Oriental Renaissance: Innovative, (E)ISSN: 2181-1784
educational, natural and social sciences 4(9), Oct., 2024
Research BIB / Index Copernicus www.oriens.uz
TURLI CHEGARALANISHLI HOL UCHUN П STRATEGIYANING
QURILISHI HAQIDA
Abduraximova Zulayxo Ikromjon qizi
Turan International University o'qituvchisi [email protected]
ANNOTATSIYA
Ushbu maqolada П strategiyaning geometrik chegaralanish, integro -geometrik chegaralanishli holatlar uchun qurilishi yoritilgan. П strategiyaning qurilishi turli chegaralanishli hol uchun quvish - qochish maslasining yechimlariga uzviy bog'liqligi isbotlangan.
Kalit so'zlar: П strategiya, geometrik chegaralanish, integro - geometrik chegaralanish.
О ПОСТРОЕНИИ П - СТАТЕГИИИ ДЛЯ РАЗЛИЧНЫХ ГРАНИЧНЫХ СЛУЧАЕВ
АННОТАЦИЯ
В статье описано построение П стратегии для геометрически ограниченных, интегро-геометрически ограниченных случаев. Доказано, что построение П-стратегии неразрывно связано с решением задачи погони-убегания для различных предельных случаев.
Ключевые слава: П стратегии, геометрическое ограничение, интегро -геометрическое ограничение
ON THE CONSTRUCTION OF П STRATEGY FOR DIFFERENT
BOUNDARY CASES
ABSTRACT
This article describes the construction of strategy P for geometric bounded, integro-geometrically bounded cases. It has been proved that the construction of P strategy is inextricably linked to the solutions of the chase-escape problem for different limiting cases.
Keywords: П strategy, geometric limitation, integro - geometric limitation.
Differensial o'yinlar nazariyasida chegaralanishlar uchun П strategiya muhim ahamiyatga ega. Har bir chegaralanish uchun alohida П strategiyalar mavjud. Quyida ularni har birini ko'rib chiqamiz.
Fazoda P va E obyekt harakatlanyapti
Oriental Renaissance: Innovative, educational, natural and social sciences
Research BIB / Index Copernicus
E
= {
x U x(0) = x0 y = V y(o) = y0
1. Geometrik chegaralanish
(1) (2)
a) \U\ < a ; \V\ < ß ; \U\ = Ju2 + - + U2 ; \V\ = Jv2 +
V2
bu yerda
(3)
(4)
n strategiya : U(v) = v-ÀG(v)^0 , ^ .„ ^ .
lxo ïdI
fr > ß da tutish masalasi yechiladi ; a < ß da qochish masalasi yechiladi. 2. Integro - geometrik chegaralanishli xol :
b) J>i00l2ds < pi0, £\U2(s)\2ds < p20
P: x = U(t) , x(0) = x0 x(t) = x0 + J0tU(s)ds E : y = V(t) , y(0) = y0 ^ y(t) = y0 + J*'V(s)ds
Tutish masalasi : Vt* : x (t* ) = y (t* ) Qochish masalasi : x (ty (t) , t > 0
z
z + Tu = Tv , Tu = Tv - z , u = v - —
J\U\2 ds = p, T\U\2 = A\U\2 =|
(5)
(6)
(7)
(8)
Oriental Renaissance: Innovative, educational, natural and social sciences
Research BIB / Index Copernicus
U 2 2 v
Я P _ v Z
z
- 2Я( vj) + Ä7
Я2 - 2Ä(-P + {vj) + v2 = 0
'2 z
Quyidagicha belgilash kiritib olamiz : j, = Я ^U = v Я |U| = Я z
- 2À( vj) + h2
(9)
P
P
Я.2 =P + ( ^ +
2 z
"2 z
Ы) )
2 VI2
Я va Я2 ham musbat . Savol tuo'iladi qaysi Я ni olamiz ?
¿2 >0agar , tt-t bo'lsa yechim mavjud bo'lishi uchun ildiz osti
(10)
aniqlangan bo'lishi kerak ya'ni
D =
(P, z, v):(P+ (v,j)2 - |v|2 > 0 2 z
Integro - geometrik holda quvlovchini parallel yaqinlashtirish orqali (G)x, û)2 ) oraliqda tutish mumkin bo'lar ekan . Biz bitta quvlovchi bitta qochuvchi bo'lgan holda ko'ramiz ya'ni Я+ ni olamiz . Shuning uchun (10) ga yechim sifatida Я ni tanlaymiz . Natijada hal qiluvchi funksiya deb,
Я(р, z, v) =
P+M+J (2P+< vj )2 -
v
z\ V 2\z\
funksiyani olamiz . n o'lchovli fazoda 2n +1 ta yechimi bor. (11)- funksiyani
P
(11)
aniqlanish sohasini tahlil qilamiz
D =
(P, z, v):(p+< vj )2 -
v
2
Oriental Renaissance: Innovative, educational, natural and social sciences
Research BIB / Index Copernicus
(P+ (v,)) + |v|)(-f+ (v))- |v|) > 0
P
2 z
2 z
demak
P
2 z
+ (v,)-|v| > 0
(12)
bo'lishi kerak . (12) tengsizlikning geometrik mohiyati ( v ga nisbatan ): 2- P , a2 + v) +... + v) -Jv,2 +... + v2„ > 0
a
2 z
figura hosil bo'ladi
Soddalashtirish uchun tekislikda ko'raylik . a + v
(1;0)
+ v)1 + v2^2 -\lv12 + v22 > 0
) = XA, X0 = (0;0), y = (1;
v
));) (-1;0 ) ,) = -1,) = 0
X0 y0|
a2 -v1 -J v2 + v22 > 0 , a2 > v +y[v[+vî > 0 , a = 1 desak
1 +Vvf + v22 < 1, Vvf + v22 < 1 - v1
1 - V2
1 - 2v + vf > vf + v2,1 - 2v > v22, v < 2
2
D
D sohamiz parabolaning ichi ekan . Uch o'lchovl
a
2
1 v
fazoda ko'rsak , paraboloid
bo'lib qolar ekan . Agar a * 1 bo'lsa uchi — da bo'lar ekan tekislikda .
) (-1,0,0) ; a2 - v-yfvf + v2 + v2 > 0, a2 - v
2 ' v3
0, a2 - v ^
v2 + v2 + v32
a4 - 2a2v + v2 > vf + v22 + v32, a4 - 2a2v > v22 + v32,v1 < At - v2 v , v < —■ v2 v3
2a2 2a
2 ' V1
2 2a
2
v
2
v
2
1
Oriental Renaissance: Innovative, educational, natural and social sciences
Research BIB / Index Copernicus
±
ß- ^ = p ^P- 4ß| Z. Demak , xulosa (11) Â(p, z, v) funksiya 2 4 z
p - 4ß|z| bo'lganda V\v\ - ß uchun aniqlangan .
(11) ko'rinishni yuqoridagi U = v |U| = ¿¿p tenglikka olib kelib qo'yamiz
va quyidagi strategiyani hosil qilamiz :
U (p, z, v) = v - X(p, z, v)£
\U (p, z, v)2 = A(p, z, v)
p \z
(13)
(1) va (2) tenglamadan quyidagi tenglamani hosil qilamiz
z = C/-v z(0) = z0
buyerda z = x-y,x = U;z0 = x0-y0,y = v;x-y = U-v (14) ko'rinishdagi U ni o'rniga (13) ni 1-qatorini qo'yamiz natijada :
z = —A(p, z,v)^ z( 0) = z0
t
p(t) = Po -\ \U(s)|2 ds
0
(16) tenglamaga |U| ni o'rniga (13) ni 2-qatorini qo'yamiz
t ( \ P(t) = p0 - {¿(p(s),z(s),v(s)) pp(S) ds tenglikni hosil qilamiz . Endi har ikki
tomondan hosila olaylik
(14)
(15)
(16)
p(t) = -A,(p,z,v) P(0) = Po
(15) va (17) lardan quyidagi natijaga ega bo'lamiz
P
z
(17)
<
Oriental Renaissance: Innovative, educational, natural and social sciences
Research BIB / Index Copernicus
i = -A{p{t\z{t\v{ t))
p = -X{p{t\z{t\v{ t)) z (0) = z 0, p(0) = po
z (t )
|z (t )| p(t ) |z (t )|
(1S)
(1S) dan (p,z) ga nisbatan differensial tenglamalar sistemasi hosil bo'lishi kelib chiqdi.
(1S) sistema nochiziqli differensial sistema . Agar z Ф 0 bo'lsa bu sistemaning o'ng tomonidagi funksiya p > 4ß|z| shartda uzluksiz ( (p,z) ga nisbatan) . Funksiya
t ga nisbatan esa o'lchovli funksiya ( ya'ni Karatedore shartlari bajarilyapti ) deyiladi. Karatedore sharti bo'lishi uchun , Karatedore tenglamasining o'ng tomoni z bo'yicha Lipshist shartini qanoatlantirishi kerak ya'ni
f(zi, t) - f ( z2, t)| < L|z - z2| (19)
(18) tenglamaning o'ng tomonidagi funksiyalar (p, z) bo'yicha z ^ 0 holda
Karatedore shartlari o'rinli . Shuning uchun (18) sistemani yagona yechimi mavjud bo'ladi . (18) tenglamadan quyidagicha almashtirish hosil qilamiz
<
z2 =-Ä{p{t\z{t\v{ t))
zi( t )
|z (t )|
Z2(t)
|z ( t )|
z
^ i z
1
z (t )| 1
zn =-Ä(p(0,z(0,v( t)) endi integrallasak ,
z n (t )
|z ( t )|
( t )l
z 1
-s- = -A(/>(0,*(0,v( t))
z
n
|z ( t )|
ln z.
f 1
* 1 -jÄ(p(t),z(t),v(t))—ds -
-\A(p(t), z(t), v(t))T— ds; zt (t) =z (0)e 0 1 ( * , i = 1, n
о |z(t)|
•л
si
Oriental Renaissance: Innovative, educational, natural and social sciences
Research BIB / Index Copernicus
-\Up(t ), z (t ),v (t))^ids
e o Z = h(t) deb olsak ,
z (t ) = Zo h(t ) (20)
hosil bo'ladi . Xuddi shu kabi ,
fp> (t ) = ^o h(t )
[ Z (t ) = Zo h(t ) (21)
bu yerda h(t) = h(z, p, v, t) . (21) ni (11) ga olib borib qo'yaylik
^(P' Z'V) =
^(P^v,^)2-|v|2 =-Po^ Jv,-^)+ (( <v4)2-|v|2 =^(Po,Zo,v)
2|Z 2|z0|h \ '|z0|h/ V 2|z
Demak , boshlano'ich holatdagi (p0, z0 ) ni bilsak bo'ldi ekan .
Ta'rif : Integro -geometrik differensial o'yinda n strategiya deb , quyidagi funksiyaga aytamiz
U (v) = v -AjG (v)4o (22)
bu yerda (v) = ^+ (v, ft ^ + (^ + (v, ft ^)2 -
v
Mavzu bo'yicha tarixiy ma'lumot : Strategiyalar quvish masalasi qadimdan olimlarni qiziqtirgan . Eramizdan 2000 yil avval Xitoy qo'lyozmalarida "Burgut va O'lja masalasi " o'rganilgan bunda burgut o'z o'ljasini izma -iz quvish strategiyasi orqali harakatlanib ushlash masalasi ko'rilgan . Lekin matematika rivoji u davrda bu masalani yechishga yetarli bo'lmagan . 1732- yil fransus gidrogrifi va matematigi Bagauer " Tulki va Quyon " masalasini yechadi . Bunda quyin ma'lim to'o'ri ch iziq bo'yicha qochib borganda tulki uni izma - iz quvish natijasida qaysi trayektoriya orqali harakat qilishi mumkinligi m a asaasi yechildi . Bu masala amerikalik olim Lokning " Zambaraklarni boshqarish " kitobida bafurcha tahlil qilinib yechimlari keltirilgan .
FOYDALANILGAN ADABIYOTLAR ROYXATI (REFERENCES):
1. Prezident SH.M.Mirziyoyevning «Oliy ta'lim tizimi» bo'yicha 2017-yil 20-apreldagi yangi qarori .
2. Prezident SH.M.Mirziyoyevning «Matematika ta'limini rivojlantirish» bo'yicha 2020-yil 7-maydagi qarori.
3. Pontryagin L. S Ordinary differential eqvetions. -ADDISON-WESLEY PUBLISHING, 1962.-298p.
Oriental Renaissance: Innovative, educational, natural and social sciences
Research BIB / Index Copernicus
4. Layek G. C. An Introduction to dynamical Systems and chaos. -Springer India, 2015. -622p.
5. Сатимов Н. Ю. Методы решения задачи преследования в теории дифференциалних игр. -Т.: Националъной библиотеки Узбекистана имени алишера Навои, 2019, -230с.
6. Azamov A.A, Samatov B.T. П-strategy. An elementary Introduction to The Theory of Differential games, -T.: National Univ. of Uzb., 2000. -32p.
7. Israilov I., Otakulov S. Variatsion hisob va optimal boshqaruv, -Samarqand, 2012. -242b.
8. Azamov A.A., Samatov B.T. (2010). The П- strategy: Analogies and Applications, The Fourth International Conferense Game Theory and Management, St. Peterburg, Russia: 33-47.
9. Samatov B.T. (2013) On a pursuit - Evasion Problem under a Linear Change of the Pursuer Resourse. Siberian Advances in Mathematics, Allerton Press, Inc. Springer. New York: 23(4). 294-302.
10. Samatov B.T. (2013). On a Pursuit - Evasion Problem under Integral -Beometric construints on Pursuer controls. Automation and Remote Control, Pleiades Publishing, Lto. New York: 74(7). 1072-1081.
11. Chikrii A.A. Conflict - controlled processes, Boston - London Dordrecht: Kluwer Academ. Publ., 1997. -424p.
12. Fleming W.h. The convergense problem for differential games, J. Math. Anal. Appl. -1961. -N3. -p. 102-116.
13. Friedman A. Differential games, New York: Wiley, 1971. -350p.
14. Krasovskiy N.N. Dynamic Sistem Control (in Russian), Nauka, Moscow, 1985. -520p.
15. Pshenichniy B.N., Ostapenko Y.V. Дифференсиалныеигрыю. Киев. Науково димка. 1992. -224зю
16. Petrosyan L.A. The differential Games of pursuit (in Russian), Leningrad, LSU, 1977. -224p.
17. Satimov N. Yu. Methods of solving of pursuit problem in differential games (in Russian), Tashkent: NUUz, 2003. -245p.
18. Samatov B.T., Gayniddinov Sh.T., Uzoqboyev H.Q., Abdurahimova Z.I. Modification of "Life Line" game of isaact. Namangan Davlat Universiteti ilmiy axborotnomasi 4-son. 2021-yil. 25-32b.
19. Gayniddinov Sh.T., Uzoqboyev H.Q., Abdurahimova Z.I. Uchta quvlovchi va bitta qochuvchi boTgan hol uchun tutish masalasining geometric talqini. Namangan viloyati tarixi va madaniyati davlat muzeyi va Namangan Davlat Unversiteti tarix
Oriental Renaissance: Innovative, educational, natural and social sciences
Research BIB / Index Copernicus
kafedrasi. Tamaddun Silsilasi ilmiy jurnali, 3-son. IsteMod ziyo press nashriyoti. Namangan 2021 -yil. 101-104b.
20. Gayniddinov Sh.T., Nosirov A.R., Prezident adminstratsiyasi huzuridagi Talim fidoyilari ilmiy - uslubiy jurnali, 4-son. ISSUE 4. April 2021. 279-286b.
21. Samatov B.T. The some problems Linear Differential Games. With integral constraints (in Russian). The pertaining to kondidat dissertation, Tashkent, 1990. -127p.
22. Samatov B.T. The construction of the n-strategy for the game on simple pursuit with integral constraints (in Russian). The boundary value for non - classical mathematical - physical equations. Tashkent. Fan, 1986, p. 402-412.
23. Samatov B.T. The Game with "a Survival Zone" in the case integral -geometric constraints on the controls of the Pursuer, Uzb. Math.jurnal- Tashkent, 2012. --№7. -C.64-72.