ХИМИЯ И ФИЗИКА МАТЕРИАЛОВ
И. А. КИРОВСКАЯ
Омский государственный технический университет
УДК 537.311.33+541.128+541.183
методология исследований
Физико-химических свойств
поверхности алмазоподоб-ных полупроводников и основные направления практических разработок
РАСКРЫВАЕТСЯ МЕТОДОЛОГИЯ ИССЛЕДОВАНИЙ РЕАЛЬНОЙ ПОВЕРХНОСТИ АЛМА30П0Д0БНЫХ ПОЛУПРОВОДНИКОВ, КОТОРАЯ ВКЛЮЧАЕТ РАСШИРЕНИЕ АРСЕНАЛА ОБЪЕКТОВ ИССЛЕДОВАНИЙ; ПРИГОТОВЛЕНИЕ ИХ С РАЗЛИЧНЫМ ГАБИТУСОМ И РАЗРАБОТКУ СООТВЕТСТВУЮЩИХ ТЕХНОЛОГИЙ; КОМПЛЕКСНОЕ ИССЛЕДОВАНИЕ ПОВЕРХНОСТНЫХ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ; РЕГУЛИРОВАНИЕ ТАКОВЫХ ПУТЕМ РАЗЛИЧНЫХ ВОЗДЕЙСТВИЙ; ПОЛУЧЕНИЕ И ИСПОЛЬЗОВАНИЕ ТВЕРДЫХ РАСТВОРОВ.
ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ СФОРМИРОВАННОЙ МЕТОДОЛОГИИ ДЕМОНСТРИРУЮТСЯ НА ПРИМЕРЕ ОДНОГО ИЗ НАПРАВЛЕНИЙ ПРАКТИЧЕСКИХ РАЗРАБОТОК - ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПЛЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ МИКРОЭЛЕКТРОНИКИ.
На протяжении многих лет коллективом кафедры Физической химии ведутся фундаментальные исследования реальной поверхности бинарных и более сложных алмазоподобных полупроводников, как перспективных материалов новой техники и потенциальных катализаторов[1-7].
Методология таких исследований, которая формировалась с учетом диктуемых задач, в настоящее время определяется следующими составляющими:
- расширение арсенала объектов исследований, т.е. включение в него новых, неизученных систем;
- приготовление объектов исследований с различным габитусом (в форме порошков, пленок, монокристаллов) и разработка соответствующих технологий;
- комплексное исследование физико-химических свойств реальной поверхности (структуры, примесного и фазового состава, адсорбционных, каталитических, физических);
- регулирование поверхностных свойств бинарных полупроводгников путем различных воздействий (термической обработки, ИК-, у-облучений, легирования и др.);
- получение и исследование твердых растворов.
Основные методы экспериментальных исследований:
методы получения пленок, твердых растворов, микроскопический и электронномикроскопический, рентгенографический, масс-спеюгрометрический (обзорный и элементного анализа), ИК-спектроскопические (поглощения и МНПВО), ЭПР, РФЭС, адсорбционные (волюмометрический
и пьезокварцевого взвешивания), термодесорбционный, измерения рН-изоэлектрического состояния, поверхностной проводимости и др.
Результаты таких исследований и вытекающие из них научные положения легли в основу практических разработок по:
- оптимальным условиям роста, хранения и стабилизации поверхности полупроводниковых кристаллов, пленок с заданными поверхностными характеристиками и пленочных структур;
- созданию высокочувствительных и селективных полупроводниковых сенсоров-датчиков, в том числе экологического назначения (на микропримеси СО, NH3, ацетона и др.), и на их основе - нового метода оперативной диагностики и контроля технологических и окружающей сред;
- созданию неразрушающих методов контроля работы полупроводниковых приборов;
- созданию новых катализаторов.
Коснемся одного из направлений практических разработок - технологии получения полупроводниковых пленочных материалов для микроэлектроники. Работа по этому направлению включала совершенствование технологии получения пленок полупроводников типа A"BW, A'"BV, исследование и регулирование химического состояния поверхности, ее адсорбционных и электрофизических свойств; создание и испытание опытных образцов первичных преобразователей и соответствующих сенсоров-датчиков.
В таком плане с использованием различных методов (вакуумного термического и электроннолучевого напыления, электролитического осаждения, дискретного испарения), различных подложек (стеклянных, пьезокварцевых, полупроводниковых), режимов (Тисп , Т подл., наличие или отсутствие отжига) получены пленки легированных и нелегированных полупроводников A"BVI, A'"BV. Разработана технология, базирующаяся на методах вакуумного термического напыления с последующим отжигом в парах сырьевого материала (применительно к п/п A"BVI) и дискретного испарения (применительно к п/п AIMBV ). Полученные таким путем (при наименьших затратах) пленки поликристапличны, но сплошные, гладкие, состава, близкого к составу исходных порошков (соотношение А и В не менялось).
Согласно ИК- масс-, РФЭ-спектроскопическим исследованиям, «нетренированная» (экспонированная в атмосферных условиях) поверхность пленок содержит адсорбированные Н,0, ОН-группы, СО, С02, адсорбированный и связанный (в оксиды) кислород, СО, С02, следы углерода и его водородных соединений. Исследовано изменение ее состояния при обработке инертным газом, водородом, травителями, у-облучении, легировании. Термическая обработка в потоке инертного газа ('Г=573-673 К приводит к удалению основных примесей. На поверхности остается связанный кислород. При последующем вакуумировании (Т=573-673 К; р s 1.33-10 4 Па) поверхность практически полностью освобождается от адсорбированных примесей и в значительной мере от оксидных фаз. Аналогичная ситуация наблюдается при обработке сернокислотным травителем, горячей НС1, водородной и аргоновой бомбардировках. Определены условия «тренировки» полупроводников и стабилизации их поверхности.
На основе спектров РФЭС и ЭПР удалось также заключить о составе оксидных фаз и стехиометрии поверхности.
При y-облучении на поверхности полупроводников создаются дополнительные, достаточно стабильные структурные дефекты, которые выступают либо непосредственными центрами адсорбции, либо донорами и акцепторами электронов, участвующих в адсорбционной связи. В результате повышается адсорбционная активность поверхности, облегчается диссоциация адсорбированной воды и соответственно дегидратация
поверхности. Повышением адсорбционной активности сопровождается и легирование полупроводников.
Прямыми и косвенными методами изучены адсорбционные (по отношению к Н2, 02, Н20, СО и др.) и электрофизические (изменение поверхностной проводимости Дas) свойства полупроводниковых соединений А"В^, A'"BV. Объектами исследований служили, наряду с пленками, порошки и монокристаллы. Характер опытных зависимостей (равновесные и кинетические изотермы адсорбции и поверхностной проводимости, изобары адсорбции), результаты термодинамического и кинетического анализов, ИК-спектры позволили выделить области преимущественно физической и химической адсорбции, установить природу активных центров, поверхностных соединений, механизм адсорбции. Проведены количественные оценки адсорбции и обусловленного ею изменения поверхностной проводимости.
С целью выяснения возможностей регулирования поверхностных свойств указанного типа полупроводников изученные свойства их новых представителей проанализированы как при индивидуальном, так и сравнительном рассмотрении в рядах; ZnSe, CdSe, CdS; ZnSe (Zn), ZnSe (GaAs); InSb, InAs, InP, GaAs (ZnSe). В результате были выявлены общие особенности и определенные закономерности.
К общим особенностям следует отнести слабую кислотность, в основном одинаковый примесный и фазовый состав поверхности, природу активных центров, в роли которых преимущественно выступают вакансионные дефекты и координационно-ненасыщенные атомы, внешний вид опытных зависимостей, механизм адсорбции газов (недиссоциативная химическая адсорбция СО, диссоциативная химическая адсорбция Н,0, Нг, 02).
Из закономерностей заслуживают внимания наметившиеся тенденции изменения адсорбционной и зарядовой (по изменению поверхностной проводимости) активности поверхности с составом. Так, адсорбционная и зарядовая активность растут в последовательностях: по отношению к СО - CdS—>CdSe-»ZnSe, по отношению к H20-ZnSe->ZnSe(Zn)->ZnSe (GaAs); InSb -> InAs InP, по отношению к Нг - InSb -»InAs -»InP, по отношению к 02 - InP -»InAs - > InSb.
При сопоставлении адсорбционной активности пленок и порошков обнаружена повышенная активность пленок. При этом основные закономерности, кинетические и термодинамические характеристики практически одинаковы, т.е. подтверждается сделанный ранее [1] вывод о сохранении при изменении габитуса образцов алмазоподобных полупроводников локальных активных центров, ответственных за адсорбционные процессы.
Количественные оценки адсорбции (порядка 10° ммоль/ мг) и обусловленного ею изменения поверхностной проводимости показали достаточно высокую избирательную чувствительность поверхности полученных пленок по отношению либо к СО, либо к парам Н20, либо к 02 уже при комнатной температуре.
В итоге предложены новые материалы в качестве первичных преобразователей и сенсоры-датчики на микропримеси Н20 (на основе GaAs, ZnSe, нелегированного и легированного Zn, GaAs), СО (на основе ZnSe CdSe CdS) и других газовых компонентов [8-15].
Так, датчик влажности газов состоит из полуизолирующей подложки, нанесенной на нее авоэпитаксиальной пленки арсенида галлия и металлических электродов. Пленка GaAs легируется теллуром, что приводит к появлению дополнительных адсорбционных центров, по сравнению с пленкой, покрытой естественным оксидом, к повышению активности, степени заряжения поверхности и, как следствие, к повышению ее чувствительности к молекулам воды. Причем, легирование обеспечивает большую чувствительность датчика, по сравнению с нанесением фторированного оксида.
Аналогичными по устройству и принципу действия, являются датчики влажности газов на основе селенида цинка, нелегированного и легированного цинком, либо арсенидом галлия. Последний отличается наибольшей чувствительностью, технологичностью и сроком службы.
Использование таких сенсоров-датчиков позволяет, в частности, избежать дополнительных трудностей при изготовлении интегральных схем и соответствующих устройств, связанных с влиянием воды на поверхностные характеристики полупроводниковых пленок, их границ раздела, а также при эксплуатации катализаторов.
Датчики на микропримеси оксида углерода состоят из непроводящей подложки, поликристаллической пленки либо ЕпБе, либо Сс)5е, либо Сс^Б и металлических электро-дов. Как показал анализ кривых температурной зависи-мости адсорбции, изотерм поверхностной проводимости, описанные датчики позволяют определять содержание микропримесей оксида углерода в газах уже при комнатной температуре при повышенной (- в 2,5-3 раза) чувствительности, необходимой избирательности и технологичности изготовления.
Оригинален сенсор-датчик на основе антимонида индия, представляющий собой пьезокварцевый резонатор АТ-среза с нанесенной сорбирующей пленкой (пЭЬ. По изменению частоты колебания с помощью хроматограммы производится обнаружение, идентификация и количественная оценка компонентов газовой смеси. Такое устройство, как следует из анализа хроматограмм, позволяет, благодаря повышению чувствительности, определять содержание более широкого спектра газовых компонентов (включая водород) в токе газа-носителя и с более высокой точностью, по сравнению с датчиком, содержащим палладиевую пленку [16 ].
В настоящее время испытываются и другие аналогичные сенсоры-датчики.
На эти разработки поступили заказы от ряда организаций г. Омска: «Омскнефтехимавтоматика», «Электроточ-прибор», ОНИИ П и др.
Обобщая результаты одного из затронутых направлений практических разработок, следует отметить, что арсенал полупроводниковых сенсоров-датчиков в последние годы продолжает интенсивно пополняться. При этом определенную роль сыграло получение и использование новых материалов на основе алмазоподобных полупроводников с регулируемыми поверхностными характеристиками. Это делает возможным создание метода оперативной диагностики и контроля, включающего в себя систему полупроводниковых сенсоров-датчиков. Как основные элементы метода, они характеризуются, среди многих других преимуществ, высокой избирательной чувствительностью (не хуже 10"" См/Па), высокой температурной и временной стабильностью (постоянная по времени до 2-Ю"' с), очень малым весом (0,02-0,03 г), простотой конструкции, компактностью, простотой технологии изготовления.
Таким образом, формируется эффективное средство для разрешения наболевших экологических проблем.
Литература
1. Кировская И.А. Поверхностные свойства алмазоподобных полупроводников. Адсорбция газов. Иркутск: ИГУ, 1984.-186 с.
2. Кировская И.А. Поверхностные свойства алмазоподобных полупроводников. Твердые растворы. Томск: ТГУ, 1984.-160 с.
3. Кировская И.А. Поверхностные свойства алмазоподобных полупроводников. Химический состав поверхности. Катализ. Иркутск: ИГУ, 1988.-220 с.
4. Кировская И.А. Адсорбционные процессы. Иркутск: ТГУ, 1995.-300 с.
5. Кировская И.А. Возможные пути управления свойствами поверхности алмазоподобных полупроводников и некоторые аспекты их практической реализации // Изв. РАН. Неорганические материалы, 1994. Т. 30, № 2. С. 147152.
6. Кировская И.А. Физико-химические свойства поверхности соединений lnBv// Изв. РАН. Неорган, материалы, 1999. Т. 35, №4. С. 1-6.
7. Кировская И.А., Ложникова Т.В., Азарова О.П., Скворцова Н.Г., Липин В.В. Получение, структура, химический состав и адсорбционные свойства (по отношению к СО) поверхности пленок соединений A"BVI// Деп в ВИНИТИ, 1999. - № 1025-В99,- 13 с.
8. Патент № 1798672. Датчик влажности газов / И.А. Кировская, A.B. Юрьева, Е.Д. Скутин, В.Г. Штабнов. -1993.
9. Патент № 4829. Электрический детектор для колоночной хроматографии / И.А. Кировская, O.A. Старцева, A.B. Юрьева. -1995.
10. Патент №5652. Полупроводниковый анализатор/ И.А. Кировская, O.A. Старцева,- 1998.
11. Патент № 2125260. Датчик влажности газов / И.А. Кировская. -1999.
12. Патент № 2141639. Пьезорезонансный датчик влажности газов / И.А. Кировская, O.A. Федяева. - 1999.
13. Патент № 2161794. Полупроводниковый датчик влажности газов / И.А. Кировская. - 2001.
14. Положительное решение о выдаче патента на изобретение по заявке № 2000110044128 от 12.04.2000. Газовый датчик / И.А. Кировская, О.П. Азарова.
15. Положительное решение о выдаче патента на изобретение по заявке № 2000121327128 от 28.08.2000 г. Датчик угарного газа / И.А. Кировская, О.П. Азарова, Н.Г. Скворцова.
16. KingW.H., Jr. Using guartz crystal as sorption detectors // Res. Develop, 1969. Vol, 20, N 2. P. 28-34; N 5. P. 29-33.
Кировская Ираида Алексеевна - Омский государственный технический университет, заведующая кафедрой физической химии, доктор химических наук, профессор.