Научная статья на тему 'Связанные фонон-магноны в антиферромагнетике'

Связанные фонон-магноны в антиферромагнетике Текст научной статьи по специальности «Физика»

CC BY
160
35
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук

Аннотация научной статьи по физике, автор научной работы — Исхаков Ф. А.

Исследование магнитоупругого взаимодействия имеет важное теоретическое и прикладное значение. Особое место в этих исследованиях занимает эффект обменного усиления магнитоупругой связи. Взаимодействие спиновых и упругих волн рассматривали в одноосном антиферромагнетике с двумя зеркальными подрешетками. Установили, при каких условиях возможно усиление магнитоупугой связи обменным взаимодействием магнитных моментов подрешеток.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

THE BOUND PHONON-MAGNONS IN AN ANTIFERROMAGNET

Examination of magnetoelastic interaction has the important theoretical and applied value. A special place in these examinations for effect of an exchange amplification of magnetoelastic connection. Interaction spin and elastic waves considered in a monoaxial antiferromagnet with two reflecting sublattices. Have established, under what requirements probably an amplification magnitoelastic connections by an exchange interaction of moments of magnet of sublattices.

Текст научной работы на тему «Связанные фонон-магноны в антиферромагнетике»

УДК 537.61:537.634.2

СВЯЗАННЫЕ ФОНОН-МАГНОНЫ В АНТИФЕРРОМАГНЕТИКЕ

Исхаков Ф.А.*

Исследование магнитоупругого взаимодействия имеет важное теоретическое и прикладное значение. Особое место в этих исследованиях занимает эффект обменного усиления магнитоупругой связи. Взаимодействие спиновых и упругих волн рассматривали в одноосном антиферромагнетике с двумя зеркальными подрешетками. Установили, при каких условиях возможно усиление магнитоупугой связи обменным взаимодействием магнитных моментов подрешеток.

При исследовании фазовых переходов в магнитоупорядоченных кристаллах является весьма важным учет влияния эффектов обменного усиления динамической

магнитоупругой связи. Эффект обменного усиления магнитоупругого взаимодействия в антиферромагнетиках было открыто в работе [1]. Константы магнитоупругой связи между различными ветвями спиновых и акустических возбуждений определяются

магнитнокрсталлографической симметрией и ориентацией внешнего магнитного поля. Детально изучено взаимодействие магнитных волн с акустическими волнами, распространяющимся вдоль оси анизотропии в одноосном антиферромагнетике (к||п) [2].

Рассмотрим одноосный

антиферромагнетик с двумя зеркальными подрешетками, описываемый гамильтонианом

Н = Нм + где Нм, Ни

Нми -магнитной, упругой и

подсистем, соответственно, представить в виде:

5М1V Г 5М 2

ЗХ: | | ЗХ:

(1)

гамильтонианы магнитоупругой которые можно

, 5М1 5М 2 ЗХ: ЗХ:

+ 5М.М,

!м =/ ¿Зкф

1pínTvll) + (пМ2) ]-р(п1У[1 ]£м2 )- + М2 ,Н0 ) ,(2)

Ни = }Кк{р к’ +Л«к. иаи к, 1, (3)

Нми = / ^,ХМ1>М2 )кг (4)

Здесь м1 (г) м2(г)- плотности магнитных моментов подрешеток; а, а', 8 - обменные интегралы; Р , Р' - константы магнитной

анизотропии; Н0- внешнее т постоянное однородное магнитное поле; п- единичный вектор вдоль оси легкого намагничивания (п ||0г); и(г)- вектор деформации;^Л р - тензор модулей упругости; хи=хи(м1 ,м2) - тензор

магнитострикции.

При отсутствии внешнего поля, гамильтониан (2) описывает

антиферромагнетики типа легкая ось (при Р -

Р' >0) и типа легкая плоскость (при Р -Р' <0). Для вектора упругих смещений имеем:

+*+:>' (5)

где Ь+5, Ьь - операторы рождения и

уничтожения фононов с импульсом к и

поляризацией з=(1.Д-|Д2), (I - продольная, Е|, ^ -поперечные поляризации); ек,ек5 - энергия и

единичный вектор поляризации фононов

соответственно, которые определяются

системой уравнений

(ЛЦк1к.]к1 р^-8«8к!! ^екй] = 0 .

Запишем гамильтониан (2) - (4) в

операторах рождения-уничтожения. Пользуясь представлением Гольштейна-Примакова [3}„ и вводя Фурье-преобразования операторов а((г)

- т т тт

а * = ^а га](г )еik г, (6)

* Исхаков Фанур Ахметов и ч - асп ирант кафедры РФС ф из и ческого факультета БашГУ.

и переходя к магнонным операторам С" и

к)

канонического

использованием

преобразования Боголюбова [4,5,6]

, ..а,. + V, ..а ,.

к)і кі к)і -кі у

(7)

где ¡=(1,2), гамильтониан системы в приближении линейного спин-фононного

взаимодействия можно привести к виду:

Н = в 0 + ]Г е + £ в * ь+'5 ь; + нми 3 (8)

к) к) к)

ко к ,5

Нми = ГІГ" с'(ь - Ь* V Т* с*(ь+- Ь ))

ми ^ к)э кЛ -кэ к / к)э кЛ -кэ к /)

(9)

Рассмотрим взаимодействие спиновых волн с звуковыми колебаниями, распространяющимися перпендикулярно оси магнитной анизотропии. Приведем выражение для параметра магнитного взаимодействия, найденное с учетом выражений (2)-(5) и (9) с использованием выражений для функций и и V , вычисленных в,следующих случаях [6]:

1.а) Р-Р'>о , Н)||п, 0< Н0 < Н5р2, 0! = 0,02 = я ,

Н5Р2 = #-рМо(28 + р-р')^ ,

1 I М 12 Ти_=Т21і= -кс, [-1 1 1 1 4 ^рс,

цМр

в + (А-е ■)' в-(А-е'),

х{2(Х9 -Х3) + (Х12 -Хб)}-Здесь и ниже считаем, что вектора поляризации звуковых

т

к

1 = - е" и е" образуют

к к,1 й2

векторов.™

правую

волн

тройку

1.+) к||0Х , Т-1 =Т21 =Т1,1=Т211 = 0 .

-Т21 =--кс,

! 4 ‘ [рс2

0

Ю,”

в+(А-е;-))2, в-(А-е:)I '

А - С + В - О

2е "

0

.Рс.) I ®к

Для этого случая спектр связанных

магнитоупругих волн при распространении по оси ОУ приведена на рис.1., где к@ « 106 м1 и

е„м «1012 с1.

2.б) к || 0Х , Т-1 =Ти- =Т21г = 0 .

Т21 = 2кс1

м0

рц

мМ0

Ю1

А-С-В+О

1

х {х4 + 2(Х2 + Х10) - 2(а'к2 +6)+Р+Р' }іп20,

1 1

ґ\ *2 \ пґ л/г

М0

рс,

мН

А - С+В - О

У

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2е,"

(Х9 +Хз )віп0,

2 мм 0 2 ^ А + С + В + Б'

Ю І кі ) 2е ", І кі )

Т = -кс, [^|

хі(Хз +1 Х6)+со£20(Х9 +1Х121э1п20

^ т

3) р-р >°, Н01| 0у , 0<Н0<Нб2, 01 =0, 02 = *

Ф1 =Ф2 =-

х{2(Х9 -Хз) + (^12 -Х6)}.

Заметим, что в этом случае спиновые волны взаимодействуют только с упругими колебаниями, поляризованными вдоль ОК.

2) Р-Р > 0 , Н0 ||П , Н5р1 < Н0 < Н51 , 01 = 02 =0 ,

Ф1 = 0, ф 2 = я ,

Н = Н 25-Р-Р' , н,. = (25-В-В')М0.

Нхп' Н^25+р-р' 51 0

А6р1 '

2 а) к||0У, т11 = Т„ =Т„ = 0.

Т,1

-Я4)!

2 1рс, I

мм;

Ю~

А-С+В+Б|2

Г

х4 + 2(Х2 + Х3 - Х9)-2(а'к2 +6) + Р + Р''іп20 ,

I М2 12

Ті,- =-кс, |-^|

1 ірсі )

мМ 0

Ш,'

А + С + В + О 12

2ек'і

х ¡(Хз + —Х6) + сой20(Х9 + ^Х12 ^в1п20 ’

Нб2 = (26 + р-р')М0. 3.а) к||0у, Т-1 =Т21- =т21г = 0 .

[ ) 2 [мм01 2 / А- С-В+О

ірс? ) ІЮк1) 2ек; І к2 )

с {х4 + 2(Х2 +Хз + Х9 -Х10)- 2(а'к2 +6)-р + р''іп 20 ,

IМ212 т„2 = ікс, |-^1

2 1рс

мМ 0

",

А + С - В - Р

2ек1

{(X 9 +Хз]зіп 0

3.б) к||0У, Т-1 =Т2, =Ті,2 = 0 .

Т- = ІЬС О

2 І рсі

цМ 0

А - С - В + О

2е;

< {х4 + 2(Х2 - х10) - 2(а'к2 + 6) -Р + Р''іп 20 3

- 1 -

[ М 0 ^2 0 ^2 [ А + С - В - О ^2

Т1, = ікс, [ —- I [ -----I [----------------І х (Xз +Х9)эт0

рс«.) І»;, М 2ек'і

к||0У, Т-1 = Т2і = 0 , Т-. =Т2, = 0

X j(X,-Х3) + -X6)Jcos0

Из сравнения случаев 1)-3) следует, что при изменении симметрии магнитной подсистемы происходит переключение связи между спиновыми и упругими волнами, которое определяется, как и в случае k||п, не только величиной, но и направлением внешнего магнитного поля относительно

кристаллографических осей.

В случаях 2),3) параметр магнитоупругой связи ¥21 для продольных ветвей спиновых и звуковых волн оказывается

перенормированным параметром обменного взаимодействия, т.е. происходит обменное усиление динамической магнитоупругой связи.

Такое усиление спин-фононной связи приводит к намного большим перенормировкам квазиспиновых и квазифононных мод, прежде

всего в области резонанса =В^.

ЛИТЕРАТУРА

1. Савченко M.A. Связанные магнитоупругие волны в антиферромагнетиках // ФТТ. 1964. Т.6. С. 864.

2. Харрасов M.X. Обменное усиление магнитоупругой связи в антиферромагнетиках//ДАН.1994. Т.335. С. 175.

3. Тябликов С.В. Методы квантовой теории магнетизма. М.: Наука. 1975. 527 с.

4. Боголюбов Н.Н., Боголюбов Н.Н.(мл.) Введение в квантовую статистическую механику. М.: Наука. 1984. 382 с.

5. Боголюбов Н.Н.(мл.), Садовников Б.И. Некоторые вопросы статистической механики. М.: Высшая школа. 1975, 352 с.

6. Боголюбов Н.Н., Ширков Д.В. Введение в теорию квантовых полей. М.: Наука. 1976. 480 с.

Поступила в редакцию 10.06.04

i Надоели баннеры? Вы всегда можете отключить рекламу.