УДК 37.022+519.2 СЕЛЮТИН В. Д.
доктор педагогических наук, зав. кафедрой алгебры и математических методов в экономике, Орловский государственный университет имени И.С. Тургенева E-mail: [email protected] ЛЕБЕДЕВА Е.В.
кандидат педагогических наук, доцент, кафедра алгебры и математических методов в экономике, Орловский государственный университет имени И.С. Тургенева E-mail: [email protected] ЛОМАКИНД.Е.
кандидат физико-математических наук, доцент, кафедра алгебры и математических методов в экономике, Орловский государственный университет имени И.С. Тургенева E-mail: [email protected]
UDC 37.022+519.2
SELYUTIN V.D.
Doctor of Pedagogic Sciences, department chair, Department of algebra and mathematical methods in Economics, Orel State
University E-mail: [email protected] LEBEDEVA E.V.
Candidate of Pedagogic Sciences, associate professor, Department of algebra and mathematical methods in Economics,
Orel State University E-mail: [email protected] LOMAKIN D.E.
Candidate of Physico-mathematical Sciences, associate professor, Department of algebra and mathematical methods in
Economics, Orel State University E-mail: [email protected]
ИСПОЛЬЗОВАНИЕ ИДЕЙ ПРОГНОЗИРОВАНИЯ В ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКОЙ ПОДГОТОВКЕ БАКАЛАВРОВ-ЭКОНОМИСТОВ В УСЛОВИЯХ КОМПЕТЕНТНОСТНОГО ПОДХОДА
USE THE IDEAS FORECASTING IN PROBABILISTIC AND STATISTICAL TRAINING OF BACHELORS OF ECONOMICS IN CONDITIONS OF COMPETENCE APPROACH
Исследуются возможности использования прогнозирования в условиях многоуровневой системы образования студентов экономического направления при обучении теории вероятностей и математической статистики. В работе выдвинута идея использования прогнозирования в условиях компетентностного подхода и рассмотрена её реализация на примере решения вероятностно-статистических задач.
Ключевые задачи: бакалавры-экономисты, прогнозирование, теория вероятностей, математическая статистика, математическая компетентность экономиста.
Explores the possibilities of the use offorecasting in conditions of multilevel system of education of students of economic directions in teaching ofprobability theory and mathematical statistics. In the work suggested the use of forecasting in conditions of competence approach and examines its implementation on the example of solving probabilistic and statistical problems.
Keywords: bachelors of economics, forecasting, probability theory, mathematical statistics, mathematical competence of the economist.
В последнее время в области теории вероятности и математической статистики были предприняты значительные усилия по проведению реорганизации, что привело к уходу от обучения, в ходе которого особое внимание уделялось абстрактному и запоминанию формул и методов. Что еще более важно, эти усилия привели к общему признанию того, что обучение студентов происходит наиболее эффективно, когда оно происходит с учётом особенностей их будущей профессиональной деятельности.
Сложившийся классический подход в преподавания теории вероятности и математической статистики, свидетельствует о глубоком и постоянном влиянии формализации математической культуры на стохастическое образование.
Студенты экономических направлений подготовки не осознают связи теории вероятности и математической статистики со своей будущей профессией.
Другими словами, будущий экономист не может воспользоваться полученными вероятностно-статистическими знаниями, чтобы выполнить анализ или прогнозирование экономического явления. В то время как в будущей профессиональной деятельности экономиста, не мало важную роль играет умение прогнозировать и планировать экономические процессы.
Выход из сложившейся ситуации видится, если меха-
низм обучения бакалавров-экономистов теории вероятностей и математической статистики соединить с их будущей профессиональной деятельностью, где особое место отводится прогнозированию. Кроме, того, такое обучение будущего экономиста теории вероятностей, вызывает интерес, в вероятностно-статистической подготовке и тем самым становится более продуктивным.
Несмотря на наличие ряда исследований по методике преподавания теории вероятностей и математической статистике, в том числе авторских работ в русле развития идеи использования элементов прогнозирования [1, 2]. В настоящее время, в условиях многоуровневой системы образования и компетентностного подхода, остаются нерешенными многие проблемы формирования у бакалавров-экономистов общекультурных, профессиональных и специальных компетенций, которые в процессе обучения наполняются конкретным предметным содержанием. Поэтому неизбежно изменяется содержание математической подготовки бакалавров в сторону придания обучению прикладного характера.
Ощутимой помехой этому при вероятностной подготовке бакалавров-экономистов служит существующий отрыв тематики связанной с процессом экономического анализа и оценки, который невозможен без вариативной и объективной оценки будущего.
© Селютин В.Д., Лебедева Е.В., Ломакин Д.Е. © Selyutin V.D., Lebedeva E.V., Lomakin D.E.
13.00.00 - ПЕДАГОГИЧЕСКИЕ НАУКИ 13.00.00 - PEDAGOGICAL SCIENCES
На данный момент в изучении теории вероятностей ещё не в полной мере используются механизмы мотивации, связанные с заинтересованностью будущих экономистов в овладении умениями прогнозировать и планировать экономические процессы. Не задействованы «внутренние резервы прогностического характера вероятностного закона больших чисел о статистической устойчивости эмпирических характеристик» [1, с.4].
В связи с отсутствием научно-педагогических разработок по использованию возможностей организации овладения бакалаврами вероятностно-статистическими методами с привлечением элементов экономического прогнозирования, в теории и методике обучения математике образовался заметный пробел.
Приведёнными обстоятельствами обусловлена актуальность данного исследования, в основе которого лежит рассмотрение аспектов обучения бакалавров-экономистов теории вероятностей и математической статистике на основе прогнозирования в условиях компетентностного подхода.
Рассмотрев особенности реализации компетентностного подхода при обучении математики, будущих экономистов удалось выделить некоторые исследования.
Исследования, выполненные Байгушевой И. А., Бурмистровой Н.А, Гафиятовой О.В. [3-5] направлены на формирование у бакалавров-экономистов математической компетентности, которая включает в себя профессионально-математическую, экономико-математическую.
Так, И.А. Байгушевой удаётся связать математическую компетентность со способностью и готовностью решать типовые профессиональные задачи будущего экономиста. Данным исследователем был выполнен анализ профессиональных задач, решаемых экономистом в сфере труда, экономическим директором, начальником планово-экономического отдела, экономистом-статистом. В своей работе Байгушева И. А. выполняет обобщение конкретных формулировок задач, для решения которых необходимы математические знания, а также выделяет типовые профессиональные задачи. Это задачи, в которых требуется выполнять обработку экономической информации, выявлять зависимости между показателями экономической деятельности, прогнозировать и планировать экономическую деятельность.
Н.А. Бурмистрова рассматривает математическую компетентность как интегративную характеристику личности, которая выражена в способности и готовности к использованию математических знаний, умений и навыков для решения поставленных профессиональных задач.
Особенность результатов полученных О.В. Гафиятовой состоит в определении прикладной экономико-математической компетентности как необходимом профессиональном качестве экономиста. Рассматриваемое качество, по мнению автора, определяется уровнем целостности и полноты прикладных знаний и умений и уровнем развития способностей направленных на экономико-математическое моделирование.
Кроме того, анализ структуры математической компетентности выявил, что в своих исследованиях Байгушева И.А., Бурмистрова Н.А, Гафиятова О.В. выделяют такие ее компоненты, как мотивационно-ценностный, содержательно-деятельностный, инструментальный и личностный.
Однако ими были использованы различные средства для формирования математической компетентности несмотря на схожесть подходов к её понятию и структуре.
Таким образом, основываясь на анализе предыдущих исследований, приходим к выводу, что одним из основных условий достижения целей обучения студентов-экономистов теории вероятностей и математической статистики в контексте компетентностного подхода выступает прикладная направленность такого обучения. В качестве способа реализации прикладной направленности вероятностно-статистической
подготовки будущих экономистов может быть использовано прогнозирование. Кроме того, прогнозирование играет важную роль в повышении мотивации в изучении теории вероятностей, поскольку является составной частью профессиональной подготовки бакалавров-экономистов.
В ходе исследования на примере усвоения вероятностно-статистических понятий, были рассмотрены содержательные модели процесса формирования и оценивания наиболее значимых профессиональных и общекультурных компетенций: ПК-1; ПК-2; ПК-4; ПК-6; ОК-1.
С нашей точки зрения, технология обучения студентов решению прикладных вероятностно-статистических профессиональных задач должна осуществляться поэтапно. На первом этапе требуется выполнить решение задачи в рамках математической модели, затем получить возможность истолковать полученные математические результаты на языке исходной ситуации, чтобы сделать вывод на языке прогноза, затем перейти ко второму этапу к этапу интерпретации. Истолкование результата решения математической задачи на данном этапе позволяет сделать определенные выводы и принять решение прогностического характера.
Среди способов осуществления этапа, на котором выполняется интерпретация можно выделить следующие: способ оценки объекта прогнозирования, возможность накопления научного материала обоснования для выбора решения, оценку последствий принимаемых решений, выявление альтернатив развития и т.п. При этом принимается решение исходя из проблем рассматриваемой задачи.
Таким образом, прогнозирование - это процесс, включающий в себя математическое моделирование. Основываясь на суждение, о важности математического моделирования приходим к выводу, что центральная роль в реализации прикладной направленности теории вероятностей и математической статистики отводится прикладным задачам.
Решение прикладных задач дает толчок для поиска выхода из прежнего, устойчивого знания к новому. По нашему мнению, именно прикладная направленность в обучении теории вероятности и математической статистики, способствует готовности бакалавров-экономистов применять математические знания при изучении экономических дисциплин и формированию профессиональных умений выявления экономических тенденций.
Остановимся подробнее на технологии формирования профессиональной компетенции ПК-1 «готовности применять математические знания при изучении специальных дисциплин и формированию профессионально значимых умений выявления экономических тенденций» [6, с.5].
Студентам предлагается рассмотреть следующую ситуацию. Частный предприниматель считает, что нерегулярность ежемесячных поставок, комплектующих оборудования помешала ему добиться более высоких финансовых результатов, несмотря на то, что организация, поставляющая необходимые составные элементы оборудования в полном объеме выполнила свои годовые обязательства. Годовое распределение поставок по месяцам представлено на рис. 1. На какой объем поставок может рассчитывать владелец фирмы в будущем? Выберите на графике из трех предполагаемых последних прогнозируемых отрезков наиболее вероятный.
Такого вида задачи способствуют формированию у будущих экономистов начальных статистических представлений, и способствует развитию умений и навыков, необходимых выявлению экономических тенденций и осуществления первичных этапов прогнозирования.
Другим примером позволяющим выполнить процесс формирования ПК-1 может служить следующая ситуация. В ходе анализа объема продаж чулочно-носочных изделий, проданных за некоторых период работы торговой точки, были получены данные, представленные в таблице 1.
Рис. 1. Распределение поставок по месяцам года.
Таблица 1.
Объём продаж чулочно-носочных изделий
Объем продаж (т) 2,0 2,2 2,3 2,4 2,5 2,7 2,8
Число дней 1 1 2 1 1 1 3
где числовые данные второй строки нами были названы абсолютными частотами. Значения абсолютных частот можно представить в виде столбчатой диаграммы (рис. 2). Студентам-бакалаврам предлагается отметить числовые значения объема продаж чулочно-носочных изделий по горизонтальной оси, которые выражены в тоннах, а количество дней, соответствующих объемам проданной продукции по вертикальной оси.
Студенты убеждаются, что столбчатая диаграмма может быть использована в качестве наглядного средства для сравнения различных единиц совокупности. Будущие экономисты приходят к выводу, что диаграмма указывает динамику экономического явления, но, прежде всего диаграмма такого вида демонстрирует структуру совокупности. Особенно сильно это проявляется в ходе анализа величины фонда оплаты труда, величины торговой площади, продолжительности инвестицион-
ного проекта, т.е. непрерывных величин. А это в свою очередь помогает выполнить подготовку к применению математических знаний при изучении специальных дисциплин.
Кроме того, при выполнении построения гистограммы статистических наблюдений показателей экономического характера в дальнейшем потребуются столбчатые диаграммы, построение которых выполняется по данным из таблиц частот, а потребность в них возникнет в дальнейшем при изучении профессиональных дисциплин.
В целом проведённый анализ и начальный этап нашего исследования показал возможность, обучения будущих экономистов теории вероятностей и математической статистике на основе прогнозирования в условиях компетентностного подхода.
Рис. 2. Диаграмма данных по объёму продаж чулочно-носочных изделий.
Библиографический список
1. Лебедева Е.В. Методика обучения студентов экономического профиля теории вероятностей на основе прогнозирования: дис. ... кан. пед. наук. Орел, 2009. 190с.
2. ЛебедеваЕ.В., Селютин В.Д. Обучение студентов экономического профиля теории вероятностей на основе прогнозирования: Монография. Орел: ОГУ, 2011. 136с.
3. Байгушева М.А. Методическая система математической подготовки экономистов в вузе на основе формирования обобщенных методов решения типовых профессиональных задач: автореф. дис. ... д-ра пед. наук: 13.00.02. Волгоград, 2015. 47с.
4. Бурмистрова Н.А. Методическая система обучения математике будущих бакалавров направления «экономика» на основе компетентностного подхода: автореф. дис. д-ра пед. наук: 13.00.02. Красноярск, 2011. 42 с.
5. Гафиятова О.В. Многоуровневая математическая подготовка будущих экономистов в комплексе «колледж-вуз»: автореф. дис. ... канд. пед. наук: 13.00.08. Казань, 2012. 24с.
6. ФГОС ВО направление подготовки 380301 от 12.11.2015г. №1327 http://rguts.ru/templates/Rguts/images/sector/aboutuniver/ official/education/standards/380301.pdf
References
1. Lebedeva E.V. Technique of training of students of economic profile of probability theory based on the prediction. Candidate thesis in Pedagogy, Orel, 2009. 190p.
2. Lebedeva E.V., Selyutin V.D. Training of students of economic profile of the theory of probability on the basis of forecasting: the Monography, Orel: OSU, 2011. 136p.
3. Baigusheva M.A. Methodical system of mathematical training of economists at the University on the basis of the formation of generalized methods for solving typical professional tasks: abstract. dis. ... d-ra in Pedagogy: 13.00.02. - Volgograd, 2015. 47p.
4. Burmistrova N. A. Methodical system of mathematics teaching of future bachelors of the direction "Economics" on the basis of competence approach: author's Ref. dis... d-ra in Pedagogy: 13.00.02. - Krasnoyarsk, 2011. 42 p.
5. Gatiatova O.V. Multi-level mathematical preparation of future economists in the complex "College-University": abstract candidate thesis in Pedagogy: 13.00.08. - Kazan, 2012. 24p.
6. FSES HE the area of training 380301 of 12.11.2015 No. 1327 http://rguts.ru/templates/Rguts/images/sector/aboutuniver/official/ education/standards/380301.pdf