Научная статья на тему 'ANALYSIS OF THE MAIN HYDRODYNAMIC REGULARITIES OF THE MICROBURNINGPROCESS IN ORDER TO IDENTIFY THE POSSIBILITIES OF USING BIOGAS FROM CO2'

ANALYSIS OF THE MAIN HYDRODYNAMIC REGULARITIES OF THE MICROBURNINGPROCESS IN ORDER TO IDENTIFY THE POSSIBILITIES OF USING BIOGAS FROM CO2 Текст научной статьи по специальности «Естественные и точные науки»

CC BY
16
1
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
microbubbling / hydrocarbons / perfluorocarbon / mass transfer / mass transfer. The mechanism of microbubble formation and the characteristics of membranes used for the microbubbing process

Аннотация научной статьи по естественным и точным наукам, автор научной работы — A. A. Abdulazizov

This article presents the results of a study of the main hydrodynamic and mass transfer characteristics of a microbubble apparatus on model systems aimed at elucidating the possibility of using microbubble processes to conduct mass transfer processes between biogas and liquid.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ANALYSIS OF THE MAIN HYDRODYNAMIC REGULARITIES OF THE MICROBURNINGPROCESS IN ORDER TO IDENTIFY THE POSSIBILITIES OF USING BIOGAS FROM CO2»

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

ANALYSIS OF THE MAIN HYDRODYNAMIC REGULARITIES OF THE MICROBURNINGPROCESS IN ORDER TO IDENTIFY THE POSSIBILITIES

OF USING BIOGAS FROM CO2

A. A. Abdulazizov

Farg'ona politexnika instituti assistenti abdulloh.abdulazizov@ferpi.uz

ABSTRACT

This article presents the results of a study of the main hydrodynamic and mass transfer characteristics of a microbubble apparatus on model systems aimed at elucidating the possibility of using microbubble processes to conduct mass transfer processes between biogas and liquid.

Key words: microbubbling, hydrocarbons, perfluorocarbon, mass transfer, mass transfer. The mechanism of microbubble formation and the characteristics of membranes used for the microbubbing process

INTRODUCTION

To date, the process of membrane gas dispersion is mainly carried out on porous glass or ceramic membranes. The main characteristics of the membrane, which should be taken into account when studying the process of microburning, are the type and structure of the surface, porosity, as well as the shape and distribution of pore sizes. These characteristics depend both on the size of the microbubbles formed, and on the pressure and gas content in the membrane contactor.

LITERATURE ANALYSIS AND METHODOLOGY

The process of obtaining microbubbles with glass membranes is considered in the works . BarbaraEder, HeinzSchulz, Biogas plants in Europe // A practical handbook.-Springer, In these works, porous glass membranes of a special composition, the so-called SPG membranes, were used. As a starting material for the production of the SPG membrane, a mixture Na2CO3 , CaCO3 , MgO, H3B03 , As well as a mixture of Shirasu, which is the source Si02 and A1203. This mixture is melted at 1623 K for 3 hours. After cooling down to 1473 K a glass matrix is formed, consisting of Na2O — CaO — MgO — B203 A1203 — Si02, which is given the desired shape - flat or tubular.

Then, the samples are heat treated at 933-953 K for 20 hours. During this process, the phase separation of the homogeneous glass matrix into two phases occurs - one containing acid-soluble oxides Na20 — CaO — MgO — B203, other insoluble A1203— Si02. Next, the divided glass matrix is processed 0,5M solution of hydrochloric acid. As a result of the dissolution of oxides Na20 — CaO — MgO — B203 a porous membrane

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=22257

structure is formed, the size of the resulting pores being dependent on the heat treatment conditions.

A detailed description of the manufacturing process of SPG membranes can be found in .

a) 6)

a) membrane with an average pore size of 3 b) a membrane with an average pore size Of

Figure 1.6 - Porous structure of glass SPG membranes

Figure 1. shows the surface images of glass SPG membranes.

As can be seen from the figures, SPG-membranes have sinuous cylindrical pores that form a three-dimensional working structure.

RESULTS

The porosity of such membranes is quite high and lies in the range 0.56-0.58, regardless of the pore size. The contact angle of the surface of the membrane with water is 230 - 270, which corresponds to the hydrophilic surface.

It can also be noted that on the surface of such membranes there are practically no ridges of roughness (which is explained by the method of their manufacture).

An important feature of SPG membranes is the narrow distribution of their pores in size. Thus, in Figure 1.7 (a), the integral curves of the pore size distribution for membranes with an average pore diameter of 43, 55, 64 and 85 nm are presented [14]. It can be seen that for all membranes the spread of pore diameters is about ± 20 nm. Figure 1.7 (b) shows the differential pore size distribution curve for a membrane with an average pore size of 3 um (a photograph of the surface of this membrane is presented in Figure 1.6 (a)). Here, one can also see a rather narrow distribution of the pore sizes-a spread of diameters of ± 1 gm.

DISCUSSION

As noted in [14-16], the size of the bubbles produced during microbubbotation strongly depends on the distribution of pore sizes. Thus, in [14], the dependence of the

SCIENTIFIC PROGRESS

VOLUME 4 I ISSUE 1 I 2023 ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=222ff7

diameters of the microbubbles formed on the diameter of the membrane pores was studied. As the liquid phase, 0.3 wt. % solution of sodium dodecyl sulfate, the flow rate of which in the membrane tube was 0.7 m/s.

iiMaMerp nop, MKM

a) Integral distribution curves for membranes with an average pore size of- (a) 43 nm, (b) 55 nm, (c) 64 nm, (d) 85 nm;

b) differential distribution curve for a membrane with an average pore size of 3 gm.

Figure 1.7 - Distribution of the pore size of SPG membranes

CONCLUSION

It was found that under these conditions, the size of the microbubbles formed linearly depends on the pore size and for all cases is approximately 8.6 times greater than the mean diameter of the membrane pores. This is also confirmed by the results of .

REFERENCE

[1]. ChristensenT.,ChristensenT.H., CossuR, Stegmann R. Landfilling of Waste // Biogas (Hardcover). -Publisher:Taylor&Francis; 1st ed edition, 1996.-840p.

[2]. Concise Encyclopedia of Bioresource Technology.-CRCPress, 2004.-735р.

[3]. Пак И.В., Цой Р.М. Введение в биотехнологию. -Тюмень:Издательство ТюмГУ, 2002. -188 с.

[4]. Хиггинса И.и др. Биотехнология. Принципы и применение. -М.: Мир, 1988. -316 с.

[5]. Ментелл С.Г.Смит Г. Биотехнология сельскохозяйственных растений. -М.: Агропромиздат, 1987. -286 с.

[6]. S. Atchariyawut, R. Jiraratananon, R. Wang; Separation of CO2 from CH4 by using gas-liquid membrane contacting process // Journal of membrane science.-2007.-№304.-Р.163-172.

[7]. Karimov, I., & Halilov, I. (2021). Modernization of the main working shovels of the construction mixing device.

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=222ff7

[8]. Karimov, I., Xalilov, I., Nurmatov, S., & Qodirov, A. (2021). BARBOTAGE ABSORBATION APPARATUS. BARQARORLIK VA YETAKCHI TADQIQOTLAR ONLAYN ILMIY JURNALI, 1(5), 35-41.

[9]. Ikromali, K., & Ismoiljon, H. (2021). Hydrodynamics of Absorption Bubbling Apparatus. Бюллетень науки и практики, 7(11), 210-219.

[10]. Alizafarov, B., Madaminova, G., & Abdulazizov, A. (2022). Based on acceptable parameters of cleaning efficiency of a rotor-filter device equipped with a surface contact element. Journal of Integrated Education and Research, 1(2), 36-48.

[11]. Abdulloh, A. (2022). Ho 'l usulda chang ushlovchi va gaz tozalovchi qurilmada gidravlik qarshilikni tadqiq etish. Yosh Tadqiqotchi Jurnali, 1(5), 246-252.

[12]. Ergashev, N. A., Abdulazizov, A. A. O., & Ganiyeva, G. S. Q. (2022). Ho 'l usulda chang ushlovchi apparatda kvarts qumi va dolomit changla-rini tozalash samaradorligini tadqiq qilish. Scientific progress, 3(6), 87-93.

[13]. Khoshimov, A., Abdulazizov, A., Alizafarov, B., Husanboyev, M., Xalilov, I., Mo'ydinov, A., & Ortiqaliyev, B. (2022). EXTRACTION OF CAPROLACTAM IN TWO STAGES IN A MULTIPLE-STAGE BARBOTATION EXTRACTOR. Conferencea, 53-62.

[14]. Axmadjonovich, E. N., Abduqaxxor o'g'li, A. A., & Mahmudjon o'g'li, I. M. (2022). Determination of Efficiency for Cleaning Quartz Sand and Dolomite Dust in A Wet Method Dust Cleaning Machine. Eurasian Research Bulletin, 9, 39-43.

[15]. Sadullaev, X., Muydinov, A., Xoshimov, A., & Mamarizaev, I. (2021). ECOLOGICAL ENVIRONMENT AND ITS IMPROVEMENTS IN THE FERGANA VALLEY. БАР^АРОРЛИК ВА ЕТАКЧИ ТАД^ЩОТЛАР ОНЛАЙН ИЛМИЙ ЖУРНАЛИ, 1(5), 100-106.

[16]. Askarov, X. A., Karimov, I. T., & Mo'Ydinov, A. (2022). Rektifikatsion jarayonlarining kolonnalarda moddiy va issiqlik balanslarini tadqiq qilish. Oriental renaissance: Innovative, educational, natural and social sciences, 2(5-2), 246-250.

[17]. Tojiev, R., Alizafarov, B., & Muydinov, A. (2022). THEORETICAL ANALYSIS OF INCREASING CONVEYOR TAPE ENDURANCE. Innovative Technologica: Methodical Research Journal, 3(06), 167-171.

[18]. Ахунбaев, А., & Муйдинов, А. (2022). ОПРЕДЕЛЕНИЕ МОЩНОСТИ РОТОРА В РОТОРНО-БАРАБАННОМ АППАРАТЕ. Yosh Tadqiqotchi Jurnali, 1(5), 381-390.

[19]. Муйдинов, А. (2022). ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ЗАТРАТ ЭНЕРГИИ НА ПЕРЕМЕШИВАНИЕ. Yosh Tadqiqotchi Jurnali, 1(5), 375380.

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=222ff7

[20]. AxyHÖaeB, А., & Муйдинов, А. (2022). УРАВНЕНИЯ ДВИЖЕНИЯ ДИСПЕРСНОГО МАТЕРИАЛА В РОТОРНО-БАРАБАННОМ АППАРАТЕ. Yosh Tadqiqotchi Jurnali, 1(5), 368-374.

[21]. Ахунбаев, А. А., & Муйдинов, А. А. У. (2022). ЗАТРАТЫ МОЩНОСТИ НА ПОДДЕРЖАНИЕ СЛОЯ МАТЕРИАЛА В КОНТАКТНОЙ СУШИЛКЕ. Universum: технические науки, (6-1 (99)), 49-53.

[22]. Ergashev, N. A., Xoshimov, A. O. O. G. L., & Muydinov, A. A. O. (2022). KONTAKT ELEMENTI UYURMALI OQIM HOSIL QILUVCHI REJIMDA ISHLOVCHI HO 'L USULDA CHANG USHLOVCHI APPARAT GIDRAVLIK QARSHILIKNI TAJRIBAVIY ANIQLASH. Scientific progress, 3(6), 94-101.

[23]. Ergashev, N. A., Mamarizayev, I. M. O., & Muydinov, A. A. O. (2022). KONTAKT ELEMENTLI HO 'L USULDA CHANG USHLOVCHI APPARATNI SANOATDA QO 'LLASH VA UNING SAMARADORLIGINI TAJRIBAVIY ANIQLASH. Scientific progress, 3(6), 78-86.

[24]. Axmadjonovich, E. N., Obidjon o'g'li, X. A., & Abduqayum o'g'li, A. M. (2022). INDUSTRIAL APPLICATION OF DUST EQUIPMENT IN THE INDUSTRIAL WET METHOD WITH CONTACT ELEMENTS AND EXPERIMENTAL DETERMINATION OF ITS EFFICIENCY. American Journal of Applied Science and Technology, 2(06), 47-54.

[25]. Musajonovich, A. B. (2022). Methods Of Strength Calculation Of Multi-Layer Conveyor Belts. Eurasian Research Bulletin, 14, 154-162.

[26]. Khoshimov, A., Abdulazizov, A., Alizafarov, B., Husanboyev, M., Xalilov, I., Mo'ydinov, A., & Ortiqaliyev, B. (2022). Extraction of caprolactam in two stages in a multiple-stage barbotation extractor. Conferencea, 53-62.

[27]. Abdulloh, A., Gulnora, G., Avzabek, X., Ismoiljon, X., Bekzod, A., Muhammadbobur, X., ... & Abdusamad, M. (2022). KINETICS OF DRYING OF SPRAY MATERIALS. Conferencea, 190-198.

[28]. Adil, A., Abdusamad, M., Abdulloh, A., Avzabek, X., Ismoiljon, X., Bekzod, A., ... & Bobojon, O. (2022). MODERNIZATION OF WORKING BLADES OF THE CONSTRUCTION GLASS SHELL MIXING DEVICE. Conferencea, 199-206.

[29]. Adil, A., Bobojon, O., Abdusama, M., Avzabek, X., Ismoiljon, X., Bekzod, A., ... & Abdulloh, A. (2022). DRYING IN THE APPARATUS WITH A QUICK ROTATING ROTOR. Conferencea, 182-189.

[30]. Adil, A., Muhammadbobur, X., Ortiqaliyev, B., Abdusamad, M., Abdulloh, A., Avzabek, X., ... & Bekzod, A. (2022). ROASTING OF NICKEL HYDROCARBONATE. Conferencea, 174-181.

[31]. Adil, A., Ismoiljon, X., Bekzod, A., & Muhammadbobur, X. (2022). USE OF SWIRLERS IN HEAT EXCHANGERS. Conferencea, 149-157.

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=222ff7

[32]. Adil, A., Ismoiljon, X., Bekzod, A., & Muhammadbobur, X. (2022). USE OF SWIRLERS IN HEAT EXCHANGERS. Conferencea, 149-157.

[33]. Adil, A., Abdusamad, M., Abdulloh, A., Avzabek, X., Ismoiljon, X., Bekzod, A., ... & Bobojon, O. (2022). DRYING OF MINERAL FERTILIZERSRESEARCH OF HYDRODYNAMIC PROCESSES. Conferencea, 158-165.

[34]. Sadullaev, X., Muydinov, A., Xoshimov, A., & Mamarizaev, I. (2021). ECOLOGICAL ENVIRONMENT AND ITS IMPROVEMENTS IN THE FERGANA VALLEY. БАРКАРОРЛИК ВА ЕТАКЧИ ТАД^ЩОТЛАР ОНЛАЙН ИЛМИЙ ЖУРНАЛИ, 1(5), 100-106.

[35]. Ergashev, N. A., Xoshimov, A. O. O. G. L., & Muydinov, A. A. O. (2022). KONTAKT ELEMENTI UYURMALI OQIM HOSIL QILUVCHI REJIMDA ISHLOVCHI HO 'L USULDA CHANG USHLOVCHI APPARAT GIDRAVLIK QARSHILIKNI TAJRIBAVIY ANIQLASH. Scientific progress, 3(6), 94-101.

[36]. Axmadjonovich, E. N., Obidjon o'g'li, X. A., & Abduqayum o'g'li, A. M. (2022). INDUSTRIAL APPLICATION OF DUST EQUIPMENT IN THE INDUSTRIAL WET METHOD WITH CONTACT ELEMENTS AND EXPERIMENTAL DETERMINATION OF ITS EFFICIENCY. American Journal of Applied Science and Technology, 2(06), 47-54.

[37]. Алиматов, Б. А., Садуллаев, Х. М., & Хошимов, А. О. У. (2021). СРАВНЕНИЕ ЗАТРАТ ЭНЕРГИИ ПРИ ПНЕВМАТИЧЕСКОМ И МЕХАНИЧЕСКОМ ПЕРЕМЕШИВАНИИ НЕСМЕШИВАЮЩИХСЯ ЖИДКОСТЕЙ. Universum: технические науки, (5-5 (86)), 53-56.

[38]. Xoshimov, A. O., & Isomidinov, A. S. (2020). Study of hydraulic resistance and cleaning efficiency of dust gas scrubber. In International online scientific-practical conference on" Innovative ideas, developments in practice: problems and solutions": Andijan.-2020.-51 p.

[39]. Алиматов, Б. А., Садуллаев, Х. М., & Хошимов, А. О. У. (2021). Куп погонали барботаж экстракторида капролактамни икки боскдчда экстракциялаш. Фаргона политехника институти илмий-техника журнали.(6), 40-44.

[40]. Obidjon o'g'li, Xoshimov Avazbek. "FACTORS AFFECTING THE WORKING PROCESS OF INDUSTRIAL DUST GASES CLEANING APPARATUS." Yosh Tadqiqotchi Jurnali 1.6 (2022): 7-13.

[41]. Ergashev, N. A. (2022, November). EXPERIMENTAL STUDY OF PROCESSING PROCESSES IN CURRENT GENERATING APPARATUS WITH CONTACT ELEMENT. In INTERNATIONAL CONFERENCE DEDICATED TO THE ROLE AND IMPORTANCE OF INNOVATIVE EDUCATION IN THE 21ST CENTURY (Vol. 1, No. 7, pp. 107-114).

SCIENTIFIC PROGRESS VOLUME 4 I ISSUE 1 I 2023 _ISSN: 2181-1601

Scientific Journal Impact Factor (SJIF 2022=5.016) Passport: http://sjifactor.com/passport.php?id=222ff7

[42]. Хошимов, А. О. У., Исомидинов А. С., & Ализафаров Б.М. (2021). ГАЗЛАРНИ ТОЗАЛОВЧИ СКРУББЕРНИНГ ГИДРАВЛИК КАРШИЛИГИ ВА ТОЗАЛАШ САМАРАДОРЛИГИНИ ТАД^Щ ЭТИШ. ИННОВАЦИОН ЕОЯЛАР, ИШЛАНМАЛАР АМАЛИЁТГА: муаммолар ва ечимлар» Халкаро илмий-амалий онлайн анжуман. (1), 36-41.

[43]. Абдугаффоров Д. М., Хошимов, А. О. У., Исомидинов А. С., & Туйчиева Ш. Ш. (2019). Чангли газларни тозаловчи скруббер. INTERNATIONAL SCIENTIFIC CONFERENCE «GLOBAL SCIENCE AND INNOVATIONS 2019. (1), 268-270.

[44] Алиматов, Б. А. Сравнение затрат энергии при пневматическом и механическом перемешивании несмешивающихся жидкостей / Б. А. Алиматов, Х. М. Садуллаев, А. О. у. Хошимов // Universum: технические науки. - 2021. - № 5-5(86). - С. 53-56. - EDN MSYZAU.

[45]. Axmadjonovich, E. N., & Obidjon o'g'li, X. A. (2022). EXPERIMENTAL DETERMINATION OF HYDRAULIC RESIDENCE. International Journal of Advance Scientific Research, 2(06), 6-14.

[46]. Tojiyev, R. J., Mullajonova, M. M., Yigitaliyev, M. M., & G'aniyeva, S. G. (2022). Improving the design of the installation for drying materials in a fluidized bed. ACADEMICIA: An International Multidisciplinary Research Journal, 12(1), 214-219.

i Надоели баннеры? Вы всегда можете отключить рекламу.