Научная статья на тему 'RESEARCH HYDRAULIC RESISTANCE OF WET CLEANING DEVICEOF DUST GASES'

RESEARCH HYDRAULIC RESISTANCE OF WET CLEANING DEVICEOF DUST GASES Текст научной статьи по специальности «Естественные и точные науки»

CC BY
38
3
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Fluid flow / wet method / contact element / dust gas / surface scalingtension / toxic gas / angle of attack / air flow / gas flow / gas velocity.

Аннотация научной статьи по естественным и точным наукам, автор научной работы — Nasimbek Ergashev, Gulnora G’Aniyeva, O’Tkirbek Xamdamov

The article presents a theoretical study on the determination of the total hydraulic resistance of a device operating in a circular flow with a contact element that generates a heap for cleaning dust air. For theoretical calculations, a device scheme of computing was developed. The equations of hydraulic resistance affecting the flow of powdered gas through the pipe section of the calculation scheme and the fluid in the transverse section are presented.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «RESEARCH HYDRAULIC RESISTANCE OF WET CLEANING DEVICEOF DUST GASES»

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

RESEARCH HYDRAULIC RESISTANCE OF WET CLEANING DEVICEOF

DUST GASES

Nasimbek Ergashev Gulnora G'aniyeva O'tkirbek Xamdamov

Fergana polytechnic Fergana polytechnic Fergana polytechnic

institute institute institute

ABSTRACT

The article presents a theoretical study on the determination of the total hydraulic resistance of a device operating in a circular flow with a contact element that generates a heap for cleaning dust air. For theoretical calculations, a device scheme of computing was developed. The equations of hydraulic resistance affecting the flow of powdered gas through the pipe section of the calculation scheme and the fluid in the transverse section are presented.

Keywords: Fluid flow, wet method, contact element, dust gas, surface scalingtension, toxic gas, angle of attack, air flow, gas flow, gas velocity.

Toxic gases and powders lead to air pollution in the manufacturing processes of various industries. This in turn creates environmental problems. Devices of different design structures have been created for cleaning of toxic gases and dust and solving these environmental problems, which are used to purify dust gases and mixtures by the following methods [1,2,3].

1. Drowning under the force of gravity;

2. Drowning under the centrifugal force;

3. Drowning in electric and other forces;

4. Filtering;

5. Wet cleaning of gases.

The most effective method of analyzing these methods is wet cleaning, and there is a tendency for widespread use of this method in the industry and many scientific research works are carried out in this field. [4,5].

For example, when using this type of device, dust flow is in contact with drop or film fluid. According to the hydrophilic properties, the powder adheres to the surface of the liquid and is taken out of the unit with it. It is also capable of catching very small particles (up to 0.1 microns) and high purity (up to 99%).However, the use of this type of equipment requires the creation of fluid slime and additional energy required for its purification.

SCIENTIFIC PROGRESS

VOLUME 4 I ISSUE 1 I 2023 ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

The main trend in the creation of wet gas purification devices is to improve the efficiency of dust and gases cleaning at low fluid consumption. This will reduce energy consumption.

Based on the above, a number of research studies on the design of wet gas purification and neutralization devices, and the analysis of their successes and drawbacks, a constructive scheme of a device operating in a circular flow with a contact element has been developed[6] Figure 1.

In order to investigate the effect of hydraulic resistance on the efficiency of cleaning and energy consumption of the device, the hydrodynamics of the device was studied. Figure 2 shows the computational scheme of the device.

Figure 1. General view of the device.

1 - fan; 2 - electromotor; 3 - metal pipe; 4 -10 - 19 Flanges; 5 - dust collector; 6 -dust supplier; 7 -18 Pito Prandl tube; 8-dusty air inlet lane 9 - stacker 11 - Pump;

12 - valve; 13 - rotameter; 14 - water supply pipe; 15-gas flow-forming element; (fluorite) 16 - stutter of fluid; 17 - water repellent; 20- anemometer electronic meter; 21- electromotor speed control apparatus; 22 - Instrument showing the velocity.

SCIENTIFIC PROGRESS

VOLUME 4 I ISSUE 1 I 2023 ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

Figure 2. Calculation scheme of wet-type dust collector with rotating contact element in

rotating flow mode.

The total hydraulic resistance of the device operating in a circular flow with a contact element influences to dust gas can be written using the computational equations given in the literature [7,8] and the A-A section of the device computational scheme.

AP = P1 + P2, Pa

where: AP - total hydraulic resistance of the device, Pa; P1 - the inlet and contact element of the dust gas is the hydraulic resistance at the distance to the rotating flow generating element which is defined by the following equation:

Pi=61

ap

2

Pa

(2)

here: - lost gas velocity at a distance from the dust gas to the inlet device and the contactor forming a circular flow in the contact element m / s; £ - the local resistance coefficient of the dust gas to the inlet device and the contact element forming the heater is determined by the following equation.

6 = ^

(3)

here: l -current length, m; d3 - equivalent diameter of the shaft, m; A - the lesson of the lesson is that it depends on many scientists in expressing the law of change with empirical equations. These features are analyzed in the device. For example, in the field of smooth pipe use formulas Blazius, PK Konakov and L. Prandtl. Blazius formula:

A = = 0,3164

4/l00Re Re0,25 v 7

This equation best fits the experiments when the Reynolds number is Re <10. For larger Reynolds number ranges (from 3 ■ 10 to Re), the P.Konakov equation can be used:

 = -

1

(1,81 Re -1,5)2

L. Prandtl gave the following equation:

(5)

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

= 21g(R^ I-0,8) (6)

These equations are made for smooth tubes and cannot be used for rough pipes. Kolbrook proposed an equation common to all zones of turbulent order to calculate technical pipes based on the experiences of other scientists:

— --21 fsi m

\ ReVI + 3,7) ( )

If we simplify this equation for the area of the squared resistance of the tubes or for the sphere of fixed turbulence, the Prandtl equation for the pipe pipes appears as follows:

I = (8)

(ig371

V 3,7 J

One of the most common equations for square resistance is the Nikuradze equation:

I =---r (9)

f - Y

1,74 + 21g— I V sJ

In the computational work that covers all areas of the turbulent order and computational equation (8), A. Altshul proposed a more general equation based on experiments for a wide range of:

f „\0,25

X = 0,11

v

"Ij <10>

The equation also has theoretical basis and follows simple experiments based on A. Altshul's experiments:

1. Re<10 smooth tube and (10) become the equation of Blazius:

s

X = 0,11

r 68 J0,25 0,3164

Re J Rs0'25

2. <Re<; I is influenced by Re and s and corresponds to the field of solid turbulence, without simplification (10).

3. Re> has a sphere of squared resistance and (10) is the following equation closest to the Shifrson equation:

I = 0,11s0'25

Calculated by this formula (its values are close to its values calculated by the Nikuradze formula). If we replace equation (2) in equation (2) instead of the resistance factor (3) then the equation looks like.

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

l Pap

pi "I-' Pa (11)

p - The contact element is the hydraulic resistance of the rotating current generating element, which is defined by the following equation:

P ^, Pa (12)

Where: 9 -контакт элементи буралган уюрмали оким хосил килувчиэлементининг каршилиги хисобига йукотиладиган газ тезлиги m / s, - the contact element is the coefficient of resistance of the rotating current generating element, which can only be determined by experiment..

Pap - Density of the mixture of dust and gas is determined by the following equation:

Pap =Pr + (pH-r) > kg / m3 (13)

-5 -5

Where: PH - dust density, kg / m ; pz - air density, kg / m ; r - is the amount of dust in the air,%.

If we put equations (11) and (12) into equation (1), then the equation for determining the total hydraulic resistance of the device appears as follows.

l $12 pap , £ $22pap pap

, ^Pap o-f л

d 2 2 2 2

A9^ + ^2^22

v dэ у

, Pa (14)

Using equation (14) we can determine the total hydraulic resistance of the device.

f A A —r>2 \

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

AP =

Oap

2

0.3169// 7 4nR2 n2 -+ Ak-92

v d vRe nabsin3 .

v э /

Pa

(15)

The total hydraulic resistance of the device on the B-B section of the device, which affects the fluid, can be written as follows.

AP = P + P Pa

сую к ш ■>

( 16)

Where: PK - The geometric pressure inside the fluid pipe is defined by the following equation:

PK =PgH, Pa (17)

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

Where: p - fluid density, kg / m ; g - acceleration of free fall, m / s ;H - Fluid level height, m;

Pm - the lost pressure of fluid leakage through the hole, as determined by the Darcy-Weissbach equation.

p • 3c • pc , Pa (18)

m m ^

Where: Ac - rate of fluid flow through the hole, m / s; - the coefficient of resistance

to fluid leakage from the stutter hole depends on the thickness S and dm diameter of the hole.

Then we apply the Bernoulli equation to determine the rate of fluid flowing through the device's bar hole and assume that the pressure PK in the pipe and the pressure Pm in the stutter hole are equal. Then equation (15) can be written as follows.

•32 • P

PgH = Cm Ap > Pa

(19)

From equation (18), we determine the fluid velocity.

11

2(pcgH )

2gH m/s (20)

С

рЛ \

From equation (19), it is possible to determine the fluid flow through the hole of the device bar.

Qc = 360(kR2$c, kg / m3 (21)

References

1. Эргашев, Н. А., Маткаримов, Ш. А., Зияев, А. Т., Тожибоев, Б. Т., & Кучкаров, Б. У. (2019). Опытное определение расхода газа, подаваемое на пылеочищающую установку с контактным элементом, работающим в режиме спутникового вихря. Universum: технические науки, (12-1 (69)), 29-31.

2. Ergashev, N. A., Mamarizayev, I. M. O., & Muydinov, A. A. O. (2022). Kontakt elementli ho 'l usulda chang ushlovchi apparatni sanoatda qo 'llash va uning samaradorligini tajribaviy aniqlash. Scientific progress, 3(6), 78-86.

3. Эргашев, Н. А. (2020). Исследование гидравлического сопротивления пылеулавливающего устройства мокрым способом. Universum: технические науки, (4-2 (73)), 59-62.

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

4. Axmadjonovich, E. N. Obidjon o 'g 'li, XA, & Abduqayum o'g'li, AM (2022). Industrial application of dust equipment in the industrial wet method with contact elements and experimental determination of its efficiency. American Journal of Applied Science and Technology, 2(06), 47-54.

5. Ergashev, N. A. (2020). Determination hydraulic resistance of device that has the vortex flow creating contact element. Austrian Journal of Technical and Natural Sciences, (3-4), 15-22.

6. Ergashev, N. A., Xoshimov, A. O. O. G. L., & Muydinov, A. A. O. (2022). Kontakt elementi uyurmali oqim hosil qiluvchi rejimda ishlovchi ho 'l usulda chang ushlovchi apparat gidravlik qarshilikni tajribaviy aniqlash. Scientific progress, 3(6), 94-101.

7. Ergashev, N. A., Abdulazizov, A. A. O., & Ganiyeva, G. S. Q. (2022). Ho 'l usulda chang ushlovchi apparatda kvarts qumi va dolomit changla-rini tozalash samaradorligini tadqiq qilish. Scientific progress, 3(6), 87-93.

8. Ergashev, N., & Tilavaldiev, B. (2021). Hydrodynamics of Wet Type Dusty Gas Collector. International Journal of Innovative Analyses and Emerging Technology, 1(5), 75-86.

9. Axmadjonovich, E. N., & Obidjon o'g'li, X. A. (2022). EXPERIMENTAL DETERMINATION OF HYDRAULIC RESIDENCE. International Journal of Advance Scientific Research, 2(06), 6-14.

10. Эргашев, Н. А., Алиматов, Б. А., & Дикевич, А. В. (2018). Затраты энергии в мокром пылеуловителе при производстве дорожно-строительных материалов. In Энерго-, ресурсосберегающие машины, оборудование и экологически чистые технологии в дорожной и строительной отраслях (pp. 232-238).

11. Алиматов, Б. А., Эргашев, Н. А., & Тишабаева, У. А. (2016). Автоклавная обработка малокварцевых строительных материалов. In Актуальные проблемы менеджмента качества и сертификации (pp. 6-8).

12. Ergashev, N., Ismoil, K., & Baxtior, M. (2022). Experimental determination of hydraulic resistance of wet method dushanger and gas cleaner. American Journal Of Applied Science And Technology, 2(05), 45-50.

13. Sadullaev, X., Muydinov, A., Xoshimov, A., & Mamarizaev, I. (2021). ECOLOGICAL ENVIRONMENT AND ITS IMPROVEMENTS IN THE FERGANA VALLEY. БАРКАРОРЛИК ВА ЕТАКЧИ ТАД^ЩОТЛАР ОНЛАЙН ИЛМИЙ ЖУРНАЛИ, 1(5), 100-106.

14. Askarov, X. A., Karimov, I. T., & Mo'Ydinov, A. (2022). Rektifikatsion jarayonlarining ^on^arda moddiy va issiqlik balanslarini tadqiq qilish. Oriental renaissance: Innovative, educational, natural and social sciences, 2(5-2), 246-250.

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

15. Tojiev, R., Alizafarov, B., & Muydinov, A. (2022). THEORETICAL ANALYSIS OF INCREASING CONVEYOR TAPE ENDURANCE. Innovative Technologica: Methodical Research Journal, 3(06), 167-171.

16. Ахунбаев, А., & Муйдинов, А. (2022). ОПРЕДЕЛЕНИЕ МОЩНОСТИ РОТОРА В РОТОРНО-БАРАБАННОМ АППАРАТЕ. Yosh Tadqiqotchi Jurnali, 1(5), 381-390.

17. Муйдинов, А. (2022). ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ЗАТРАТ ЭНЕРГИИ НА ПЕРЕМЕШИВАНИЕ. Yosh Tadqiqotchi Jurnali, 1(5), 375-380.

18. Ахунбаев, А., & Муйдинов, А. (2022). УРАВНЕНИЯ ДВИЖЕНИЯ ДИСПЕРСНОГО МАТЕРИАЛА В РОТОРНО-БАРАБАННОМ АППАРАТЕ. Yosh Tadqiqotchi Jurnali, 1(5), 368-374.

19. Ахунбаев, А. А., & Муйдинов, А. А. У. (2022). ЗАТРАТЫ МОЩНОСТИ НА ПОДДЕРЖАНИЕ СЛОЯ МАТЕРИАЛА В КОНТАКТНОЙ СУШИЛКЕ. Universum: технические науки, (6-1 (99)), 49-53.

20. Axmadjonovich, E. N., Obidjon o'g'li, X. A., & Abduqayum o'g'li, A. M. (2022). INDUSTRIAL APPLICATION OF DUST EQUIPMENT IN THE INDUSTRIAL WET METHOD WITH CONTACT ELEMENTS AND EXPERIMENTAL DETERMINATION OF ITS EFFICIENCY. American Journal of Applied Science and Technology, 2(06), 47-54.

21. Musajonovich, A. B. (2022). Methods Of Strength Calculation Of Multi-Layer Conveyor Belts. Eurasian Research Bulletin, 14, 154-162.

22. Khoshimov, A., Abdulazizov, A., Alizafarov, B., Husanboyev, M., Xalilov, I., Mo'ydinov, A., & Ortiqaliyev, B. (2022). Extraction of caprolactam in two s tages in a multiple-stage barbotation extractor. Conferencea, 53-62.

23. Abdulloh, A., Gulnora, G., Avzabek, X., Ismoiljon, X., Bekzod, A., Muhammadbobur, X., ... & Abdusamad, M. (2022). KINETICS OF DRYING OF SPRAY MATERIALS. Conferencea, 190-198.

24. Adil, A., Abdusamad, M., Abdulloh, A., Avzabek, X., Ismoiljon, X., Bekzod, A., ... & Bobojon, O. (2022). MODERNIZATION OF WORKING BLADES OF THE CONSTRUCTION GLASS SHELL MIXING DEVICE. Conferencea, 199-206.

25. Adil, A., Bobojon, O., Abdusama, M., Avzabek, X., Ismoiljon, X., Bekzod, A., ... & Abdulloh, A. (2022). DRYING IN THE APPARATUS WITH A QUICK ROTATING ROTOR. Conferencea, 182-189.

26. Adil, A., Muhammadbobur, X., Ortiqaliyev, B., Abdusamad, M., Abdulloh, A., Avzabek, X., ... & Bekzod, A. (2022). ROASTING OF NICKEL HYDROCARBONATE. Conferencea, 174-181.

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

27. Adil, A., Ismoiljon, X., Bekzod, A., & Muhammadbobur, X. (2022). USE OF SWIRLERS IN HEAT EXCHANGERS. Conferencea, 149-157.

28. Adil, A., Ismoiljon, X., Bekzod, A., & Muhammadbobur, X. (2022). USE OF SWIRLERS IN HEAT EXCHANGERS. Conferencea, 149-157.

29. Adil, A., Abdusamad, M., Abdulloh, A., Avzabek, X., Ismoiljon, X., Bekzod, A., ... & Bobojon, O. (2022). DRYING OF MINERAL FERTILIZERSRESEARCH OF HYDRODYNAMIC PROCESSES. Conferencea, 158-165.

30. Karimov, I., & Halilov, I. (2021). Modernization of the main working shovels of the construction mixing device.

31. Ikromali, K., & Ismoiljon, H. (2021). Hydrodynamics of Absorption Bubbling Apparatus. Бюллетень науки и практики, 7(11), 210-219.

32. Karimov, I., Xalilov, I., Nurmatov, S., & Qodirov, A. (2021). Barbotage absorbation apparatus. Barqarorlik va yetakchi tadqiqotlar onlayn ilmiy jurnali, 1(5), 35-41.

33. Rasuljon, T., Voxidova, N., & Khalilov, I. (2022). Activation of the Grinding Process by Using the Adsorption Effect When Grinding Materials. Eurasian Research Bulletin, 14, 157-167.

34. Alizafarov, B., Madaminova, G., & Abdulazizov, A. (2022). Based on acceptable parameters of cleaning efficiency of a rotor-filter device equipped with a surface contact element. Journal of Integrated Education and Research, 1(2), 36-48.

35. Abdulloh, A. (2022). Ho 'l usulda chang ushlovchi va gaz tozalovchi qurilmada gidravlik qarshilikni tadqiq etish. Yosh Tadqiqotchi Jurnali, 1(5), 246-252.

36. Tojiev, R. J., & Sulaymonov, A. M. (2021). Comparative analysis of devices for wet cleaning of industrial gases. Scientific progress, 2(8), 100-108.

37. Алиматов, Б. А., Садуллаев, Х. М., & Хошимов, А. О. У. (2021). Куп погонали барботаж экстракторида капролактамни икки боскдчда экстракциялаш. Фаргона политехника институти илмий-техника журнали.(6), 40-44.

38. Алиматов, Б. А., Садуллаев, Х. М., & Хошимов, А. О. У. (2021). Сравнение затрат энергии при пневматическом и механическом перемешивании несмешивающихся жидкостей. Universum: технические науки,(5-5 (86)), 53-56.

39. Ализафаров, Б. М. (2020). Ecological drying of fine dispersed materials in a contact dryer. Экономика и социум, (11), 433-437.

40. Tojiyev, R., Isomidinov, A., & Alizafarov, B. (2021). Strength and fatigue of multilayer conveyor belts under cyclic loads. Turkish Journal of Computer and Mathematics Education, 12(7), 2050-2068.

41. Rasuljon, T., & Bekzod, A. (2022). Theoretical research of stress in rubber-fabric conveyor belts. Universum: технические науки, (4-12 (97)), 5-16.

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

42. Axunboev, A., Alizafarov, B., Musaev, A., & Karimov, A. (2021). Analysis of the state of the problem of ensuring the operation of the rotating units. Barqarorlik va yetakchi tadqiqotlar onlayn ilmiy jurnali, 1(5), 122-126.

43. Gulmiraxon, M., Abduraxmon, S., Ismoiljon, X., Bekzod, A., & Muhammadbobur, X. (2022). ROLLER GRATE WITH INCREASING COVERAGE GROUND SURVEY WORK CORNER. Conferencea, 17-22.

44. Gulmiraxon, M., Ismoiljon, X., Abduraxmon, S., Bekzod, A., & Muhammadbobur, X. (2022). CRUSHING AND APPETITE OF THE PROCESS EFFICIENCY INCREASE. Conferencea, 22-27.

45. Abduraxmon, S., Gulmiraxon, M., Ismoiljon, X., Bekzod, A., & Muhammadbobur, X. (2022). CALCULATION OF THE ROTATION SPEED OF THE CLINKER CRUSHING MILL. Conferencea, 12-19.

46. Abduraxmon, S., Gulmiraxon, M., Ismoiljon, X., Bekzod, A., & Muhammadbobur, X. (2022). THE KLINKER CEMENT IN THE PRODUCTION OF GAS FUEL FROM USE SPARINGLY. Conferencea, 23-28.

47. Abduraxmon, S., Gulmiraxon, M., Ismoiljon, X., Bekzod, A., & Muhammadbobur, X. (2022). ECOLOGICAL DRYING OF FINE MATERIALS. Conferencea, 4-11.

48. Тожиев, Р. Ж., & Ортикалиев, Б. С. (2019). Оловбардош гишт ишлаб чикаришда хом ашёларни саралаш жараёнини тадкик килиш. Журнал Технических исследований, (2).

49. Мухамадсадиков, К., Ортикалиев, Б., Юсуов, А., & Абдупаттоев, Х. (2021). Ширина захвата и скорости движения выравнивателя в зависимости удельного сопротивления почвы. Збгрник наукових працъ SCIENTIA.

50. Ortikaliev, B. S., & Mukhamadsadikov, K. J. (2021). Working widht and speed of the harrow depending on soil resistivity. Web of Scientist: International Scientific Research.

51. Tojiyev, R. J., Ortiqaliyev, B. S. O. G. L., Abdupattoyev, X. V. O., & Isomiddinova, D. I. J. Q. (2021). Donador-sochiluvchan mahsulotlarni saralashda sm-237a markali mashinalarini o 'mi. Scientific progress, 2(2), 1378-1381.

52. Tojiyev, R., Ortiqaliyev, B., & Sotvoldiyev, K. (2021). Improving the design of the screed for firebricks using solidworks. BARQARORLIK VA YETAKCHI TADQIQOTLAR ONLAYN ILMIY JURNALI, 7(5), 91-99.

53. Ортикалиев, Б. С., & Тожиев, Р. Ж. (2021). Sifatli olovbardosh g 'isht ishlab chiqarishda xom ashyolarni saralash jarayonini tadqiq qilish. ЗАМОНАВИЙ БИНО-ИНШООТЛАРНИ ВА УЛАРНИНГ КОНСТР УКЦИЯЛАРИНИ ЛОЙИ^АЛАШ, БАРПО ЭТИШ, РЕКОНСТРУКЦИЯ ВА МОДЕРНИЗАЦИЯ ЩЛИШНИНГ ДОЛЗАРБ МУАММОЛАРИ.(1 -65), 199-203.

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

54. Mukhamadsadikov, K., & Ortiqaliyev, B. (2022). Constructive Parameters of Earthquake Unit Before Sowing. Eurasian Journal of Engineering and Technology, 9, 55-61.

55. Tojiyev, R. J., Ortiqaliyev, B. S. O. G. L., & Abdurayimov, A. A. O. G. L. (2021). Saralash mashinalarining qiyosiy tahlili. Science and Education, 2(11), 359-367.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

56. Tojiyev, R., Ortiqaliyev, B., Abdupattoyev, X., & G'ulomov, I. (2021). PRODUCTION OF REFRACTORY BRICKS IN INDUSTRIAL ENTERPRISES AND SORTING OF THEIR RAW MATERIALS. Mamepicmu KOH^epeHiiu ^H^.

57. Mukhamadsadikov, K., & Ortiqaliyev, B. (2021). ANALYSIS OF PARAMETERS OF THE WORKING PART OF THE PLANTING PLANT BEFORE PLANTING. Scientific progress, 2(8), 115-125.

58. Mukhamadsadikov, K., Ortiqaliyev, B., Olimova, D., & Isomiddinova, D. (2021). MATHEMATICAL ANALYSIS OF DETERMINING THE PARAMETERS OF THE WORKING PART OF THE PLANTING PLANT BEFORE PLANTING. Scientific progress, 2(7), 699-708.

i Надоели баннеры? Вы всегда можете отключить рекламу.