UDK 577.2:631.526.3:581+351.777.6
doi: 10.15407/biotech9.01.079
NEW GENOTYPES AND TECHNOLOGICAL INDICATORS OF WINTER TRITICALE
T. Z. Moskalets1 S. P. Vasylkivskyi1 B. V. Morgun2 V. I. Moskalets3 V. V. Moskalets1 V. K. Rybalchenko4
1Bila Tserkva National Agrarian University, Ukraine 2Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv 3Nosivka Breeding and Research Station of Remeslo Myronivka Institute of Wheat of the National Agrarian Academy of Sciences of Ukraine
4Taras Shevchenko National University of Kyiv, Ukraine
E-mail: [email protected]
Received 19.02.2016
The aim of the research was to conduct basic screening of new lines and cultivars of winter hexaploid triticale by the technological and molecular genetics indicators. Molecular and genetic research conducted by polymerase chain reaction allelic variants of gene loci Wx-A1, Wx-B1, and quality parameters of grain, flour and bread — on technological markers. The new cultivars and lines of winter hexaploid triticale of Nosivka Breeding and Research Station of Remeslo Myronivka Institute of Wheat by technological indicators of grain, flour and bread quality were studied. According to representative criteria's the most promising genotypes, which are the main products in terms Forest-Steppe ecotypes' and a high-quality raw materials for bakeries and bioethanol were identified. Molecular and genetic identifications of allelic variants of genes loci Wx-A1, Wx-B1 triticale, which in the early stages of ontogenesis to predict targeted uses genotypes were conducted. The first among a series of triticale cultivars and lines Forest-Steppe ecotypes and biotypes with nonfunctional "b" gene allele WxA1, which defines a high content of amylopectin of starch, an important release for more ethanol was identified. It was found that technological characteristics of grain, flour and bread of new cultivars and lines of winter triticale meet the modern requirements production dietetic food and bioenergy products is important and relevant in the context of food security of Ukraine.
Key words: winter triticale, molecular and genetic markers.
Triticale is a promising culture for expanding the resource base of baking industry and bioethanol production. This is a separate plant genus x Triticosecale created by artificial selection (from Triticum — the wheat genus, and Secale — the rye genus) [1-3]. This artificial plant is of interest due to its nutritional value which largely surpasses in many aspects those of wheat and rye. Nutritional value of triticale grain is caused by high content of protein, essential amino acids, minerals, vitamins B, PP, E, and carotenoids. It should also be noted that the triticale culture is not very discriminative of growing conditions and is the most capable among other crops in the area of weak implementation of biological potentials. Currently, there is a number of winter and spring triticale sorts with high productivity, grain quality, and stable expression of economic characters [4-6]. Not all of the sorts present the
valued economic characteristics that meet the requirements of baking and alcohol-distilling use [7, 8]. Thus expansion of gene pool of triticale with such properties is important for national nutritional safety.
The aim of the work was to screen new lines and sorts of hexaploid winter triticale by technologic features and molecular genetic markers.
Materials and Methods
In 2008-2015, we bred new lines and sorts of winter triticale (Pshenychne, Slavetne, Chaian, fl-5_2010, nC_2-12, nC_1-12) and studied their genotypic and phenotypic characters in the conditions of Polissia and Forest-Steppe ecotopes (Nosivska selection and research station of Remeslo Myronivka Institute of Wheat of NAAS of Ukraine).
Evaluation of triticale grain and flour by the cereal, protein-proteinase, and carbohydrate-amylase complexes, and of the triticale bread was done in collaboration with Yuriev Plant Production Institute of NAAS of Ukraine in the grain quality laboratory. Extraction of total DNA from triticale grain was conducted according to [9-11], with certain modifications. Gene polymorphism analysis was performed using uniplex and multiplex PCR with specific primers by pre-designed and optimized programs [16]. Reaction solutions were: specific primers, 2 mcl of buffer for PCR 10хDreamTaq™ Green Buffer (Thermo Scientific), 0,2 mM of skin deoxyribonucleotide-3-phosphate (Scientific), 0,5 unites of polymerase DreamTaq™ DNA Polymerase (Thermo Scientific), 30 ng of total plant DNA, de-ionized water Milli-Q till the end volume of 20 mcl. Selecting valuable genotypes with zero alleles of Wx-genes was done amplifying DNA with primers according to Vanzetti et al., (2009) and Saito et al., (2004) [10, 11], allowing for detection of Wx-A1b, Wx-B1b alleles. The characteristics of Wx genes and alleles of triticale are given in Table 1.
Mathematical and statistical analysis was conducted according to Dospekhov [12] using Есхеl 2007 and Statistica 6.0. software.
Results and Discussion
As determined by long-term studies, some of the triticale genotypes such as Afl 256 (national standard), Pshenychne, Slavetne, Chaian, fl-5_2010, nC_2-12, nC_1-12 can in Polissia and Forest-Steppe conditions produce high stable harvests of quality grain if grown using scientifically based technologies. It was shown that the abovementioned genotypes have high bakery performance, for example, the grain nature is 690-720 g/l and 35-44% vitrescence (flour quality indicators) (Table 2).
Analysis of technological indicators of grain revealed that the new genotypes lead to the development of grain consisting of 12.115.5% protein, 22.6-29.3% gluten (Table 3). In particular, the flour of all studied new genotypes of winter triticale is first-class due to > 18% gluten content. The minimum indicator values of protein complex are in the fl_5-2010 line.
Quality baking industry depends on the dough elasticity. It is determined that the aforementioned genotypes (namely, Afl 256, Slavetne, fl_5-2010, and Chaian), are characterized by dough elasticity of 5265 mm, which eventually positively reflects on the total baking assessment of 6.5-8.6 points (Table 3, Fig. 1-4).
Experimentally it was shown that the content of "raw" protein for all studied grain genotypes varies insignificantly (except for Slavetne sort where this indicator is only 12.1% although this is within the error relative to Afl 256 control).
Among the important characteristics of quality of triticale grain is the quality of gluten as a combination of physical properties: elasticity, flexibility and extensibility. The resistance to compression deformation of gluten of these triticale varieties and lines (85-106 cond. u.) is much higher than that of the common wheat of Yuvivata sort (60-72 cond. u.). Although the grain of all studied genotypes by the resistance to compression deformation of gluten belongs to the II quality group and is characterized as "satisfactorily weak", it can be improved with oxidizing supplements that change gluten.
It should be noted that weak gluten has high extensibility, minimum elasticity, and flows quickly [3, 5, 7].
Triticale grain quality depends not only on the content and quality of gluten, but also on the grain carbohydrate-amylase complex (Table 4). Studying the sort peculiarities of starch content in grain and the carbohydrate-
Table 1. Localization of Wx genes and alleles in the genome of hexaploid triticale [9—11]
Gene Allele Amplicon size, n. p. Chromosome
Wx^1 Wx^^ 495 7AS
Wx^1b 652
Wx-А1е 176
Wx-В1 Wx-B1a 778 4AL
Wx-B1e 934
Wx-B1b 668
Table 2. Performance cereal properties of grain of winter triticale and common wheat
Sort or line Grain performance indicators
moisture content,% weight of 1000 grains, g bulk density, g/l vitrescence,%
nC_1-12 14 58 ± 1.8* " 715±4.1" 35 ± 0.6"
nC_2-12 14 64 ± 2.2* " 720 ± 2.4" 40 ± 0.7* "
Slavetne 14 52 ± 3.9 716 ± 3.0" 13 ± 0.8* "
Chaian 14 49 ± 2.0 695 ± 5.2* " 44 ± 1.0* "
fl-5_2010 14 48 ± 2.3 690 ± 2.7*" 29 ± 0.8* "
Pshenychne 14 55 ± 2.5* " 712 ± 3.3* " 38 ± 0.9* "
Afl 256 (control) 14 48 ± 3.9 718 ± 2.0 35 ± 1.1
Yuvivata 60 (wheat) 14 50 ± 2.4 786 ± 1.6 50 ± 0.7
Note: hereafter * — P < 0.05 versus control (Afl 256); " — P < 0.05 versus wheat.
Table 3. Special (technological) indicators of grain quality of winter triticale and common wheat
by protein-proteinase complex
Sort, line "Raw" protein con-tent,% Raw gluten content,% Dough extensibility, mm Dough elasticity, mm Resistance to compression deformation (HMDG „ u )) (H def, c-u-)) Flour strengh, u. a.
nC_1-12 14.9 ± 0.8* 27.7 ± 0.5*" 53 ± 2.2* " 92 ± 3.2* " 90 ± 4.5* " 127 ± 3.0* "
nC_2-12 13.7 ± 0.5 29.3 ± 1.0* 41± 2.7*" 78 ± 2.8* " 88 ± 3.0* " 119 ± 2.1* "
Slavetne 12.1 ± 0.6" 24.0 ± 0.6" 34 ± 3.4* " 65 ± 2.0* " 95 ± 3.6* " 72 ± 2.6"
Chaian 14.5 ± 0.5* 26.4 ± 0.4*" 25 ± 1.1" 52 ± 2.1* 95 ± 2.8* " 94 ± 3.4* "
fl-5_2010 12.7 ± 0.5" 22.6 ± 0.7" 27±2.7" 55 ± 2.5* 97±2.1" 70 ± 1.8* "
Pshenychne 15.5 ± 0.7*" 28.6 ± 0.5* 48 ± 2.8* " 90 ± 2.5* " 85 ± 2.7* " 121 ± 2.6* "
Afl 256 (st) 12.8 ± 0.4 23.8 ± 0.4 28 ± 2.4 59 ± 3.3 101 ± 2.5 75 ± 2.2
Yuvivata 60 14.2 ± 0.5 29.6 + 0.5 82 ± 2.5 53 ± 2.7 102 ± 2.0 272 ± 3.4
Table 4. Winter triticale and and common wheat grain characteristics by the carbohydrate-amylase complex
Sort, line of triticale Starch con-tent,% Amilose content in starch,% Fermen ta-bility of starch,% Autolytic activity,%, per dry matter Temperature of maximum viscosity of starch gel, Tmaxvic, °C Falling number, c
nC_1-12 68.5 ± 0.6* 22.2 ± 0.7 28.5 ± 0.5 35.5 ± 0.9 83.5 ± 0.7* 178 ± 14.4
nC_2-12 64.7 ± 1.1" 22.6 ± 0.6 29.2 ± 0.8 33.2 ± 1.4 83.0 ± 0.6* 181± 13.0
Slavetne 65.8 ± 0.8" 21.4 ± 0.8 27.2 ± 0.8" 35.0 ± 1.2 84.9 ± 0.4* 176 ± 8.2
Chaian 64.0 ± 0.5" 26.2 ± 0.9* " 35.5 ± 0.7* " 41.8 ± 1.0* " 80.4 ± 0.8 172 ± 9.6
fl-5_2010 65.6 ± 0.9" 18.8 ± 0.6* " 23.2 ± 0.7* " 45.6 ± 0.8* " 86.2 ± 0.3* 199 ± 11.7
Pshenychne 67.6 ± 0.5* 23.4 ± 1.3 30.5 ± 1.0 34.7 ± 1.5 80.7 ± 0.4 170 ± 9.6
Afl 256 (st) 65.2 ± 0.8 21.9 ± 0.7 28.0 ± 0.8 36.6 ± 1.4 84.1 ± 0.3 181 ± 8.0
Yuvivata 60 67.8 ± 0.6 - - - - -
Fig. 1. Ear, grain and bread of Pshenychne line of winter triticale
Fig. 2. Ear and bread of Chaian line of winter triticale
Fig. 3. Ear, grain and bread of Slavetne of winter triticale
Fig. 4. Ear and bread of Д-5-2010 line of winter triticale
amylase complex allowed to determine that the starch content in the grain of aforementioned sorts and lines of triticale is quite high and ranges 64.0-68.5%. The starch is the main grain component, which is why its content, state and properties always impact the rheological properties of dough and therefore the quality of the final products. It should be noted that triticale grain contains a significant total amount of sugars and has a lower temperature of starch gelatinization, and highly active a-amylase [13].
Lately the Ukrainian baking industry practices the method of estimation of falling number index by viscosity, as is widely
referred to in other countries [5, 14] as he "Hagberg falling number" (HFN). This index reflects the activity of special enzymes, mostly a-amylases that that break down starch molecules into sugars with intense release of C02, influencing the porosity and bread structure. The preferable a-amylase level is low [3, 7] because otherwise there is active re-synthesis of starch and the dough becomes viscose and sticky.
High falling number is an important indicator of baking quality of triticale grain, caused by low autolytic activity of a-amylase enzymes that convert starch amylose into glucose and maltose [5, 7] resulting in high protein content.
Our experiments reveal that the least autolytic activity of the studied sorts and lines of triticale grain is in lines ПС_1-12 and Pshenychne (33.2 and 34.7% respectively) and the maximum is in Д-5_2010 (Table 4) which is characterized by the highest activity of amylases and a-amylase in particular and therefore is the least suitable for the production of bakery products.
High amylase content in the grain of studied triticale genotypes is confirmed by identification, in all sorts and lines, of wild type alleles coding isoforms of GBSS1 enzyme (granulebound starch synthase = ADP glucose starch glycosyl transferase, EC2.4 1.21 = GBSS 1 ). The relevant genes are located in 4AL chromosome shoulders [12-14, 19]. In particular,, the alleles "a" (amplification size 495 n. p.) and "е" (176 n. p.) in the Wx-A1 gene locus, and alleles "a" (778 n. p.) and "e" (934 n. p.) of Wx-B1 gene locus (Fig. 5, 6) were found.
Molecular genetic screening for winter triticale grain by alleles of Wx-genes confirmed the physical and chemical composition of starch. Particularly, in the Д-5_2010 the not-functioning null allele "b" of Wx-A1 gene was found, 652 n. p. in size, with the 5'-CGGCGTCGGG TCCATAGATC-3' sequence (Fig. 6), chich does not influence the expression of synthesis of granulebound starch synthase.
The 668 n.p. amplicon — product of Wx-B1b gene — was not found in any of studied samples of winter triticale.
Amylopectin, which is part of the starch granules, is hydrolyzed by amylase enzymes better than the amylose [15-19]. Starch granules of amylopectin are physically unstable against mechanical stress during grain grinding, so they are easily broken and thus the total surface of the starch granules that are attacked by amilases increases significantly [13, 20]. This causes the acceleration of starch hydrolysis by amylase, which is important in shaping the raw material for alcohol- distillate and bakery production [2, 16]. Temperature of maximum viscosity of starch gel shows the ratio of amylose and amylopectin polysaccharides in starch granules. The results of our studies on reciprocal interdependence of temperature values of maximum viscosity of starch gel and amylose content and fermentability are consistent with data of some other authors [17, 18]. By temperature values of maximum viscosity of starch gel (Tmax), the grains of new winter triticale genotypes are variable, as confirmed by different amylose contents in studied samples (Table 5). The only exception is the triticale line Д-5_2010 with Tmax higher approximately 7.2% than in others, and with the highest amilopectin level in starch
В 9 10 11 -С M
652 bp -495 bp -
176 bp -
- ¡= ■ — =
—— — — 1
------ — — —
- 700 bp
- 500 bp
- zoo bp
Fig. 5. Electrophoregram of Wx-A1 gene amplification products:
1 — nC_1-12;
2 — nC_2-12;
3 — Slavetne;
4 — Chaian;
5 — D-5_2010;
6 — Pshenychne;
7 — Afl 256;
8 — control sample of triticale with wild type allele
(Wx-A1a);
9 — control sample of triticale with null allele of
Wx-A1b gene;
10 — control sample of wheat with null allele of Wx-
A1b gene;
11 — control sample of wheat with wild type allele
(Wx-A1a), the Gardemarin sort; -C — negative control (without DNA); M — molecular weight marker GeneRuler™ DNA Ladder Mix
Fig. 6. Electrophoregram of Wx-B1 gene amplification products:
1 — nC_1-12;
2 — nC_2-12;
3 — Slavetne;
4 — Chaian;
5 — fl-5_2010;
6 — Pshenychne;
7 — Afl 256;
8 — control sample of triticale with wild type allele
(Wx-A1a);
9 — control sample of triticale with null allele of
Wx-B1b gene;
10 — control sample of wheat with null allele of Wx-
B1b gene;
11 — control sample of wheat with wild type allele
(Wx-A1a), the Gardemarin sort; -C — negative control (without DNA); M — molecular weight marker GeneRuler™ DNA Ladder Mix
Table 5. Average indicators of quality of winter triticale and winter soft wheat bread
Sort, line Moisture content,% Acidity, pH Porosity,% Volumetric bread outut of 100 g of dough, cm3 Total baking rating, points Specific volume, cm3/ 100 g
nC_1-12 54.0 ± 0.2* " 5.1 ± 0.1" 41.1± 1.3" 490 ± 5.2* " 9.0 ± 0.3* 1.37 ± 0.1"
nC_2-12 53.7 ± 0.1* " 5.0 ± 0.2" 39.6 ± 1.7" 470 ± 4.4* " 8.5 ± 0.4 1.35 ± 0.1"
Slavetne 55.6 ± 0.4" 5.6 ± 0.1" 40.5 ± 1.4" 460 ± 3.8* " 8.6 ± 0.6 1.34 ± 0.2"
Chaian 52.2 ± 0.2* " 4.8 ± 0.2" 39.3 ± 2.6" 430 ± 3.0* " 8.2 ± 0.6 1.31 ± 0.1"
fl-5_2010 56.8 ± 0.3* " 6.1 ± 0.3* " 25.8 ± 1.1*" 390 ± 6.6* " 6.5 ± 0.3* " 1.20 ± 0.1"
Pshenychne 53.0 ± 0.3* " 5.2 ± 0.1 " 40.4 ± 2.0" 480 ± 6.1* " 9.0 ± 0.5 1.34 ± 0.1"
Afl 256 55.1 ± 0.2 5.3 ± 0.4 40.2 ± 1.6 440 ± 5.3 8.0 ± 0.4 1.33 ± 0.2
Yuvivata 60 50.2 ± 0.3 3.5 ± 0.3 64.8 ± 2.4 590± 6.5 8.7 ± 0.6 3.24 ± 0.2
granules (81.2%), which is indicative of valuable raw material for bioethanol industry.
Analysis of quality indicators of products made it possible to identify the best bakery triticale genotypes: nC_1-12, nC_1-12, Chaian, Pshenychne, Afl 256. Bread, made from grain of triticale line fl-5_2010 was of worse quality. This is due to low content of raw gluten and increased amylase activity. In addition, low gluten content in grain triticale lines indicated poor porosity makes bread. In addition, low gluten content in grain of that triticale line causes poor bread porosity. The biggest porosity of 39.3-41.1% characterized the bread made of triticale grain of nC_1-12, Slavetne, Pshenychne lines. The bread with highest specific volume (1.37 cm3/g) was made from triticale flour of nC_1-12 line, characterizing it as the most promising for baking. Pshenychne and nC_2-12 triticale lines, characterized by high levels of protein-proteinase and carbohydrate-amylase complex, perform well in bakery products and are also noteworthy.
Hence, here molecular and genetic markers and technological indicators of grain, flour and bread of new sorts and lines of hexaploid winter triticale were studied at
Nosivka Breeding and Research Station of Remeslo Myronivka Institute of Wheat of the National Agrarian Academy of Sciences of Ukraine. Of the triticale genotypes grown in Polissia and forest-steppe ecotope conditions, the most promising genotypes were chosen by relevant criteria in order to determine producers of quality raw material for baking and bioethanol industry. Identification of allelic variants of genes Wx-A1, Wx-B1 allows to determine the targeting use of genotypes at the early stages of ontogeny. For the first time, among a number of triticale varieties and lines grown in Polissia and Forest-Steppe ecotopes, biotypes with nonfunctional (A1b) allele of Wx gene which defines the high content of amylopectin in starch of the grain was identified, which is important for increasing the output of bioethanol.
It is found that high-performance protein-proteinase and carbohydrate-amylase complexes, and qualitative assessment of bakery products as well as of new varieties of winter triticale lines meet modern requirements for effective processing and production of important dietary food products, which is important and a priority in the context of food security of Ukraine.
REFERENCES
1. Moskalets T. Z., Moskalets V. V. Autekolohichni ta demekolohichni proiavy modyfikatsiinoi zdatnosti henotypiv tryby Triticeae lisostepovoho ta poliskoho ekotypiv [Population ecology and autecology manifestations of modificational variability of genotypes tribe Triticeae in forest-steppe and polissya ecotypes]. Ecology and noospherology. 2015, 26 (1-2), 41-52. doi: 10.15421/031505. (In Ukrainian).
2. Rybalka A. Tritikale and energetic. Grain. 2012, 9 (78), 34-37. (In Ukrainian).
3. Drobot V. I., Fedorova T. O. Research baking properties wholemeal flour of triticale flour and bread manufacturing technology of from this flour. Proceedings of the All-Ukrainian scientific-practic Conference. Poltava, 2003. (In Ukrainian).
4. Moskalets T. Z, Hrynyk I. V., Tarasiuk S. I., Moskalets V. V., Buniak N. M, Moskalets V. I., Rybalchenko V. K. Modification changeability of new caltivare of wheat-rye amphidiploid for ecological, economic valuable and molecular genetic indicators. J. Problems of Environmental Biotechnology Available at http://ecobio.nau.edu.ua/ index.php/ ecobiotech. (In Ukrainian).
5. Riabchun V. K., Shatohin V. I., Panchenko I. A. The baking quality of grain of new lines of spring hexaploid triticale. Abstracts of the "Scientific bases stabilization of crop production", Kharkiv, Ukraine. 1999. (In Ukrainian).
6. Shhipak G. V., Ignatenko A. I. Highly productive cultivar of winter triticale Garne with good baking properties. The Plant Production Institute nd. a. V.Ya. Yuryev of NAAS. 2010, V. 7, P. 141-147. (In Ukrainian).
7. Korjachkina S. Ja., Kuznecova E. A., Cherepnina L. V. The Technology of Bread From Whole Grain Triticale. Orel: FGBOU VPO "Gosuniversitet — UNPK". 2012, 177 p. (In Russian).
8. Zahra M, Arash F. Molecular diversity and detection of Waxy genes in the Iranian wheat populations by multiplex PCR. Biotechnol. Biotechnol. Equip. 2015, 29 (5), 869-875. doi:10.1080/13102818. 2015.1045940.
9. Ma J., Stiller J., Zheng Z., Liu Y., Wei Y., Zheng Y., Liu C. A high-throughput pipeline for detecting locus-specific polymorphism in hexaploid wheat (Triticum aestivum L.). Plant Meth. 2015, 11 (39), 14. doi: 10.1186/s13007-015-0082-6.
10. Vanzetti L. S, Pfluger L. A., Rodriguez -Quijano M. Genetic variability for waxy genes in Argentinean bread wheat germplasm. J. Biotechnol. Available at http: //www. ejbiotechnology.info/index. php/ejbiotechnology/article/viewFile/
v12n1-2/682. (accessed, August 7, 2008). doi: 10.2225/vol12-issue1-fulltext-2.
11. Saito M., Konda M., Vrinten P., Nakamura K, Nakamura T., Saito M. Molecular comparison of waxy null alleles in common wheat and identification of a unique null allele. Theor. Appl. Genet. 2004, 108 (7), 1205-1216. PMID: 14689187.
12. Dospehov B. A. Methodology of field experiences. Moskva: Agropromizdat. 1985, P. 78-143. (In Russian).
13. Guzman C., Caballero L., Alvarez J., Yamamori M. Amylose content and starch properties in emmer and durum wheat lines with different waxy proteins composition. Sci. Food Agric. 2011, 91 (9), 32-38. doi: 10.1002/jsfa.4358.
14. Yamanaka S., Nakamura I., Watanabe K., Sato Y. Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theor. Appl. Genet. 2004, 108 (7), 179-184. PMID: 14740088.
15. Saito M., Vrinten P., Ishikawa G., Graybosch R., Nakamura T. A novel codominant marker for selection of the null Wx-B1 allele in wheat breeding programs. Mol. Breed. 2009, V. 23, P. 209-217. doi:10.1007/s11032-008-9226-y.
16. Morhun B. V., Stepanenko O. V., Stepanen-ko A. I., Rybalka O. I. Molecular genetics identification of polymorphisms of Wx genes in hybrid common wheat by using multiplex polymerase chain reaction. Plant Physiology and Genetics. 2015, 47 (1), 25-35. (In Ukrainian).
17. Ortega R., Alvarez J. B., Guzman C. Characterization of the Wx gene in diploid Aegilops species and its potential use in wheat breeding. Genet. Resources Crop Evol. 2014, 7 (43). doi: 10.1007/s10722-013-0040-y.
18. Klimushina M. V. Gladkih N. I., Diva-shuk M. G. The distribution of alleles of genes Wx collection of common wheat Krasnodar Agricultural Research Institute nd. a. P. P. Lukianenko. Vavilov Journal of Genetics and Breeding. 2012, 16 (1), 187-192. (In Russian).
19. Van K., Onoda S., Kim M. Y., Kim K. D, Lee S.-H. Allelic variation of the Waxy gene in foxtail millet [Setaria italica (L.) P. Beauv.] by single nucleotide polymorphisms. Mol. Genet. Genomics. 2008, V. 279, P. 255266. doi:10.1007/ s00438-007-0310-5.
20. Delwiche S., Graybosch R., St Amand P., Bai G. Starch waxiness in hexaploid wheat (Triticum aestivum L.) by NIR reflectance spectroscopy. Agric. Food Chem. 2011, 59 (8), 141. doi: 10.1021/jf104528x.
НОВ1 ГЕНОТИПИ ТА ТЕХНОЛОГ1ЧН1 ПОКАЗНИКИ ТРИТИКАЛЕ ОЗИМОГО
Т. З. Москалець1, С. П. ВасилькЬвський1, Б. В. Моргун2, В. I. Москалець3, В. В. Москалець1, В. К. Рибальченко4
^^оцершвський нащональний аграрний
ушверситет, Укра!на 21нститут кл^инно! бмлоги та генетично! шженери НАН Укра!ни, Ки!в
3Носiвська селекцiйно-дослiдна станцiя Мирошвського iнституту пшенищ iM. В. М. Ремесла НААН Укра!ни 4Ки!вський нащональний ушверситет iменi Тараса Шевченка, Укра!на
Метою роботи було вивчення нових лшш та сортiв гексапло!дного тритикале озимого за технолопчними показниками та молекуляр-но-генетичними маркерами. Молекулярно-генетичш дослiдження проведено за допомо-гою полiмеразноl ланцюгово! реакцй алельних варiантiв локусiв генiв Wx-A1, Wx-B1, а яшсш параметри зерна, борошна й хлiба — за технолопчними показниками. Вивчено новi сорти та лшп гексапло!дного тритикале озимого Номвсько! селекщйно-дослщно! станцй Миро-нiвського iнституту пшеницi iм. В. М. Ремесла НААН Укра!ни за технологiчними показниками якост зерна, борошна й хлiба. 1дентифшовано найбiльш перспективнi гено-типи тритикале, основна продукщя яких в умовах пол^ько-л^остепового екотопу е яшс-ною сировиною для виготовлення хлiбопро-дуктав i бiоетанолу. Проведено молекуляр-но-генетичну щентифшащю алельних варiантiв локусiв гешв Wx-A1, Wx-B1 тритикале, яка дае змогу на раншх етапах онтогенезу спрогнозувати щльове використання геноти-пiв. Уперше серед низки сорив i лiнiй тритикале пол^ького i лiсостепового екотипiв щенти-фшовано бiотипи з нефункцiональним алелем «b» гена WxA1, який визначае високий вм^т амiлопектину в крохмалi, що е важливим для бiльшого виходу б^етанолу. З'ясовано, що технологiчнi показники зерна, борошна та хлiба нових сорив i лiнiй тритикале озимого вщповщають сучасним вимогам виробництва дiетично-харчових i бiоенергетичних продук-тiв, що е актуальним та прмритетним у контекста продовольчо! безпеки Укра!ни.
Ключовi слова: тритикале озиме, молеку-лярно-генетичнi маркери.
НОВЫЕ ГЕНОТИПЫ И ТЕХНОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ ТРИТИКАЛЕ ОЗИМОГО
Т. З. Москалец1, С. П. Васильковский1, Б. В. Моргун2, В. И. Москалец3, В. В. Москалец1, В. К. Рибальченко4
1Белоцерковский национальный аграрный университет, Украина 2Институт клеточной биологии и генетической инженерии НАН Украины, Киев 3Носовская селекционно-опытная станция Мироновского института пшеницы имени В. М. Ремесло НААН Украины 4Киевский национальный университет имени Тараса Шевченко, Украина
Целью работы было изучить новые линии и сорта гексаплоидного тритикале озимого по технологическим показателям и молекулярно-генетическим маркерам. Молекулярно-гене-тические исследования проведены с помощью полимеразной цепной реакции аллельных вариантов локусов генов WxA1, Wx-B1, а качественные параметры зерна, муки и хлеба — по технологическим показателям. Изучены новые сорта и линии гексаплоидного тритикале озимого Носовской селекционно-опытной станции Мироновского института пшеницы имени В. М. Ремесло НААН Украины по технологическим показателям качества зерна, муки и хлеба. Идентифицированы наиболее перспективные генотипы, основная продукция которых в условиях полесско-лесостепного экотопа является качественным сырьем для изготовления хлебопродуктов и биоэтанола. Проведена молекулярно-генетическая идентификация аллельных вариантов локусов генов WxA1, Wx-B1 тритикале, что позволяет на ранних этапах онтогенеза спрогнозировать целевое использование генотипов. Впервые среди ряда сортов и линий тритикале полесского и лесостепного экотипов идентифицированы биотипы с нефункциональным аллелем «b» гена Wx A1, который определяет высокое содержание ами-лопектина в крахмале, что важно для более высокого выхода биоэтанола. Установлено, что технологические показатели зерна, муки и хлеба новых сортов и линий тритикале озимого соответствуют современным требованиям производства диетически-пищевых и биоэнергетических продуктов, что является актуальным и приоритетным в контексте продовольственной безопасности Украины.
Ключевые слова: тритикале озимое, молеку-лярно-генетические маркеры.