Научная статья на тему 'Полулагранжевый подход для численного решения уравнений Навье-Стокса для вязкой несжимаемой жидкости'

Полулагранжевый подход для численного решения уравнений Навье-Стокса для вязкой несжимаемой жидкости Текст научной статьи по специальности «Математика»

CC BY
113
26
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
УРАВНЕНИЯ НАВЬЕ-СТОКСА / NAVIER-STOKES EQUATIONS / МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ / FINITE ELEMENT METHOD / ПОЛУЛАГРАНЖЕВЫЙ МЕТОД / SEMI-LAGRANGIAN APPROACH

Аннотация научной статьи по математике, автор научной работы — Дементьева Е. В., Карепова Е. Д.

Обсуждается применение полуkагранжевого подхода в методе конечных элементов к численному моделированию течений вязкой несжимаемой жидкости в канале на основе уравнений Навье-Стокса.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

THE SEMI-LAGRANGIAN APPROACH FOR THE NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS FOR VISCOUS INCOMPRESSIBLE FLUID

The two-dimensional time-dependent Navier-Stokes equations are considered for a viscous incompressible fluid in a channel. To construct a discrete analogue, a semi-Lagrangian approximation of the transport derivatives is used in combination with a conforming finite element method for approximation of other terms.

Текст научной работы на тему «Полулагранжевый подход для численного решения уравнений Навье-Стокса для вязкой несжимаемой жидкости»

Решетнеескцие чтения. 2015

простых моделей авторегрессии [2]. В ряде случаев, используют скользящие средние и линейный тренд.

Часто данные о предыстории изменения экономического показателя отсутствуют, т. е. либо имеется сверхкороткий временной ряд, либо имеются структурные изменениями во временном ряду, тогда использовать весь временной ряд, описывающий показатель, невозможно, и построенная модель будет неадекватна. Недостаточность информации приводит к ситуации, при которой крайне тяжело сделать прогноз, а тем более качественно построить модель. Данная проблема получила название прогнозирования в условиях априорной неопределенности. Такая ситуация распространена во многих областях знаний.

Математически доказано, что в ситуации, когда набор значений для прогноза ограничен, строить модель не рационально. Так, при наличии одного значения можно воспользоваться теоремой Бернулли «Лучший прогноз на завтра - сегодня» и тем самым достичь наименьшего математического ожидания ошибки.

Прогнозную модель уравнения авторегрессии второго порядка (ЛЯ(2)) можно представить следующим образом:

У г+к = а1 (к)X +а2(к)X-1, где а1 (к) и а2 (к) - это весовые коэффициенты.

В работе [2] доказаны теоремы, вводящие значения весовых коэффициентов, которые будут равны

а1 (к) = 1 1 + ^ и а2 (к) = ——.= . Данные ко-

•ч/5 2 у/5 1 + л/ 5

эффициенты показывают, что любой прогноз в модели ЛЯ(2) - это распределение предыстории в будущем через золотое сечение.

Модель авторегрессии третьего порядка (ЛЯ(3)) представим так:

у + к =а1(к) х( +а2(к) хм +а3(к) х(-2, а весовые коэффициенты а1 (к), а2 (к) и а3 (к) равны соответственно

+ X 2 + 1] 3в Р2 - 2Р + 4 ' р2 - 2Р + 4 27Р

и --=г,

( +^2 +1)2 [р2 - 2Р + 4]

вычисленные практически через коэффициенты ряда Трибоначчи, где

р = ^586+io^/3T, х1 = 319+3/33,

X2 = 3/i9 - Зу!ЗЗ .

Из выше сказанного следует, что в ряде случаев прогноз в моделях AR(3) есть средневзвешенное последних трех значений динамического ряда с весами золотого сечения.

В дальнейшем планируется рассмотреть авторегрессии более высоких порядков и выявить возможные закономерности прогнозов в этих моделях. Для временного ряда из четырех показателей можно использовать коэффициенты, близкие к золотому сечению. Вопрос же о значении этих коэффициентов пока в настоящее время открыт.

Библиографические ссылки

1. Городов А. А. Моделирование временных рядов на основе нормированных числовых рядов // СУИТ. 2010. № 1(35). С. 4-7.

2. Городов А. А., Кузнецов А. А. Свойства прогнозов в моделях авторегрессии по методу числовых рядов // Системы управления и информационные технологии. 2011. № 3(41). С. 10-13.

References

1. Gorodov A. A. SUIT. 2010. No. 1(35), рр. 4-7.

2. Gorodova A. A., Kuznetsov A. A. SUIT. 2011. No. 3(41), рр. 10-13.

© Городов А. А., Суслова В. А., Казакова Е. А., 2015

УДК 519.63

ПОЛУЛАГРАНЖЕВЫЙ ПОДХОД ДЛЯ ЧИСЛЕННОГО РЕШЕНИЯ УРАВНЕНИЙ НАВЬЕ--СТОКСА ДЛЯ ВЯЗКОЙ НЕСЖИМАЕМОЙ ЖИДКОСТИ*

Е. В. Дементьева1,2*, Е. Д. Карепова1,2

Институт вычислительного моделирования СО РАН Российская Федерация, 660036, г. Красноярск, Академгородок, 50/44

2Сибирский федеральный университет Российская Федерация, 660041, г. Красноярск, просп. Свободный, 79 E-mail: *[email protected]

Обсуждается применение полукагранжевого подхода в методе конечных элементов к численному моделированию течений вязкой несжимаемой жидкости в канале на основе уравнений Навье-Стокса.

Ключевые слова: уравнения Навье-Стокса, метод конечных элементов, полулагранжевый метод.

Работа выполнена при финансовой поддержке РФФИ (проект № 14-01-00296, проект № 14-01-31203).

Прикладная математика

THE SEMI-LAGRANGIAN APPROACH FOR THE NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS FOR VISCOUS INCOMPRESSIBLE FLUID

E. V. Dementyeva1'2*, E. D. Karepova12

institute of Computational Modeling SB RAS 50/44, Akademgorodok, Krasnoyarsk, 660036, Russian Federation 2Siberian Federal University 79, Svobodny Av., Krasnoyarsk, 660041, Russian Federation E-mail: *[email protected]

The two-dimensional time-dependent Navier-Stokes equations are considered for a viscous incompressible fluid in a channel. To construct a discrete analogue, a semi-Lagrangian approximation of the transport derivatives is used in combination with a conforming finite element method for approximation of other terms.

Keywords: Navier-Stokes equations, the finite element method, semi-Lagrangian approach.

Применение полулагранжевого подхода для уравнений Навье-Стокса впервые рассмотрено в работе [1], а также в работе [2] - для уравнений с малым параметром. В полулагранжевом подходе оператор транспортных производных аппроксимируется конечными разностями вдоль заданного направления или вдоль характеристик этого оператора. В связи с этим данный подход был назван обобщенным методом характеристик [3]. Сразу было отмечено, что после такой аппроксимации свойства полученных дискретных стационарных задач на каждом временном слое значительно улучшаются. Например, применение подхода для нестационарных уравнений Навье-Стокса приводит к стационарным задачам с самосопряженным оператором на каждом временном слое. Кроме того, основная часть этого оператора является линейной и только его диагональные члены - нелинейные. Это значительно облегчает использование и обоснование метода конечных элементов.

В настоящей работе для двумерных уравнений Навье-Стокса для вязкой несжимаемой жидкости [4] применяется полулгранжевая аппроксимация на каждом временном слое. В результате мы получаем последовательность стационарных уравнений Стокса с добавочным диагональным членом. Затем для каждого полученного уравнения мы используем метод конечных элементов с биквадратичными конечными элементами на прямоугольниках для компонент скорости и с билинейными элементами для давления.

Такой выбор элементов удовлетворяет условию Ладыженской-Бабушки-Брецци [5], которое обеспечивает устойчивость по давлению.

В работе проведены тестовые расчеты. Результаты численных экспериментов подтверждают теоретические выводы и демонстрируют сходимость разработанного метода.

References

1. Pironneau O. On the Transport-Diffusion Algorithm and Its Applications to the Navier-Stokes Equations // Numerische Mathematik. 1982. 38, рр. 309-332.

2. Douglas J., Russell T. Numerical methods for convection-dominated diffusion problems based on combining the method of caractreristics with finite element or finite difference procedures // SIAM J. Numer. Anal. 1982. Vol. 19, рр. 871-885.

3. Chen H., Lin Q., Shaidurov V. V., Zhou J. Error estimates for triangular and tetrahedral finite elements in combination with a trajectory approximation of the first derivatives for advection-diffusion equations // Numerical Analysis and Applications. 2011. No. 4(4), рр. 345-362.

4. Rannacher R. Incompressible Viscous Flow // Encyclopedia of Computational Mechanics. 2011. Vol. 3. Fluids. Chapter 6.

5. Brezzi F., Fortin M. Mixed and Hybrid Finite Element Methods. New York : Springer-Verlag, 1991.

© Дементьева Е. В., Карепова Е. Д., 2015

i Надоели баннеры? Вы всегда можете отключить рекламу.