СПИСОК ЛИТЕРАТУРЫ
1. Pope M.T, Müller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines // Angew. Chem. Int. Ed. Engl. - 1991. - V. 30. - P. 34-48.
2. Поп М.С. Гетерополи- и изополиметаллаты. - Новосибирск: Наука, 1990. - 232 с.
3. Максимов Г.М. Достижения в области синтеза полиоксометал-латов и изучение гетерополикислот // Успехи химии. - 1995. -Т 64. - № 5. - С. 480-493.
4. Добрынина Н.А. Изополи- и гетерополисоединения // Журнал неорганической химии. - 2002. - Т. 47. - № 4. - С. 577-587.
5. Картмелл Э., Фоулс Г.В.А. Валентность и строение молекул. -М.: Химия, 1979. - С. 272.
6. Fedotov M.A., Samokhvalova E.P., Kazansky L.P. 17O and 183W NMR diamagnetic and paramagnetic shifts in heterodecatungstates XW10O36- (X=Ln, Th, U) in aqueous solitions // Polyhedron. -1996. - V. 15. - № 19. - P. 3341-3351.
7. Shiozaki R., Inagaki A., Ozaki A., Kominami H., Yamaguchi S., Ichiha-ra J., Kera Y. Catalytic behavior of series of lanthanide decatungstates [Ln(III)W10O369-; Ln:La-Yb] for H2O2 - oxidations of alcohols and olefins. Some chemical effects ofthe 4fn - electron in the lanthanide(III) ion on the catalyses // J. Alloys Compounds. -1997. - V. 261. - P. 132-139.
8. Казанский Л.П., Голубев А.М., Бабурина И.И., Торченко-ва Е.А., Спицын В.И. Колебательные спектры гетерополи-
анионов XW10O36n- // Известия АН СССР. Сер. хим. - 1978. -№ 10. - С. 2215-2219.
9. Коленкова М.А., Крейн О.Е. Металлургия рассеянных и легких редких металлов. - М.: Металлургия, 1977. - С. 12.
10. Казиев Г.З., Дутов А.А., Ольгин К.С., Бельский В.К., Завод-ник В.Е., Эрнандес-Пэрес Т., Канаев А.А. Синтез и рентгеноструктурное исследование декамолибденодикобальтата(Ш) калия // Журнал неорганической химии. - 2004. - Т. 49. - № 5.
- С. 743-750.
11. Химия и технология редких и рассеянных элементов // Под ред. К.А. Большакова. - М.: Высшая школа, 1976. - Ч. 2. -С. 166, 174; Ч. 3. - С. 176, 233, 170, 171, 228.
12. Загребин П.А., Борзенко М.И., Васильев С.Ю., Цирлина Г.А. Кинетика электровосстановления центрального иона в це-рий(ГУ)-декавольфрамате // Электрохимия. - 2004. - Т. 40. -№ 5. - С. 565-575.
13. Сафронов С.М., Березина Е.М., Терентьева ГА., Чернов Е.Б., Филимошкин А. Г. Нелинейная экстраполяция концентрационных зависимостей приведенной вязкости и структура растворов полимеров // Высокомолекулярные соединения. -2001. - сер. Б. - Т. 43. - № 4. - С. 751-754.
14. Романова ТА., Краснов П.О., Качин С.В., Аврамов П.В. Теория и практика компьютерного моделирования нанообъектов.
- Красноярск: ИПЦ КГТУ, 2002. - 223 с.
УДК 544.3:622.331
ТЕРМОДИНАМИКА АДСОРБЦИИ СОЕДИНЕНИЙ НА ГУМИНОВЫХ КИСЛОТАХ
С.Г. Маслов, Л.И. Тарновская
Томский политехнический университет E-mail: [email protected]
Исследован процесс адсорбции органических соединений (н-алканов, циклоалканов, алкенов, простых, сложных и циклических эфиров, кетонов, спиртов, ароматических и хлорзамещенных углеводородов) на гуминовых кислотах исходного и термообработанного торфов газохроматографическим методом с целью определения адсорбционных и термодинамических параметров. Характеристика гуминовых кислот дана общепринятыми в химии твердых горючих ископаемых методами с использованием ЯМР-спектроскопии.
Выявлены зависимости между физико-химическими характеристиками и параметрами удерживания на адсорбенте. Установлены различия процессов адсорбции на гуминовых кислотах исходного и термообработанного торфов за счет повышенного содержания кислородсодержащих групп и ароматических фрагментов в термообработанных образцах. Показана взаимосвязь термодинамической вероятности процесса адсорбции на гуминовых кислотах и полярности адсорбатов.
Введение
Литературной информации об адсорбционных свойствах гуминовых кислот (ГК) [1-3] явно недостаточно. Традиционная точка зрения, что процесс адсорбции, с одной стороны, носит объемный характер, а с другой стороны, специфический - за счет наличия различных функциональных групп, не дает ясного представления о механизме этого явления. Существуют сведения [1], что носителями адсорбционных свойств могут быть и конденсированные ароматические ядра. Необходимо отметить, что большинство авторов исследовали процесс адсорбции на ГК ионов металлов и неорганических веществ [4-7]. Работ, посвященных исследованию адсорбционной способности ГК по отношению к органическим соединениям очень мало [2, 8, 9] и они не носят систематического характера.
Целью данной работы является исследование адсорбционной способности ГК по отношению к ряду органических соединений.
Эксперимент и методика
В качестве объекта исследования использовали осоковый торф со степенью разложения 35 % Таганского месторождения Томской области.
ГК получали по прописи Института торфа [10] и характеризовали как по общепринятым в химии твердых горючих ископаемых методам, так и методом ЯМР-спектроскопии [9-12]. Адсорбционные свойства ГК изучали модифицированным газохроматографическим методом [13].
Исследование проводили на хроматографе «Цвет-100» с детектором по теплопроводности при
использовании в качестве газа-носителя гелия. Хроматограф снабжен образцовым манометром для измерения градиента давления в колонке и внесения поправки на сжимаемость. Образцы ГК истирали в агатовой ступке и выделяли фракцию
0,5...0,25 мм. Стальную колонку длиной 1 м и диаметром 4,2 мм заполняли приготовленными ГК в количестве 6.7 г при давлении 10-3 Па. Нагрев образцов проводили в линейном режиме от 333 до 363 К со скоростью 2 град/мин. В качестве адсорба-тов использовали органические соединения: алка-ны, циклоалканы, хлорзамещенные алканы, арены, спирты, алкены, кетоны, простые, сложные и циклические эфиры. Анализируемые пробы вводили с помощью микрошприца в хроматограф.
Таблица 1. Характеристика осокового торфа, мас. %
Технический и элементный состав Групповой состав на органическую массу
№э Аа V1э' С^э' Н1э' ЛГ Б ВРВ ЛГВ ГК ФК Ц НО
6,7 7,9 68,4 53,4 5,9 2,1 38,5 2,6 1,8 30,9 35,1 11,2 2,1 15,5
Примечание: № - влажность аналитическая; А1 - зольность на сухое топливо; V11' - выход летучих на горючую массу; Б - битумы; ВРВ и ЛГВ - водорастворимые и легкогидролизуемые вещества; ФК - фульвокислоты; Ц - целлюлоза; НО - негидролизуемый остаток
Таблица 2. Характеристика гуминовых кислот торфа
ГК торфа Элементный состав, % Содер- жание, мг.экв./г
Весовые Атомные Атомные соотноше- ния □= о о С СООН, ОН,
С1э' Н1э' КОЛЗ" С Н О/С н/с
Исходного 54,84 6,66 35,60 35,28 48,41 15,84 0,45 1,37 2,56 6,00
Термообра- ботанного 60,09 5,22 34,69 40,48 41,90 17,01 0,42 1,03 3,06 6,89
Таблица 3. Содержание структурных фрагментов ГК по данным ЯМР-спектроскопии, %
ГК торфа с и □= С 1 1 0 1 Чп □= 1 0 и □= С 1 1 0 1 о < □= 1 о < о < 1 0 1 о Г си 1? 1 1? 1
Исходного 25,0 5,3 8,1 3,0 21,4 19,8 4,8 3,6 3,0 6,0 0,275
Термообра- ботанного 22,0 3,2 4,1 3,3 19,5 33,3 3,3 2,4 2,4 6,5 0,456
Примечание: ' - ароматичность
Из хроматограмм рассчитывали времена удерживания (^), с, и величины исправленных удерживаемых объемов:
(Я = 11и8 ,
где I - расстояние на хроматограмме от момента ввода пробы в колонку до момента выхода максимума пика, м; Щ - скорость диаграммной ленты, м/с.
Таблица 4. Времена удерживания органических соединений на ГК при линейном нагреве от 333 до 363 К
Адсорбаты Мо- леку- ляр- ный вес Температура кипения, °С Ди- поль- ный мо- мент Поля- ризуе- мость, А3 Ад- сор- бент ГК Времена удер-жива-ния, с
Алканы
Пентан 72,2 36,1 0 10,0 исх. 16,7
тер. 25,9
Гексан 86,2 68,7 0 11,9 исх. 21,9
тер. 29,2
Гептан 100,2 93,6 0 13,7 исх. 29,7
тер. 32.1
Изооктан 114,2 99,3 0 исх. 34,9
тер. 37,5
Циклоалканы
Циклогексан 84,2 81 0 11,0 исх. 28,1
тер. 35,7
Алкены
Гептен 98,2 93,6 исх. 29,5
тер. 33,3
Простые эфиры
Диэтиловый эфир 74,1 35,6 1,18 10,0 исх. 18,5
тер. 26,9
Дипропиловый эфир 102,2 91,0 13,7 исх. 21,5
тер. 29,5
Сложные эфиры
Этилацетат 88,1 77,2 1,81 9,0 исх. 37,7
тер. 45,2
Бутилформиат исх. 43,6
тер. 47,5
Циклические эфиры
Диоксан 88,1 101,3 0 9,6 исх. 39,9
тер. 48,2
Кетоны
Ацетон 58,1 56,2 1,66 6,6 исх. 21,1
тер. 25,4
Метилэтилкетон 72,1 79,6 исх. 20,2
тер. 24,6
Спирты
Бутанол-2 74,1 99,5 1,65 9,5 исх. 47,2
тер. 53,2
Ароматические
Бензол 78,1 80,1 0 10,4 исх. 29,1
тер. 31,5
Толуол 92,1 110,6 0,36 12,4 исх. 34,2
тер. 39,3
Хлорзамещенные
Четыреххлористый углерод 153,8 76,8 11,2 исх. 14,3
тер. 17,2
V = Щярглт Р0т,
где Ж1 - объемная скорость газа-носителя, м/с; Р1, Т1- давление и температура в измерителе расхода газа-носителя, Па и К; Р0 - давление газа у выхода из колонки, Па; Т - температура колонки, К; ] - поправка на перепад давления в колонке; т - навеска адсорбента, кг.
] = 3[(Р/Р0)2 -1]/2[(Р/Р0)3-1], где Р1 - давление газа у входа колонки, Па.
Изучение термодинамических характеристик адсорбции базировалось на выполнении условия: равновесие газ-адсорбент должно устанавливаться за время не более 60 с. Условию равновесной хроматографии для ГК, как показали исследования [2], соответствуют симметричные пики. Эти авторы установили, что скорость газа-носителя и величина пробы адсорбата не оказывают влияния на удерживаемые объемы, т.е. достигается термодинамическое равновесие в системе.
Рассчитанные величины удерживаемых объемов при разных температурах позволили рассчитать теплоты адсорбции и другие термодинамические характеристики в условиях равновесного состояния.
В основе газохроматографического метода лежит представление об установлении равновесия газ - конденсированная фаза для адсорбата, характеризуемого коэффициентом распределения К:
к = Щ г^т.
Теплоту адсорбции (энтальпия) определяли по формуле:
АН = Я ё 1п(Кд/Т), кДж/моль.
¿(1/Т)
Энтропия адсорбции определялась уравнением А5=(АЯ-АО)/Т, Дж/молыК, где АО - свободная энергия адсорбции (энергия Гиббса) -АО=ЯТ 1пК, кДж/моль.
Результаты и обсуждение
С точки зрения молекулярно-статистической теории адсорбции ГК за счет наличия карбоксильных групп, фенольных гидроксилов, хиноидных, карбонильных групп, кетонов, карбонильных групп, альдегидов и других, по-видимому, можно отнести к слабоспецифическому адсорбенту. В твердом состоянии [1] плоские молекулы ГК “упакованы” в пачки по несколько слоев, что является локальным проявлением частичной упорядоченности. Система полисопряжения, обусловленная делокализацией ж-электронов, приводит к усилению взаимного влияния атомов, но все же наличие различных групп создает химическую неоднородность поверхности, которая и связана со слабой специфичностью.
Как видно из данных, приведенных в табл. 4, времена удерживания практически для всех адсор-батов на ГК из термообработанного торфа меньше таковых на ГК исходного торфа.
Наибольшие удерживаемые объемы наблюдаются у спиртов, циклических и сложных эфиров, ароматических; наименьшие - у алканов, хлорза-мещенных, кетонов и простых эфиров.
Молекулярно-статистическая теория адсорбции связывает времена удерживания и удерживаемые объемы с межмолекулярными электростатическими взаимодействиями диполей. Поэтому неодно-
родная картина для разных классов органических соединений обуславливается наличием или отсутствием у молекул дипольных моментов. Как известно [9, 11] молекулы спиртов, сложных эфиров и ароматических обладают значительным дипольным моментом, а алканы имеют нулевой дипольный момент. Однако, однозначно связывать времена удерживания с дипольным моментом веществ нельзя. Например, ацетон имеет дипольный момент, равный 1,66, а толуол - 0,36, при этом время удерживания ацетона значительно меньше, чем у толуола.
Вероятно, в этом случае в адсорбционном взаимодействии играет роль не только межмолекуляр-ные, но и электростатические взаимодействия, но большой вклад вносит неспецифическое вазаимо-действие адсорбента с адсорбатом, которое определяется величинами Ван-дер-ваальсовых радиусов и величинами поляризуемости, которая для толуола (табл. 4) выше, по сравнению с ацетоном почти в 2 раза [14]. Это объясняется неоднороднопористой структурой ГК. Исследования [2, 3] показали, что радиус пор ГК колеблется в пределах 10.70 А с преобладанием пор малых размеров 10.15 А, что соизмеримо с линейными размерами «первичного» фрагмента структуры ГК. У толуола диаметр молекулы значительно меньше, поэтому его молекулы легко проникают в поры адсорбента.
Из табл. 4 видно, что закономерного изменения величин удерживаемых объемов от температуры кипения органических соединений не наблюдается. Это объяснимо тем, что температура кипения связана с взаимодействием молекул друг с другом в жидкости, а в случае адсорбции взаимодействие происходит с адсорбентом.
Судя по полученным данным, алканы проявляют в среднем небольшую адсорбционную способность, которая заметно выше на ГК термообработанного торфа. Среди алканов несколько большие значения удерживаемых объемов у изооктана. Алканы, имеющие ст-связи, взаимодействуют с адсорбентами неспецифически. Величины электронных поляризуемостей в ряду алканов от пентана к гек-сану линейно увеличиваются, также увеличиваются и значения удерживаемых объемов (УО).
Циклизация цепи алканов приводит к уменьшению значений объемов у циклогексана вследствие уменьшения числа атомов водорода и отклонения расположения атомов углерода от компланарности. Звенья углеродного скелета, вероятно, не могут одновременно касаться базисной грани адсорбента.
Весьма высокие УО наблюдаются у ароматических углеводородов, в большей степени у толуола. Причем, значения одинаково высокие для обоих типов ГК. Такое поведение толуола можно объяснить наличием метильной группы, которая вследствие проявления положительного индуктивного электронного эффекта и эффекта сверхсопряжения увеличивает электронную плотность в бензольном кольце и снижает ее на метильной группе.
Спирты, обладающие большим дипольным моментом, имеют большие значения УО, которые особенно увеличиваются при проведении адсорбции на ГК термообработанного торфа.
Кетоны и простые эфиры, как вещества с более слабой полярностью, имеют меньшие УО. Это связано с меньшим вкладом энергии водородной связи в удерживание кетонов и простых эфиров, хотя дипольный момент, например, у ацетона равен ди-польному моменту бутилового спирта.
Для сложных циклических эфиров характерны самые высокие УО, вследствие более четко выраженной поляризации связей в кислородсодержащих фрагментах по сравнению с простыми эфирами, и как следствие большей способностью к образованию водородных связей.
Однако во всех этих случаях химическая индивидуальность молекулы сохраняется, т.е. взаимодействие имеет “молекулярный”, а не “химический” характер [13].
Как было отмечено выше, адсорбционые свойства ГК термообработанного торфа выше по сравнению с ГК исходного, что наиболее отчетливо проявляется для случая полярных адсорбатов. Такой характер свойств, вполне, объясним изменениями, происходящими с ГК в процессе низкотемпературного термолиза торфа. По данным химических анализов и ЯМР-спектроскопии наблюдается небольшое увеличение кислородсодержащих групп (карбоксильных, фенольных гидроксилов) и глю-козидных фрагментов.
Как видно из данных табл. 5, теплоты адсорбции для дипольных молекул (эфиров, кетонов) и для слабо-дипольных молекул (ароматических углеводородов и спиртов) выше теплот адсорбции н-алка-нов, имеющих нулевой дипольный момент и неспособных к специфическому молекулярному взаимодействию. Необходимо отметить, как указывали авторы [13, 14], что суммарная теплота адсорбции любых органических молекул состоит из двух составляющих: теплоты адсорбции за счет взаимодействия с активными центрами адсорбента и теплоты взаимодействия адсорбированных молекул друг с другом. Однако разделить и рассчитать теплоты по этим результатам не представляется возможным.
Из экспериментальных данных видно, что в ряду н-алканов увеличение длины углеродной цепи приводит к возрастанию теплоты адсорбции и их поляризуемости. Значение теплоты адсорбции для н-ал-канов соизмеримы со значениями энергии ван-дер-ваальсового взаимодействия (<5 кДж/моль), вероятно, взаимодействие между ГК и н-алканами осуществляется за счет ван-дер-ваальсовых сил.
Из данных табл. 5 видно, что теплоты адсорбции эфиров, спиртов, кетонов и ароматических соединений на ГК лежат в пределах 5 кДж/моль, которые характерны для энергий типичных водородных связей, следовательно, адсорбция протекает через образование водородных связей.
Таблица 5. Термодинамические характеристики адсорбции и удерживаемые объемы
Адсорбаты Ад-сорбенты, ГК Удерживаемый объем при 333.363 К, ^■103, м3/кг -АН, кДж/моль -А5, Дж/моль -АG, кДж/моль
Алканы
Пентан исх. 4,8 1,9 10,1 5,3
тер. 9,3 3,8 19,5 10,2
Гексан исх. 6,2 2,5 13,0 6,8
тер. 11,2 4,5 23,5 12,2
Гептан исх. 9,0 3,6 18,9 9,9
тер. 13,2 5,3 27,7 14,5
Изооктан исх. 11,5 4,6 24,1 12,6
тер. 16,7 6,7 35,0 18,3
Циклоалканы
Циклогексан исх. 2,3 1,0 4,8 2,5
тер. 9,3 3,8 19 ,5 10,2
Алкены
Гептен исх. 8,4 3,4 17,6 9,2
тер. 10,1 4,1 21,2 11,1
Простые эфиры
Диэтиловый эфир исх. 6,8 2,7 14,3 7,5
тер. 13,5 5,4 28,3 14,8
Дипропило-вый эфир исх. 11,5 4,6 24,1 12,6
тер. 17,4 7,0 36,5 19,1
Сложные эфиры
Этилацетат исх. 19,7 8,0 41,3 21,6
тер. 28,2 11,4 59,1 30,9
Бутилфор- миат исх. 24,3 9,8 51,0 26,7
тер. 30,5 12,3 64,0 33,5
Циклические эфиры
Диоксан исх. 26,5 10,7 55,6 29,1
тер. 27, 8 11,2 58,3 30,5
Кетоны
Ацетон исх. 10,1 4,1 21,2 11 ,1
тер. 14,3 5,8 30,0 15,7
Метилэтил- кетон исх. 9,7 3,9 20,3 10,6
тер. 10,1 4,0 21,1 11,0
Спирты
Бутанол-2 исх. 39,2 15,8 82,2 43,0
тер. 40,2 16,2 84,3 44,1
Ароматические
Бензол исх. 18,4 7,4 38,6 20,2
тер. 19,2 7,7 40,3 21,1
Толуол исх. 20,2 8,1 42 ,4 22,2
тер. 25,4 10,2 53,3 27,9
Хлорзамещенные
Четыреххло- ристый углерод исх. 4,2 1,7 8,8 4,6
тер. 8,4 3 , 4 17,6 9,2
Для диэтилового эфира характерна низкая теплота адсорбции, соизмеримая с таковой для гек-сана. Вероятно, проявлению сильного специфического взаимодействия функциональных групп ГК с диэтиловым эфиром препятствует расположение в
нем кислорода посередине углеводородной цепи, что затрудняет его контакт с адсорбентом. Для молекул сложных эфиров теплоты адсорбции выше по сравнению с простыми эфирами за счет наличия групп С=0, которые придают повышенную полярность, и происходит более тесный контакт с функциональными группами адсорбента. На поверхности ГК, вероятно, электронная плотность локально сосредоточена на периферии функциональных групп, что обеспечивает высокую специфичность адсорбции молекул спиртов, сложных и циклических эфиров и ароматических соединений. Как отмечают авторы [15], необходимо учитывать влияние водородной связи на теплоту адсорбции адсорбат-адсорбент. Теплота адсорбции веществ, образующих водородные связи, будет всегда больше теплоты адсорбции веществ близкого строения, но не образующих ее. Так, например, дипропило-вый эфир имеет теплоту адсорбции выше по сравнению с диэтиловым эфиром за счет более сильной водородной связи. Молекулы ГК выступают донором протона (акцептором электронов за счет ОН-, и в меньшей мере СООН-групп), а молекулы простых и сложных эфиров - донором электронов (акцептором протона), за счет простой эфирной связи (-О-) с образованием ассоциата, но полного перехода протона при этом не происходит. Электродонорные свойства эфирной связи дипропилового эфира выше по сравнению с диэтиловым. Следовательно, вклад в теплоту адсорбции за счет водородной связи выше у дипропилового эфира. Необходимо отметить, что для ГК термообработанного торфа характерны, вероятно, повышенные электронная плотность на периферии функциональных групп и электроноакцепторные свойства по сравнению с ГК исходного торфа.
Известно [15], что расчет энтропии адсорбции производится с целью установления степени подвижности адсорбированных молекул. Изменение энтропии включает энтропию поступательного, вращательного и колебательного движения молекул.
По данным (табл. 5) наблюдается взаимосвязь между |-АН| и |-А6| для разных веществ: алифатических, ароматических углеводородов, спиртов, эфиров и кетонов. Можно предположить, что взаимодействие перечисленных адсорбатов с ГК имеет одинаковую картину. Большие отрицательные значения характерны для спиртов, сложных и циклических эфиров, что связано с выраженной полярностью молекул. Для ГК термообработанного торфа отрицательная энтропийная характеристика ниже по сравнению с исходным торфом. Вероятно, в структуре ГК термообработанного торфа имеется более широкое распределение по перемещению, вращению и колебанию молекул адсорбатов. По данным [2] чем ближе мольный объем адсорбата к предельному объему сорбционного пространства адсорбента, тем более заторможено поступательное, вращательное движение молекулы адсорбата, тем больше по абсолютной величине отрицательные значения А£
Для гуминовых кислот значение сорбционного объема составляет 4,0.10-4 м3/кг, которое близко к мольным объемам бутанола-2, этилацетата, дио-ксана, бензола и толуола, лежащих в пределах от 2,5 до 3,0.10-4 м3/кг, поэтому для них характерны низкие значения А£ Для н-алканов, алкенов и хлорзамещенных углеводородов мольные объемы ниже 2,5.10-4 м3/кг, для которых значения А£ выше.
Значения энергии Гиббса свидетельствуют о возможности протекания процесса адсорбции, а также о равновесном состоянии системы. Самые высокие значения АО получены для спирта, сложных циклических эфиров и ароматических углеводородов. Если сравнить значения АО на ГК исходного и термообработанного торфа, то для последнего значения несколько выше. Вероятно, процесс адсорбции на ГК исходного торфа более смещен в сторону десорбции по сравнению с термообработанным торфом.
Анализ термодинамических характеристик адсорбции свидетельствует о том, что адсорбаты можно расположить в ряд по мере убывания их адсорбционной способности: спирты > сложные эфиры > циклические эфиры > ароматические кетоны > простые эфиры, алкены, алканы
Выводы
1. Показано, что активными адсорбционными центрами в ГК являются функциональные группы: карбоксильные, фенольные гидроксилы, глюкозидные и ароматические фрагменты. Поскольку ГК из термообработанного торфа имеют высокое содержание вышеперечисленных групп, то они обладают повышенной адсорбционной способностью.
2. Показано, что адсорбционная способность ГК по отношению к полярным соединениям (спирты, сложные и циклические эфиры, ароматические, кетоны) выше, чем к неполярным адсорбатам (алканы, алкены).
3. Получены зависимости между некоторыми физико-химическими характеристиками (поляризуемость, дипольный момент) адсорбатов и параметрами удерживания.
4. Доказано, что повышенная адсорбционная способность ГК термообработанного торфа объясняется увеличенным содержанием кислородсодержащих групп (карбоксильных, фенольных гидроксилов), глюкозидных и ароматических фрагментов в структуре по сравнению с исходными ГК.
5. Выявлено, что термодинамические характеристики (-АД-А^Аб) для ГК исходного и термообработанного торфов взаимосвязаны между собой для всех исследуемых адсорбатов.
6. Установлено, что термодинамическая вероятность течения адсорбции на ГК осуществляется в ряду: спирты > сложные эфиры > циклические эфиры > ароматические кетоны > простые эфиры, алкены, алканы.
СПИСОК ЛИТЕРАТУРЫ
1. Комиссаров И.Д., Логинов Л.Ф. Гуминовые вещества в биосфере. - М.: Наука, 1993. - 352 с.
2. Лиштван И.И., Круглицкий Н.Н., Третинник В.Ю. Физикохимическая механика гуминовых веществ. - Минск: Наука и техника, 1976. - 264 с.
3. Pal U.K., Chakravarti S.K. Объемное поглощение этилдиамино-вого комплекса Со на почвенных и торфяных гуминовых кислотах // Journal of Indian Chemical Society. - 1986. - V. 63. -№ 10. - P. 883-889.
4. Пилипенко А.Т., Васильев Н.Г., Бунтова МА., Савкин А.Г Механизм и прочность сорбции катионов переходных металлов гумино-выми кислотами // Доклады АН УССР. - 1986. - № 7. - С. 42-45.
5. Гамаюнов Н.И., Масленников Б.И., Шульман Ю.А. Ионный обмен в гуминовых кислотах // Химия твердого топлива. -1991. - № 3. - С. 32-39.
6. Александров И.В., Канделаки ГИ., Куликова И.П. Цеолит-гу-миновые сорбенты для очистки сточных вод // Химия твердого топлива. - 1994. - № 4-5. - С. 136-142.
7. Bratasevszskij A., Gaidarob O., Gordienko Sz. Исследование процесса комплексообразования гуминовых кислот потенциометрическим методом // Agrochem. es tobaj. - 1971. - V. 2. - № 2.
- P. 100-104.
8. Пархоменко В.В., Кудра А.А. О расчете термодинамических функций процесса адсорбции метилового спирта гуминовыми кислотами и гуматами по одной изотерме // Поверхностные явления в дисперсных системах. - Киев: Наукова думка, 1974.
- Вып. 3. - С. 35-43.
9. Тарновская Л.И., Маслов С.Г, Смольянинов С.И. Химический состав органических веществ твердых остатков пиролиза торфа // Химия твердого топлива. - 1988. - № 3. - С. 26-29.
10. Лиштван И.И., Король Н.Т Основные свойства торфа и методы их определения. - Минск: Наука и техника, 1975. - 320 с.
11. Базин Е.Т, Копенкин В.Д., Косов В.И. и др. Технический анализ торфа. - М.: Недра, 1992. - 431 с.
12. Тарновская Л.И., Маслов С.Г. Изменение химического состава гуминовых кислот в процессе термолиза торфа // Химия твердого топлива. - 1994. - № 4-5. - С. 33-39.
13. Киселев А.В., Яшин Я.И. Физико-химическое применение газовой хроматографии. - М.: Химия, 1973. - 214 с.
14. Вигдергауз М.С., Измайлов Р.И. Применение газовой хроматографии для определения физико-химических свойств веществ.
- М.: Наука, 1970. - 159 с.
15. Сталл Д., Вестрам Э., Зинке Г. Химическая термодинамика органических соединений. - М.: Мир, 1971. - 807 с.
УДК 665.64
ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПРОМЫШЛЕННОЙ ЭКСПЛУАТАЦИИ УСТАНОВОК РИФОРМИНГА ЛЧ-35-11/1000 И ЛГ-35-8/300Б ПО «КИНЕФ» НА ОСНОВЕ СИСТЕМЫ КОНТРОЛЯ РАБОТЫ КАТАЛИЗАТОРА
Д.И. Мельник, С.А. Галушин, А.В. Кравцов, Э.Д. Иванчина, В.Н. Фетисова
Томский политехнический университет E-mail: [email protected]
Рассмотрена перспектива использования на основе заводских информационных сетей и баз данных автоматизированной системы управления технологическим процессом системы контроля работы катализатора. Показана возможность снижения коксооб-разования при работе на оптимальной активности с помощью метода математического моделирования. Описана существующая и разрабатываемая схема автоматизации получения и анализа технологических данных, необходимых для расчетов.
Эффективность промышленного производства определяющим образом зависит от управляемости технологическими процессами, в первую очередь, от возможности оперативного доступа к показателям работы катализатора и обеспечения контроля, анализа и прогнозирования технологических параметров процесса [1-3].
Заводские информационные сети автоматизированной системы управления технологическим процессом (АСУТП) решают только проблемы сбора, архивирования, накопления, структурирования данных с последующим предоставлением этой информации тем пользователям, чьи решения должны основываться на ее базе. АСУТП объединяет в единое информационное пространство большое количество распределенных систем. Нижний уровень данной системы представлен коммуникационными серверами, выполняющими функции разделения управляю-
щих и информационных сетей и передачи технологической информации на следующий уровень. В зоне информационной сети, охватывающей все предприятие, находится сервер сбора технологической информации, позволяющий хранить большие массивы данных о технологическом процессе. Пользователи имеют доступ как к архивной информации на сервере, так и к информации реального времени на коммуникационных серверах. Для обобщения информации, поступающей из различных источников в «ООО ПО «Киришинефтеоргсинтез» разработан и внедрен совместно со специализированной инжиниринговой компанией «Севзапмонтажавтоматика» программный комплекс - «Единая тематическая витрина данных (ЕТВД)», предоставляющая пользователю удобный графический интерфейс доступа к данным лабораторного контроля, характеризующим его и их совокупное представление [4].