----------------------- Page 1-----------------------
PLenary session 15 Sachs, T., Salvatori, R., Salzano, R., Schröder, L., Schön, M., Shevchenko, V., Skov, H., Sonke, J.E., Spolaor, A., Stathopoulos, V.K., Strahlendorff, M., Thomas, J.L., Vitale, V., Vratolis, S., Barbante, C., Chabrillat, S., Dommergue, A., Eleftheriadis, K., Heilimo, J., Law, K.S., Massling, A., Noe, S.M., Paris, J.‐D., Prévôt, A.S.H., Riipinen, I., Wehner, B., Xie, Z., Lappalainen, H.K. 2020: Overview: Integrative and Comprehensive Understanding on Polar Environments (iCUPE) – concept and initial results. Atmospheric Chem. Phys., 20, 8551–8592. https://doi.org/10.5194/ acp‐20‐8551‐2020, 2020. 20. Schmale, J., Arnold, S. R., Law, K. S., Thorp, T., Anenberg, S., Simpson, W. R., Mao, J. and Pratt, K. A., 2018: Local Arctic air pollution: A neglected but serious problem, Earth’s Futur., doi:10.1029/2018EF000952, 2018. 21. Sokhi, RS, V Singh, X Querol, S Finardi, AC Targino, M de Fatima Andrade, et al., 2021: A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions, Environment international, 157, 106818. 22. Varentsov, M., Konstantinov, P., Baklanov, A., Esau, I., Miles, V., and Davy, R., 2018: Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city, Atmos. Chem. Phys., 18, 17573–17587, https://doi.org/ 10.5194/acp‐18‐17573‐2018, 2018. 23. WMO, 2019, 2020: Guidance on Integrated Urban Hydrometeorological, Climate and Environmental Services. Vol. 1: Concept and Methodology. Volume 2: Demonstration Cities. WMO‐No. 1234. On numerical methods for solving direct problems in the mechanics of composite structures 1,2 1,3 1,2 1 1,2 1 L. S. Bryndin , S. K. Golushko , V. A. Belyaev , A. G. Gorynin , V. P. Shapeev , E. V. Amelina 1Novosibirsk State University 2Khristianovich Institute of Theoretical and Applied Mechanics SB RAS 3Federal Research Center for Information and Computational Technologies Email: [email protected] DOI 10.24412/cl‐35065‐2021‐1‐00‐09 Solving direct problems of calculating strength of composite structures and analyzing their stress‐strain state (SSS) necessitates solving boundary value problems for systems of differential equations. In this report, numerical methods of linear algebra and the least‐squares collocation method in combination with modern algo‐ rithms of an iterative process acceleration are applied to modelling and simulation of composite beams bending [1]. The quasi‐static loading process with repeated solution of systems of nonlinear algebraic equations and boundary value problems for ordinary differential equations is considered to analyze beams SSS [1, 2]. This work was supported by the Russian Foundation for Basic Research (project no. 18‐29‐18029). References 1. Golushko S. K., Shapeev V. P., Belyaev V. A., Bryndin L. S., Boltaev A. I., Gorynin A. G. The least‐squares collocation method in the mechanics of deformable solids // J. of Physics: Conf. Ser. 2021. V. 1715, N. 012029. P. 1‐10. 2. Shapeev V. P., Belyaev V. A., Golushko S. K., Idimeshev S. V. New possibilities and applications of the least squares collocation method // EPJ Web of Conferences. 2018. V. 173, N. 01012. P. 1‐8. Conservative‐characteristic algorithms for systems of conservation laws of hyperbolic type. Achievements and challenges V. M. Goloviznin Lomonosov Moscow State University Email: [email protected] DOI 10.24412/cl‐35065‐2021‐1‐01‐24 Conservative‐characteristic (CH) computational algorithms combine the advantages of conservative dif‐ ference schemes with automatic trapping of strong discontinuities and the method of characteristics in the