нилкарбазола под действием тетрахлорида титана // Известия Томского политехнического университета. - 2008. - Т. 313. -№ 3. - С. 59-65.
11. Кузнецов Н.Н., Ионова Е.И., Ляпков А.А., Бондалетов В.Г., Иананкова А.А. Полимеризация дициклопентадиена под действием каталитических систем на основе TiCl, // Химическая промышленность. - 2009. - № 7. - С. 367-369.
12. Гладышев Г.П., Попов В.А. Радикальная полимеризация при глубоких степенях превращения. - М.: Наука, 1974. - 244 с.
13. Ионова Е.И., Ляпков АА., Бондалетов В.Г, Бондалетова Л.И., Петренко Т.В. Исследование полимеризации индена под действием тетрахлорида титана // Кокс и химия. - 2009. - № 11. - С. 34-39.
14. Ionova E.I., Lyapkov A.A., Bondaletov V.G., Bondaletova L.I., Pet-renko T.V. Indene Polymerization under the Action of Titanium Tetrachloride // Coke and Chemistry. - 2009 - V. 52. - № 11. -P. 496-500. - DOI: 10.3103/S1068364X09110076.
15. Ионова Е.И., Ляпков А.А., Бондалетов В.Г., Шипилова Н.С. Закономерности катионной полимеризации стирола под действием тетрахлорида титана // Известия Томского политехнического университета. - 2009. - Т. 314. - № 3. - С. 100-105.
16. Ионова Е.И., Ляпков А.А., Бондалетов В.Г., Шипилова Н.В. Сополимеризация стирола с инденом в толуоле под действием тетрахлорида титана // Химия - XXI век: новые технологии, новые продукты: Матер. XII научно-практ. конф. - г. Кемерово, 21-24 апреля 2009. - Кемерово, 2009. - С. 53-55.
17. Ионова Е.И., Ляпков А.А., Бондалетов В.Г. Закономерности полимеризации и сополимеризации стирола под действием тетрахлорида титана // Ползуновский вестник. - 2009. - № 3. -C. 192-197.
Поступила 25.02.2010 г.
УДК 547.551+547.546
КАТАЛИЗ РЕАКЦИИ КОНДЕНСАЦИИ АНИЛИНА С НИТРОБЕЗОЛОМ ВЫСОКООСНОВНЫМИ АНИОНИТАМИ
В.В. Бочкарев, Л.С. Сорока
Томский политехнический университет E-mail: [email protected]
Установлено, что высокоосновные аниониты, содержащие четвертичную аммонийную группу ~-N(CH3)3+, могут служить селективными катализаторами процесса конденсации нитробензола с анилином в щелочной среде с образованием 4-нитрозо- и 4-нитро-дифениламина. Использование полимерного катализатора исключает стадию его отделения от реакционной массы, снимает жесткие температурные и концентрационные ограничения на последующих стадиях процесса получения 4-аминодифениламина.
Ключевые слова:
Анилин, нитробензол, аниониты высокоосновные, 4-нитрозодифениламин, 4-нитродифениламин, 4-аминодифениламин. Key words:
Aniline, nitrobenzene, strong base anion exchange resins, 4-nitrozodiphenylamine, 4-nitrodiphenylamine, 4-aminodiphenylamine.
4-Аминодифениламин (4-АДФА) является промежуточным продуктом при получении алкилиро-ванных производных 4-АДФА, используемых в качестве антиозонантов, антиоксидантов и стабилизаторов мономеров и различных полимерных материалов. Существующая в России технология производства широко используемого стабилизатора диафена ФП предполагает синтез целевого продукта в пять технологических стадий из относительно дорогостоящего анилина. Помимо того, что одним из полупродуктов синтеза является канцерогенное соединение, указанный процесс сопровождается образованием большого количества нежелательных твердых и жидких отходов. Поэтому в настоящее время остро стоит вопрос о необходимости разработки альтернативной технологии синтеза 4-АДФА (основного полупродукта синтеза диафена ФП), предполагающей осуществление процесса из доступного и недорогого сырья, за меньшее количество стадий, исключение в качестве полупродуктов канцерогенных соединений, существенное уменьшение отходов производства.
К настоящему времени разработаны новые способы получения 4-АДФА, сущность которых состоит в конденсации нитробензола с анилином в щелочной среде в присутствии гидроксида тетрамети-ламмония (или хлорида тетраметиламмония, или раствора цвиттерионной соли с гидроксидами натрия или калия) с образованием 4-нитродифенила-мина (4^0зДФА) и 4-нитрозодифениламина (4^0ДФА) и последующим их каталитическим гидрированием до 4-АДФА. Различные варианты этого способа получения 4-АДФА описаны в патентах США [1-7], России [8-10]. Первое описание синтеза 4-АДФА по данному способу было сделано M.K. Stern и J.K. Bashkin [1]. Далее этот метод был использован для получения замещенных 4-амино-дифениламинов [2].
Взаимодействие нитробензола с анилином является одним из ярких примеров уникальной реакции нуклеофильного замещения водорода. Механизм реакции конденсации анилина с нитробензолом рассматривался в работе [11] и представлен на рисунке.
Ш •К+(СН3)4
ч^
+ (СН3)4К+ОН"
ч^
+ Н20
МН • Я+(СН3)4 N02
ч^
+
ч^
Атака в орто-положение ___ N
— Сг:
N
Феназин
/=\ + /° +
^ .М+(СНз)4
Н 1 О / \ N° Межмолекулярный
Внутримолекулярный / 1 ^ и°2 механизм механизм
2
О-^-О
Азобензол
3
+ Н20 + Н20
Рисунок. Механизм реакции конденсации нитробензола с анилином
N ^+(СНз)4
V
В безводных высокополярных средах, под действием гидроксида тетраалкиламмония из анилина генерируется очень активный нуклеофильный реагент - анилид-ион. Атака анилид-иона на молекулу нитробензола приводит к образованию преимущественно анионного ст-комплекса 1. Дальнейшие превращения комплекса 1, по мнению авторов работы [11], связаны с протеканием окислительно-восстановительного процесса по двум возможным механизмам. Внутримолекулярный механизм отщепления и переноса водорода с участием нитро-группы ст-комплекса 1 ведет к образованию соли 4^0ДФА 2. Межмолекулярный механизм процесса с участием нитрогруппы нитробензола приводит к образованию соли 4^0ДФА 3.
Было установлено [4, 5], что на процесс конденсации оказывают сильное влияние количество и природа используемых в реакции основания и соли тетразамещенного аммония.
Основным недостатком этого способа являются большие потери гидроксида тетразамещенного аммония при его регенерации. Гидроксид тетрамети-ламмония (ГТМА) является неустойчивым соеди-
нением и разлагается в концентрированном виде и повышении температуры, поэтому его вынуждены хранить и использовать в виде разбавленных водных растворов. Но даже в водных растворах при температуре выше 80 °С он разлагается с образованием (СН3)^ и СН3ОН, что приводит к его потере и удорожанию целевого продукта из-за высокой стоимости ГТМА [12]. Степень разложения ГТМА зависит от молярного соотношения воды к ГТМА, температуры и продолжительности процесса [3, 8].
Известны способы, в которых вместо дорогого и неустойчивого ГТМА было предложено использовать хлорид тетраметиламмония [9, 10], различные соли четвертичных аммонийных оснований [4, 5] в сочетании с сильным основанием, комплексные катализаторы [6, 7] состоящие из гидрок-сида тетраалкиламмония, гидроксида щелочного металла и соли тетраалкиламмония.
В наиболее совершенным по технологическому оформлению процессе [7] 4-АДФА получают из анилина и нитробензола в пять технологических стадий. На первой стадии проводят конденсацию анилина с нитробензолом в присутствии ком-
плексного основного катализатора в реакторе пленочного типа, на второй - полученную реакционную смесь разбавляют растворителем, в качестве которого используют низшие спирты или воду, и гидрируют на никель-алюминиевом катализаторе при 50...100 °С и 0,2...3 МПа. Третьей стадией процесса является отделение, восстановление комплексного основного катализатора и порошкообразного катализатора гидрирования. Эти катализаторы могут быть повторно использованы в процессе. На четвертой стадии проводят отделение и очистку непрореагировавшего анилина, для повторного использования; на пятой - очистку сырого 4-АДФА, с получением товарного продукта.
Недостатком этого способа является использование термически неустойчивых четвертичных аммонийных соединений - ГТМА и его солей в качестве компонентов комплексного основного катализатора стадии конденсации. Это накладывает очень жесткие требования к поддержанию температурного режима на первых трех стадиях технологического процесса. Перегрев реакционной массы выше 80 °С ведет к существенному ускорению процессов разложения катализатора, образованию побочных продуктов и снижению селективности процессов конденсации и гидрирования. Кроме того, использование органических полиэфиров на стадии выделения комплексного основного катализатора ведет к накоплению их в системе рециркуляции, что в свою очередь приводит к дополнительным затратам на их отделение и обезвреживание, загрязнению товарного продукта.
В настоящей работе мы исследовали возможность использования в качестве катализатора процесса конденсации высокоосновных анионитов, содержащих четвертичную аммонийную группу ~-N(CH3)3+. Получение 4-АДФА с использованием гетерогенного катализатора конденсации позволит существенно упростить его отделение от реакционной массы, снимет жесткие технологические ограничения на других стадиях процесса, улучшит технико-экономические показатели процесса.
Экспериментальная часть
Нитробензол, гидроксид калия, гидроксид натрия использовались марки «х.ч.». Анилин очищали двойной перегонкой под вакуумом (~2 кПа) непосредственно перед использованием.
В качестве катализаторов процесса конденсации нитробензола с анилином использованы сильноосновные аниониты: АВ-17-8, АВ-17-2П, АВ-17-10П (ГОСТ 20301-74); Amberlyst A26 [13]; Dowex Marathon MSA [14]; Tulsion A-74 MP [15]; Purolite A500 [16].
Реакцию конденсации анилина с нитробензолом, с использованием в качестве катализатора анионитов, проводили на периодической установке при температуре в зоне катализатора 58+1 °С в течение 5 ч. Установка включала в себя циркуляционный насос и трехгорлую колбу снабженную
насадкой-реактором с капельной воронкой, насадкой-сепаратором с обратным холодильником, сифоном для рециркуляции реакционной массы. Насадка-реактор имела рубашку для термостатиро-вания слоя катализатора. Объем анионита в реакторе 25 см3.
Температура в реакторе конденсации может варьироваться от 20 до 60 °С, предпочтительно от 50 до 60 °С; в отгонной емкости от 50 до около 150 °С, предпочтительно от ~70 до 100 °С. Давление на стадии конденсации поддерживается в диапазоне от 2 до 20 кПа, предпочтительно в диапазоне от 5 до 15 кПа.
Реакционная смесь перемешивается в течение всего времени протекания реакции конденсации. Перемешивание и циркуляция реакционной массы в реакционном узле реактор - отгонная емкость осуществляется при помощи циркуляционного насоса.
Использование вспомогательной отгонной емкости позволяет поддерживать оптимальный температурный режим в реакторе конденсации и снимает жесткие температурные и концентрационные ограничения при удалении воды из реакционной массы.
Методика проведения экспериментов (базовый
опыт). В колбу загружали 11,5 г 35 мас. % раствора №ОН (0,0936 моля №ОН), 37,8 г (0,4065 моля) анилина и нагревали до температуры 60 °С. Ваку-умировали установку до остаточного давления 12...17 кПа, включали циркуляционный насос, устанавливали скорость циркуляции реакционной массы из отгонной колбы в реактор 100 см3/ч и начинали дозировку нитробензола в количестве 10 г (0,0813 моля). Продолжительность дозирования нитробензола 90 мин. В отгонной колбе поддерживали температуру, при которой происходит непрерывная отгонка азеотропной смеси анилин-вода. Анилин постоянно возвращался в отгонную колбу. Общее количество воды, отогнанное в ходе процесса конденсации во всех опытах 6,7 г. Контроль за процессом конденсации осуществляли при помощи тонкослойной хроматографии (пластинки БПиМ иУ 254, элюент-гексан-этиловый спирт в объемном соотношении 2:1) и УФ спектроскопии. После проведения каждого синтеза определяли обменную емкость анионита в соответствии с ГОСТ 17552-72.
Для более полной конверсии нитробензола и предотвращения протекания побочных реакций, во время реакции анилина с нитробензолом отгоняется вода и тщательно регулируется молярное отношение воды к основанию. Молярное отношение воды к основанию в начале реакции конденсации составляет не менее 4,5:1, и в конце реакции конденсации, когда степень конверсии нитробензола составляет 98 % и выше, это отношение составляет не менее 1,0:1. Контроль за процессом удаления воды проводили путем измерения массы или объема воды в дистилляте.
По завершению процесса реакционную массу охлаждали, катализатор промывали 6-ю порциями раствора NaOH по 25 см3 с концентрацией 1 моль/л. Промывочные растворы присоединяли к реакционной массе, полученный раствор частично нейтрализовали концентрированной соляной кислотой до рН 10,5...11, охлаждали до 2...5 °С и отфильтровывали выпавший 4^0ДФА. Фильтрат обрабатывали концентрированной соляной кислотой до pH 6...7, что приводит к осаждению 4^0Д-ФА. Осадок отфильтровывали и сушили при 100 °C. Продукты реакции идентифицированы по ИК и ПМР спектрам. Температура плавления 4^0ДФА - 133...134 °С; 4-ЩДФА - 141...142 °С.
УФ спектры поглощения анилина, нитробензола, 4^0ДФА, 4^0ДФА сняты в кварцевых кюветах толщиной 1 см при температуре 25 °С в интервале длин волн 200...500 нм на спектрофотометре СФ-26. Спектрофотометрический анализ реакционной смеси проводили по методу Фирордта [17]. Спектры ЯМР Н1 снимали на спектрометре AVANCE AV 300 фирмы «Bruker» с рабочей частотой 300 МГц, в качестве растворителя использовали дейтерированный хлороформ. ИК спектры сняты на иК-Фурье спектрометре NIC0LET 5700.
Результаты и их обсуждение
Особенностью гетерогенно-каталитических процессов в жидкой фазе является необходимость переноса реагентов из жидкой фазы к поверхности гетерогенного катализатора или продуктов реакции с поверхности катализатора в объем жидкой фазы. В зависимости от относительной скорости химической реакции, адсорбции и массопередачи существует несколько областей протекания гетеро-генно-каталитических процессов, различающихся кинетическими закономерностями и селективностью.
В качестве катализаторов процесса конденсации нитробензола с анилином были использованы высокоосновные аниониты (гелевые и макропористые), содержащих четвертичную аммонийную группу ~-N(CH3)3+. При выборе условий проведения процесса конденсации мы учитывали результаты и рекомендации предшественников [1-11].
Как показали проведенные нами эксперименты, использование гелевых высокоосновных анио-нитов, таких как АВ-17-8, приводит к снижению их каталитической активности в реакции конденсации вследствие сильной адсорбции продуктов реакции и низкой скорости массообмена. Динамическая обменная емкость анионита АВ-17-8 после пяти последовательных синтезов снизилась до 390, против 695 г-экв/м3 в исходном состоянии.
Результаты ряда последовательных синтезов с использованием макропористого анионита АВ-17-10П представлены в табл. 1. Полученные результаты свидетельствуют, что при проведении ряда последовательных синтезов происходит некото-
рое снижение обменной емкости анионита (в пределах 5...6 % за 10 синтезов) обусловленное, скорее всего, адсорбцией побочных продуктов на активных центрах. При этом изменения степени конверсии нитробензола и селективности процесса практически не происходит. Следует отметить, что цвет регенерированного анионита менялся от слабожелтого - в исходном состоянии, до коричневого - после десяти последовательных синтезов. Это указывает на накоплении продуктов конденсации в порах гранул анионита.
Таблица 1. Влияние числа последовательных синтезов на степень конверсии и селективность процесса конденсации анилина с нитробензолом
№ опыта Степень конверсии нитробензола Селективность процесса* Полная статическая обменная емкость, мг-экв/см3**
1 0,992 0,982 0,990
2 0,990 0,988 0,976
3 0,987 0,992 0,973
4 0,989 0,978 0,969
5 0,986 0,984 0,976
6 0,986 0,987 0,961
7 0,988 0,986 0,947
8 0,987 0,981 0,947
9 0,989 0,978 0,954
10 0,986 0,976 0,947
*Селективность процесса определялась по формуле: селективность = (сумма молей4-1\Ю2ДФА и4-\ОДфА)/(количе-ство молей прореагировавшего нитробензола). **Полная статическая обменная емкость анионита АВ-17-10П в исходном состоянии 0,994 мг-экв/см3.
В качестве катализаторов процесса конденсации были опробованы и другие высокопористые сильноосновные аниониты [13-16], содержащие четвертичную аммонийную группу ~^(СН3)3+. Условия проведения опытов и загрузки такие же, как в базовом опыте. Для сравнения был проведен синтез с использованием хлорида тетраметиламмония (17,8 г, 0,1626 моля) в качестве катализатора процесса конденсации анилина с нитробензолом. Полученные результаты (табл. 2) свидетельствуют, что известные высокоосновные аниониты могут служить катализаторами процесса конденсации анилина с нитробензолом с образованием 4 NO2ДФА и 4^0ДФА. Полная конверсия нитробензола в опыте с использованием (СН3^С1 наблюдалась уже после двух часов после окончания дозировки нитробензола. Поэтому можно сделать вывод, что по сравнению с хлоридом тетраметиламмония высокоосновные аниониты менее активны, но обладают достаточно высокой селективностью по отношению к целевым продуктам 4^0ДФА и 4^0ДФА. Следует отметить, что селективность реакции анилина с нитробензолом в щелочной среде без добавления соединений тетразамещенного аммония по сумме продуктов 4^0ДФА и 4^0ДФА составляет всего 21...26 % [4].
Таблица 2. Влияние типа полимерного катализатора на степень конверсии и селективность процесса конденсации анилина с нитробензолом
№ опыта Катализатор Степень конверсии нитробензола Селективность процесса
1 Amberlyst A26 OH 0,982 0,984
2 DOWEX Marathon MSA 0,988 0,976
3 Tulsion A-74 MP 0,986 0,982
4 Purolite A500 0,990 0,972
5 АВ-17-2П 0,986 0,976
6 (CH3)4NCl 1,000 0,978
Мольное отношение анилина к нитробензолу и основания к нитробензолу оказывает влияние не только на общую селективность процесса, но и на соотношение основных продуктов реакции 4^0зДФА и 4^0ДФА. При увеличении мольного соотношения анилин/нитробензол вклад внутримолекулярного механизма переноса гидрид-иона увеличивается (рисунок) и соответственно увеличивается доля 4^0ДФА и селективность процесса в целом [11]. Рекомендованное мольное отношение анилина к нитробензолу составляет от 1:1 до 10:1 [1, 2, 11]. Молярное отношение основания к нитробензолу может быть в диапазоне от 0,7:1 до 4:1, предпочтительно в диапазоне от 0,9:1 до 1,5:1 [4-8].
Для проверки влияния мольного соотношения исходных реагентов на селективность процесса конденсации были проведены сравнительные опыты. Реакцию конденсации анилина с нитробензолом проводили в условиях базового опыта. Объем анионита в реакторе 25 см3. Количество нитробензола 10 г (0,0813 моля), мольное отношение анилин/нитробензол менялось в пределах от 3:1 до 7:1 и мольное отношение №0Н/нитробензол менялось в пределах от 0,9:1 до 1,5:1. Был проведен также опыт, в котором вместо №0Н использовался КОН. Результаты представлены в табл. 3.
Таблица 3. Влияние мольного отношения исходных реагентов на степень конверсии, селективность и выход процесса конденсации анилина с нитробензолом
Мольное и и Селективность
а отношение са рл ео процесса в*
ы a о но m Ф § нз нв нз ое ^ ю ь о А в А в Зыход )дуктс
№ i S с чз ё О I fr ш ш о ^ z fr ^ В- 1 те н Ст о z O z В ро m
1 3 1,2 0,954 0,755 0,189 0,901
2 5 1,2 0,984 0,650 0,334 0,968
3 7 1,2 0,988 0,335 0,659 0,982
4 5 0,9 0,936 0,759 0,203 0,900
5 5 1,5 0,976 0,691 0,277 0,945
6 5 1,5** 0,988 0,595 0,378 0,961
*Сумма выходов4-ЩДФА и4-1\ЮДФА. **Щелочной компонент - KOH.
Полученные результаты свидетельствуют, что при указанных мольных отношениях анилин/щелочной агент/нитробензол можно проводить процесс конденсации анилина с нитробензолом с образованием 4^0ДФА и 4^0ДФЛ. При увеличении мольного отношения анилин/нитробензол и №0Н/нитробензол селективность процесса увеличивается и увеличивается относительный выход 4-ШДФА.
Замена №0Н на К0Н приводит к небольшому увеличению селективности процесса и выхода целевых продуктов конденсации. Для практических целей можно рекомендовать использовать 30...40 мас. % водный раствор №0Н.
С целью проверки возможности использования продуктов конденсации для синтеза 4-АДФА, было проведено гидрирование реакционной смеси стадии конденсации и выделение товарного 4-АДФА.
К реакционной массе, полученной на стадии конденсации в условиях базового опыта при использовании приработанного катализатора (катализатор использовался в 6 синтезах без регенерации щелочью), добавляли 10 г воды и 3,7 г катализатора гидрирования - «никель скелетный». Полученную смесь загружали в реактор и проводили гидрирование водородом при температуре 75...80 °С и давлении 1,5 МПа до прекращения поглощения водорода, которое продолжалось 1,5...2 ч. По завершению реакции смесь охлаждали до 20...30 °С, выгружали из реактора, отделяли катализатор гидрирования от жидкой фазы, катализатор промывали тремя порциями воды по 10 см3. Промывные воды присоединяли к жидкой фазе стадии гидрирования (гидрогенизат). Катализатор гидрирования используют повторно.
К гидрогенизату добавляли 32,5 г воды, 24,04 г толуола, смесь перемешивали, отстаивали и отделяли водную и органическую фазы. Ввиду отсутствия в реакционной массе четвертичных аммониевых соединений ее разделение на водную и органическую фазы протекает значительно эффективнее, чем в способах, описанных в патентах [6-10]. Это в свою очередь позволяет отказаться от использования органических полиэфиров на стадии разделения, что улучшает качество продукта и снижает его себестоимость.
Водную фазу - 4,5...5 % раствор №0Н можно использовать повторно на стадии конденсации или для регенерации катализатора конденсации (высокоосновного анионита). Результаты наших экспериментов показывают, что более 99 % №0Н может быть возвращено в процесс для повторного использования. Концентрирование водного раствора №0Н до необходимой концентрации проводили упариванием под вакуумом (остаточное давление 2...20 кПа).
Анализ органической фазы показал, что выход 4-АДФА на загруженный нитробензол составляет 96,9 %. Органическую фазу подвергали фракцион-
ной разгонке. При атмосферном давлении отгоняли толуол и анилин, которые можно использовать повторно. Остаток разгоняли на ректификационной колонке при 0,6...2,5 кПа. Получен 4-АДФА с температурой плавления 66...67 °С и массовой долей основного вещества 99,8 %. Данный пример показывает конкретные условия проведения отдельных стадий процесса получения целевого продукта 4-АДФА.
Результаты проведенной работы позволяют предложить операционную схему способа получения 4-АДФА с использованием высокоосновного анионита в качестве катализатора процесса конденсации анилина с нитробензолом. Способ включает в себя следующие стадии процесса:
1) взаимодействие нитробензола с анилином в щелочной среде в присутствии полимерного катализатора конденсации, в качестве которого используют высокоосновный анионит, содержащий четвертичную аммонийную группу ~-К(СНз)з+;
2) каталитическое гидрирование продуктов реакции стадии (1) в присутствии растворителя, в качестве которого используют низшие спирты или воду;
3) отделение катализатора гидрирования от реакционной смеси и регенерация его свойств;
4) разделение реакционной смеси на водную и ор-
ганическую фазы, извлечение из органической фазы избытка анилина, очистка и концентрирование водной фазы с целью регенерации щелочного агента;
5) выделение из оставшейся органической фазы товарного 4-АДФА и утилизация побочных продуктов.
Способ позволяет снизить затраты на сырье за счет использования анионита, уменьшить энергетические затраты на разделение продуктов реакции.
Выводы
1. Установлено, что высокоосновные аниониты, содержащие четвертичную аммонийную группу ~-К(СН3)3+, могут служить селективными катализаторами процесса конденсации нитробензола с анилином в щелочной среде с образованием 4-нитрозо- и 4-нитродифениламина.
2. Использование полимерного катализатора при синтезе 4-аминодифениламина исключает стадию его отделения от реакционной массы, снимает жесткие температурные и концентрационные ограничения на последующих стадиях процесса, повышает эффективность и значительно облегчает проведение процессов фазового разделения реакционной массы, регенерации щелочного раствора.
СПИСОК ЛИТЕРАТУРЫ
1. Method of preparing 4-aminodiphenylamine: пат. 5117063 A США. № 719876, заявл. 21.06.1991; опубл. 26.05.1992. - 9 с.
2. Method of preparing 4-aminodiphenylamine: пат. 5608111 A США. № 435607; заявл. 05.05.1995; опубл. 04.03.1997. - 12 с.
3. Process for the production of optionally substituted 4-aminodiphe-nylamines: пат. 5739403 A США. № 778838; заявл. 06.01.1997; опубл. 14.04.1998. - 3 с.
4. Process for preparing 4-aminodiphenylamine intermediates: пат. 6395933 B1 США. № 09/911058; заявл. 23.07.2001; опубл.
28.05.2002. - 15 с.
5. Process for preparing 4-aminodiphenylamine intermediates: пат. 6583320 B2 США. № 10/143478; заявл. 10.05.2002; опубл.
24.06.2003. - 7 с.
6. Process for preparing 4-aminodiphenylamine: пат. 7176333 B2 США. № 10/882677; заявл. 2.07.2004; опубл. 13.02.2007. - 17 с.
7. Process for preparing 4-aminodiphenylamine: пат. 7235694 B2 США. № 11/477954; заявл. 30.06.2006; опубл. 26.06. 2007. - 16 с.
8. Способ получения 4-аминодифениламинов: пат. 2225387 C2 Рос. Федерация. № 2000131609/04; заявл. 14.05.1999; опубл.
10.03.2004.
9. Способ получения 4-аминодифениламина: пат. 2247712 C1 Рос. Федерация. № 2003127046/04; заявл. 08.09.2003; опубл.
10.03.2005. Бюл. № 7. - 5 с.
10. Способ получения 4-аминодифениламина: 2265590 C1 Рос. Федерация. № 2004125268/04; заявл. 17.08.2004; опубл. 10.12.2005, Бюл. № 34. - 6 с.
11. Stern M.K., Hileman F.D., Bashkin J. K. Direct Coupling of Aniline and Nitrobenzene: A New Example of Nucleophilic Aromatic Substitution for Hydrogen // J. Amer. Chem. Soc. - 1992. - V. 114. - P. 9237-9238.
12. Химическая энциклопедия / под ред. И. Л. Кнунянц. - М.: Советская энциклопедия, 1988. - Т. 1. - 626 с.
13. Каталог продукции дочерней компании фирмы Dow Chemical Company. 2009. URL: http://www.amberlyst.com/sba.htm, http://www.amberlyst.com/a26oh_typical.htm (дата обращения 25.01.2010).
14. Каталог продукции фирмы Dow Chemical Company. 2009. URL: http://www.dow.com/liquidseps/prod/sbati.htm (дата обращения 25.01.2010).
15. Каталог продукции фирмы Thermax Limited. 2009. URL: http://www.swtsamara.ru/files/catalog.doc (дата обращения 25.01.2010).
16. Каталог продукции фирмы Purolite. 2009. URL: http://www.pu-rolite.com/default.aspx?RelID=606288&ProductID=203 (дата обращения 25.01.2010).
17. Берштейн И.Я., Каминский Ю.Л. Спектрофотометрический анализ в органической химии. - Л.: Химия, 1986. - 200 с.
Поступила 25.01.2010 г.