 1) подтверждает необратимый расход поверхностных центров. В процессе роста частиц фотолитического металла формируются микрогетерогенные системы азид серебра - серебро (продукт фотолиза). Генерированные в области пространственного заряда азида серебра пары носителей перераспределяются в контактном поле, сформированном из-за несоответствия между термоэлектронными работами выхода азида серебра и фотолитического серебра, с переходом неравновесных электронов из зоны проводимости А§ЩА;) в металл
(Т^и)++е^(Т^и)0.
Одновременно имеет место фотоэмиссия дырок из фотолитического серебра в азид серебра (переход 2). Эти процессы, во-первых, приводят к возрастанию концентрации дырок и, как следствие, к увеличению Уф и /ф (участок III); во-вторых, могут стимулировать диффузию ионов серебра к растущим частицам
(ТпАви)°+Ав+^(ТпАви+1)+.
Для определения лимитирующей стадии процесса роста частиц серебра оценили время, в течение которого подвижный ион А§+ диффундирует к нейтральному центру (Т^м)°.
Среднее время релаксации при диффузионном протекании процесса может быть оценено [16] тп=е2/аакТ,
где: е - заряд электрона, а - постоянная решетки А§ЩА;), 5,6.10-8 см, а - удельная проводимость ^N3^). При 7=293 К а=1.10-12 Ом-1.см-1 [17], к - постоянная Больцмана, Т - температура.
При 7=293 К тп«1,14.102 с, константа скорости диффузии А§+ к нейтральному центру (ТпА§м)° к1«1/1,14.102«8,8.10-3 с-1.
При условии, что концентрация центров роста (Тп+) и скорость роста частиц серебра постоянная, зависимость скорости реакции от времени экспонирования, согласно [18], описывается уравнением:
= %Т2 - 1%Т *
(а / ^¡2п)ехр[-(т - а)2/2<г2] - (а/-\/2Л)ехр( -/2а2)
+[(т - а)/а>/2Л]|ехр[-(т - а)2 /2а2]с1т
0
где х=2п(М/й2)^дЫ, М - молярная масса серебра, й - эффективная плотность серебра, - удельная скорость реакции, N - количество частиц серебра, а - время, при котором скорость касания растущих ядер максимальна, а - рассеяние случайных величин вокруг ее математического ожидания. Чем меньше а, тем больше ядер соприкасается друг к другу к моменту времени т=а и тем более равномерно распределены они на поверхности. Первый член правой части уравнения выражает скорость реакции при независимом росте ядер, а остальные - поправку, связанную с перекрыванием ядер. Параметр % предварительно определяли из данных для начального участка кинетической кривой (рис. 1, кривая 1) [18]:
где па - количество превращенного вещества. Параметр а и а определяли, сопоставляя кинетическую кривую Уф (рис. 1) с калибровочными кривыми, построенными при различных значениях а и у по ур. (1). Получили, что при х=1,Н0-11 моль.мин-3 а=21 мин и а=13. Согласно [18], удельная скорость образования частиц серебра
^=2ха 2/пЯуд, где Я, - удельная поверхность азида серебра, равная 6.106 см2.моль-1 [19], g - навеска исходного образца.
Поскольку коэффициент поглощения для азида серебра при А=365 нм составляет ~105 [20], то процесс фотолиза протекает на глубине до 10-5 см, возможно вместо значения g, использовать й=5.10-7 моль, рассчитанное из кривой полного разложения азида серебра. При g1 получили, что ДО^ц=1,26.10-9моль.с-1.
Рассчитанная кривая скорости образования частиц серебра представлена на рис. 1 (кривая 5). По тангенсу угла наклона зависимости 1пСАе=/(т), где СА8 - концентрация фотолитического серебра, оценили константу скорости роста частиц фотолитиче-ского серебра (кг=5,3.10-3 с-1). Константа скорости к2 удовлетворительно согласуется с рассчитанной константой скорости диффузии иона серебра Ag+ к растущей частице серебра (к1) и с константами скорости темнового постгазовыделения (к) (табл. 1) и фотолиза (кф) (табл. 2), определенными из экспериментальных данных. Совпадение значений кф, к, к1, к2 дают основание предположить, что лимитирую-
щей стадией фотолиза и темнового постгазовыделе-ния для систем AgN3(A1) - Си является диффузия ионов серебра к нейтральному центру (Т^м)°. В процессе фотолиза граница раздела контактов азид серебра - медь покрывается слоем фотолитическо-го серебра, и при больших степенях превращения
СПИСОК ЛИТЕРАТУРЫ
1. Robbilard J.J. Possible use of certain metallic azides for the development of dry photographic process // J. Photog. Science. - 1971. -V. 19. - Р. 25-37.
2. Levy B., Lindsey M. Semiconductor sensitization of photosensitive materials. Part II. Spectral sensitization silver halides with PbO -photographic diode // Phot. Sci. and Eng. - 1973. - V. 17. - № 2.
- P. 135-141.
3. Акимов И.А., Черкасов Ю.А., Черкашин М.И. Сенсибилизированный фотоэффект.- М.: Наука, 1980. - 384 с.
4. Горяев М.А., Пименов Ю.Д. Управление процессами формирования изображения в неорганических светочувствительных материалах // Успехи научной фотографии. - 1980. - Т. 20. -С. 96-105.
5. Индутный И.З., Костышин М.Т., Касярум О.П., Минько В.И., Михайловская Е.В., Романенко П.Ф. Фотостимулированные взаимодействия в структурах металл - полупроводник. - Киев: Наукова думка, 1992. - 240 с.
6. Шапиро Б.И. Теоретические начала фотографического процесса. - М.: Эдиториал УРСС, 2000. - 288 с.
7. Боуден Ф., Иоффе А. Быстрые реакции в твердых веществах. -М.: Иностранная литература, 1962. - 243 с.
8. Суровой Э.П., Бугерко Л.Н., Расматова С.В. Фотолиз гетеросистем «азид свинца - кадмий» // Известия Томского политехнического университета. - 2004. - Т. 307. - № 2. - С. 95-99.
9. Суровой Э.П., Бугерко Л.Н., Расматова С.В. Фотолиз систем «азид свинца - теллурид кадмия» // Известия Томского политехнического университета. - 2004. - Т. 307. - № 4. - С. 85-88.
10. Суровой Э.П., Сирик С.М., Захаров Ю.А., Бугерко Л.Н. Фотолиз гетеросистем азид серебра - оксид меди (I) // Журн. науч. и прикл. фотографии. - 2002. - Т. 47. - № 5. - С. 19-27.
фотоэлектрические процессы в системах AgN3(A1) -Си будут в значительной степени определяться фотоэлектрическими процессами на границе азид серебра - серебро (продукт фотолиза) - медь.
Работа поддержана грантом Президента РФ для поддержки ведущих научных школ НШ - 20.2003.3.
11. Суровой Э.П., Бугерко Л.Н., Захаров Ю.А., Расматова С.В. Закономерности формирования твердофазного продукта фотолиза гетеросистем азид свинца - металл // Материаловедение. - 2002. - № 9. - С. 27-33.
12. А.с. 1325332 СССР. МКИ G01N 21/55. Устройство для измерения спектров отражения в вакууме / А.И. Турова, ГП. Адушев,
Э.П. Суровой и др. Заявлено 10.11.1985; Опубл. 24.07.1987, Бюл. № 27. - 5 с.: ил.
13. Суровой Э.П., Захаров Ю.А., Бугерко Л.Н. Определение работы выхода электрона из азидов серебра, свинца и таллия // Неорганические материалы. - 1996. - Т. 32. - № 2. - С. 162-164.
14. Суровой Э.П., Бугерко Л.Н., Сирик С.М. Закономерности образования твердофазного продукта фотолиза азида серебра // Химическая физика. - 2000. - Т. 19. - № 10. - С. 68-71.
15. Захаров Ю.А., Колесников Л.В., Черкашин А.Е., Кащеев С.В. Исследование методом внешней фотоэмиссии электронной структуры азида серебра // Известия вузов. Сер. Физика. -1975. - № 6. - С. 44-50.
16. Мейкляр П.В. Физические процессы при образовании скрытого фотографического изображения. - М.: Наука. 1972. - 399 с.
17. Гасьмаев В.К. Исследование механизма термического разложения азида серебра электрофизическими методами: Автореф. дис. ... канд. хим. наук. - Томск, 1973. - 19 с.
18. Розовский А.Я. Гетерогенные химические реакции. Кинетика и механизм. - М.: Наука, 1980. - 264 с.
19. Савельев Г.Г., Захаров Ю.А., Гаврищенко Ю.В. Фотолиз азидов тяжелых металлов и его оптическая сенсибилизация // Журн. науч. и прикладной фото- кинематографии. - 1969. - Т. 14. -№ 6. - С. 466-468.
20. Диамант Г.М. Неравновесная проводимость в процессе фотохимической реакции в азиде серебра: Автореф. дис. . канд. физ.-мат. наук. - Кемерово, 1986. - 22 с.