Научная статья на тему 'Характеристики затухания нелокальных волн градиента деформации в листах термовязкоупругого графена с учетом нелинейных эффектов подложки'

Характеристики затухания нелокальных волн градиента деформации в листах термовязкоупругого графена с учетом нелинейных эффектов подложки Текст научной статьи по специальности «Физика»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Физическая мезомеханика
WOS
Scopus
ВАК
RSCI
Область наук
Ключевые слова
распространение волн / графеновые листы / нелокальная теория градиента деформации / вязкое основание типа Пастернака / тепловое нагружение / wave propagation / graphene sheets / nonlocal strain gradient theory / visco-Pasternak foundation / thermal loading

Аннотация научной статьи по физике, автор научной работы — R. Selvamani, T. Prabhakaran, F. Ebrahimi

В работе изучены дисперсионные характеристики тепловых, вязкоупругих и механических волн в листах графена на вязком основании типа Пастернака при равномерной тепловой нагрузке. С помощью уточненной теории пластин высшего порядка с двумя переменными получены кинематические соотношения для листов графена. Моделирование эффектов затухания в вязкоупругой среде выполнено в рамках модели Кельвина–Фойгта. В работе детально изучена размерная зависимость поведения листов графена в рамках нелокальной теории градиента деформации. Нелокальные определяющие уравнения записаны на основе принципа Гамильтона, и их аналитическое решение позволяет получить значения волновых частот. Для подтверждения эффективности подхода проведен сравнительный анализ с результатами предыдущих исследований. Зависимости волновых характеристик листов графена от различных параметров представлены графически.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — R. Selvamani, T. Prabhakaran, F. Ebrahimi

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Damping characteristics of nonlocal strain gradient waves in thermoviscoelastic graphene sheets subjected to nonlinear substrate effects

The present study explores dispersion characteristics of thermal, viscoelastic and mechanical waves in graphene sheets subjected to uniform thermal loading and supported by the visco-Pasternak foundation. Kinematic relations for graphene sheets are deduced within two-variable refined higher-order plate theory. Damping effects of the viscoelastic medium are modeled using the Kelvin–Voigt model. The research extensively investigates the size-dependent behavior of graphene sheets by incorporating nonlocal strain gradient theory. Nonlocal governing equations are formulated under Hamilton’s principle and solved analytically to determine wave frequency values. To validate the results, a comparative analysis is conducted, and the outcomes are tabulated to confirm the effectiveness of the approach. Finally, graphical representations are employed to depict the influence of each parameter on the wave propagation responses of graphene sheets.

Текст научной работы на тему «Характеристики затухания нелокальных волн градиента деформации в листах термовязкоупругого графена с учетом нелинейных эффектов подложки»

УДК 539.3

Характеристики затухания нелокальных волн градиента деформации в листах термовязкоупругого графена с учетом нелинейных эффектов подложки

1 12 R. Selvamani , T. Prabhakaran , F. Ebrahimi

1 Институт технологий и науки Карунья, Коимбатур, Тамил Наду, 641114, Индия 2 Международный университет имени Имама Хомейни, Казвин, 34148-96818, Иран

В работе изучены дисперсионные характеристики тепловых, вязкоупругих и механических волн в листах графена на вязком основании типа Пастернака при равномерной тепловой нагрузке. С помощью уточненной теории пластин высшего порядка с двумя переменными получены кинематические соотношения для листов графена. Моделирование эффектов затухания в вязкоупругой среде выполнено в рамках модели Кельвина-Фойгта. В работе детально изучена размерная зависимость поведения листов графена в рамках нелокальной теории градиента деформации. Нелокальные определяющие уравнения записаны на основе принципа Гамильтона, и их аналитическое решение позволяет получить значения волновых частот. Для подтверждения эффективности подхода проведен сравнительный анализ с результатами предыдущих исследований. Зависимости волновых характеристик листов гра-фена от различных параметров представлены графически.

Ключевые слова: распространение волн, графеновые листы, нелокальная теория градиента деформации, вязкое основание типа Пастернака, тепловое нагружение

DOI 10.55652/1683-805X_2024_27_3_173-177

Damping characteristics of nonlocal strain gradient waves in thermoviscoelastic graphene sheets subjected to nonlinear

substrate effects

R. Selvamani1, T. Prabhakaran1, and F. Ebrahimi2

1 Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, 641114, India 2 Department of Mechanical Engineering, Imam Khomieni International University, Qazvin, 34148-96818, Iran

The present study explores dispersion characteristics of thermal, viscoelastic and mechanical waves in graphene sheets subjected to uniform thermal loading and supported by the visco-Pasternak foundation. Kinematic relations for graphene sheets are deduced within two-variable refined higher-order plate theory. Damping effects of the viscoelastic medium are modeled using the Kelvin-Voigt model. The research extensively investigates the size-dependent behavior of graphene sheets by incorporating nonlocal strain gradient theory. Nonlocal governing equations are formulated under Hamilton's principle and solved analytically to determine wave frequency values. To validate the results, a comparative analysis is conducted, and the outcomes are tabulated to confirm the effectiveness of the approach. Finally, graphical representations are employed to depict the influence of each parameter on the wave propagation responses of graphene sheets.

Keywords: wave propagation, graphene sheets, nonlocal strain gradient theory, visco-Pasternak foundation, thermal loading

1. Introduction

In recent years, the enhanced quality properties of nanomaterials have caught the attention of numerous researchers. The significance of size effects becomes

pronounced as structures reach very small dimensions, as evidenced by atomistic modeling and experimental studies. Consequently, the size effect plays a crucial role in shaping the mechanical behavior of

© Selvamani R., Prabhakaran T., Ebrahimi F., 2024

micro- and nanostructures. There is a notable current trend within the scientific community towards exploring the mechanical behavior of structures using nanoscale elements. Given the substantial interest of a growing number of researchers in employing nanoscale beams and plates, it becomes imperative to acquire comprehensive knowledge about the size-dependent behavior of these diminutive elements. As a result, nonlocal continuum theories were developed to elucidate small-scale effects when investigating the mechanical characteristics of nanodevices. Eringen [1] proposed the first nonlocal theory, called nonlocal elasticity theory, which relates the stress state in a desired point not only to the strain of this particular point but also to the strain of all adjacent points. This theory was employed by an abundant range of authors, and it is worth demonstrating some of the previous works gaining nonlocal elasticity during their study on the mechanical response of nano-beams or nanoplates. Evaluations of the contact problem of functionally graded materials via various analytical and numerical methods were exposed by Yay-laci et al. [2-16]. Wang et al. [17] analyzed the wave dispersion characteristics of nanoplates within nonlocal elasticity. The studies conducted by Ebrahimi et al. [18-21] are notable for the dynamic analysis of nanomaterials via size effects. Eltaher et al. [22] described the vibrational properties of nanobeams in the framework of the finite element method and Eu-ler-Bernoulli beam theory. The bending vibration analysis of nanobeams was performed by Ghadiri and Shafiei [23] using the differential quadrature method. A few years later, researchers figured out that nonlocal elasticity theory was not powerful enough to completely estimate the behavior of small structures [24]. In other words, the stiffness-hardening behavior of nanostructures was neglected in nonlocal elasticity and only the stiffness-softening effect was included. This stimulated the development of a new nonlocal theory, called nonlocal strain gradient theory, to rectify the mentioned deficiency. Li and Hu [25] presented nonlocal strain gradient theory to highlight size effects while studying the buckling response of nanobeams. Examination of the thermome-chanical buckling properties of orthotopic nanoplates was performed by Farajpour et al. [26] in the framework of nonlocal strain gradient theory. The constitutive equation of classical continuum mechanics does not consider size effects [27-36]. This makes it difficult to accurately describe thermal and mechanical engineering properties of nanomaterials. Continuum mechanics was used to address this issue

as an alternative to small-scale investigations and molecular dynamics simulations. Narendar and Go-palakrishnan [37] dealt with surface effects on the wave propagation behavior of a nanoplate. Impact and reaction of thermal stresses on various functionally graded materials were discussed by Tounsi et al. [38-47] within different computational theories.

Graphene sheets possess some advantageous over other small structures made of different materials, such as higher elastic potential [48] and larger thermal conductivity [49]. According to the above information, it is necessary to obtain detailed results on the mechanical response of these types of nanostruc-tures. Thus, Murmu and Pradhan [50] tried to show the dynamic response of embedded monolayer gra-phene sheets employing Eringen's nonlocal theory. Ansari and Rouhi [51] presented an atomistic finite element model for vibration and axial buckling analysis of monolayer graphene sheets. Size-dependent mechanical characteristics of propagating waves in graphene sheets were exactly studied by Arash et al. [52] within nonlocal elasticity. Furthermore, magne-tomechanical vibration and stability analysis of mo-nolayer graphene sheets rested on the viscoelastic foundation is the issue of another research performed by Ghorbanpour Arani et al. [53]. Xiao et al. [54] presented nonlocal strain gradient theory to examine the wave propagation behavior of viscoelastic mono-layer graphene sheets.

The literature survey reveals that wave propagation characteristics of a graphene sheet on the visco-elastic medium under thermal loading has not yet been investigated. Henceforward, it is found necessary to survey this problem here for the first time. The graphene sheet is considered to rest on the visco-Pasternak substrate including a linear constant (Winkler coefficient), a nonlinear constant (Pasternak coefficient) and a damping constant. Shear deformation is taken into account using a higher-order two-variable shear deformation plate theory. Moreover, nonlocal strain gradient theory is utilized to consider small-scale effects. Once the nonlocal differential equations are completely derived, they will be solved analytically using an exponential function. The influence of each parameter is precisely explained at the end of the paper.

References

1. Eringen A.C. Linear theory of nonlocal elasticity and dispersion of plane waves // Int. J. Eng. Sci. - 1972. -V. 10(5). - P. 425-435. - https://doi.org/10.1016/ 0020-7225(72)90050-X.

2. Yaylaci M., §abano B.§., Özdemir M.E., Birinci A. Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods // Struct. Eng. Mech. - 2022. - V. 82(3). - P. 401-416. -https://doi.org/10.12989/sem.2022.82.3.401

3. Turan M., Uzun Yaylaci E., Yaylaci M. Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods // Arch. Appl. Mech. - 2023. -V. 93(4). - P. 1351-1372. - https://doi.org/10.1007/ s00419-022-02332-w

4. Yaylaci E.U., Öner E., Yaylaci M., Özdemir M.E., Abushattal A., Birinci A. Application of artificial neural networks in the analysis of the continuous contact problem // Struct. Eng. Mech. - 2022. - V. 84(1). -P. 35-48. - https://doi.org/10.12989/sem.2022.84.L035

5. Yaylaci M., Abanoz M., Yaylaci E.U., Ölmez H., Sek-ban D.M., Birinci A. Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods // Arch. Appl. Mech. -2022. - V. 92(6). - P. 1953-1971. - https://doi.org/10. 1007/s00419-022-02159-5

6. Yaylaci M., Yaylaci E.U., Özdemir M.E., Öztürk Sesli H. Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods // Steel Compos. Struct. - 2023. -V. 46(4). - P. 565-575. - https://doi.org/10.12989/scs. 2023.46.4.565

7. Özdemir M.E., Yaylac M. Research of the impact of material and flow properties on fluid-structure interaction in cage systems // Wind Struct. Int. J. - 2023. -V. 36(1). - P. 31. - https://doi.org/10.12989/was.2023. 36.1.031

8. Yaylaci M., §abano B.§., Özdemir M.E., Birinci A. Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods // Struct. Eng. Mech. - 2022. - V. 82(3). - P. 401-416. -https://doi.org/10.12989/sem.2022.823.401

9. Adiyaman G., Öner E., Yaylaci M., Birinci A. A study on the contact problem of a layer consisting of functionally graded material (FGM) in the presence of body force // J. Mech. Mater. Struct. - 2023. - V. 18(1). -P. 125-141. - https://doi.org/10.2140/jomms.2023.18. 125

10. Yaylaci M., Abanoz M., Yaylaci E.U., Ölmez H., Sek-ban D.M., Birinci A. Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods // Arch. Appl. Mech. -2022. - V. 92(6). - P. 1953-1971. - https://doi.org/10. 1007/s00419-022-02159-5

11. Yaylaci M. Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method // Adv. Nano Res. -

2022. - V. 12(4). - P. 405. - https://doi.org/10.12989/ anr.2022.12.4.405

12. Yaylaci M., Uzun Yaylaci E., Özdemir M.E., Ay S., Özturk S. Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack // Steel Compos. Struct. - 2022. - V. 45(4). -P. 501-511. - https://doi.org/10.12989/scs.2022.45.4. 501

13. Yaylaci M. The investigation crack problem through numerical analysis // Struct. Eng. Mech. - 2016. -V. 57(6). - P. 1143-1156. - https://doi.org/10.12989/ sem.2016.57.6.1143

14. Yaylaci M., Abanoz M., Yaylaci E.U., Olmez H., Sek-ban D.M., Birinci A. The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch // Steel Compos. Struct. -2022. - V. 43(5). - P. 661. - https://doi.org/10.12989/ scs.2022.43.5.661

15. Öner E., §engül §abano B., Uzun Yaylaci E., Adiyaman G., Yaylaci M., Birinci A. On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods // Z. Angew Math. Mech. - 2022. -V. 102(2). - P. e202100287. - https://doi.org/10.1002/ zamm.202100287

16. Yaylaci M., Yayli M., Yaylaci E.U., Olmez H., Birin-ci A. Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron // Struct. Eng. Mech. - 2021. - V. 78(5). -P. 585-597. - https://doi.org/10.12989/sem.2021.78.5. 585

17. Wang Y.Z., Li F.M., Kishimoto K. Scale effects on the longitudinal wave propagation in nanoplates // Phys. E. Low-Dimens. Syst. Nanostruct. - 2010. -V. 42(5). - P. 1356-1360. - https://doi.org/10.1016/j. physe.2009.11.036

18. Ebrahimi F., Jafari A., Selvamani R. Thermal buckling analysis of magneto electro elastic porous FG beam in thermal environment // Adv. Nano Res. - 2020. -V. 8(1). - P. 83-94. - https://doi.org/10.12989/anr. 2020.8.1.083

19. Ebrahimi F., KarimiaslM., Selvamani R. Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading // Adv. Nano Res. -2020. - V. 8(3). - P. 203-214. - https://doi.org/10. 12989/anr.2020.8.3.203

20. Ebrahimi F., Kokaba M., Shaghaghi G., Selvamani R. Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions // Adv. Nano Res. - 2020. - V. 8(2). - P. 169182. - https://doi.org/10.12989/anr.2020.8.2.169

21. Ebrahimi F., HamedHosseini S., Selvamani R. Ther-mo-electro-elastic nonlinear stability analysis of visco-elastic double-piezonanoplates under magnetic field // Struct. Eng. Mech. - 2020. - V. 73(5). - P. 565-584.

22. Eltaher M.A., Alshorbagy A.E., Mahmoud F.F. Vibration analysis of Euler-Bernoulli nanobeams by using finite element method // Appl. Math. Model. - 2013. -V. 37(7). - P. 4787-4797. - https://doi.org/10.1016/j. apm.2012.10.016

23. Ghadiri M., Shafiei N. Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method // Microsyst. Technol. - 2016. - V. 22(12). - P. 2853-2867. -https://doi.org/10.1007/s00542-015-2662-9

24. Lam D.C.C., Yang F., Chong A.C.M. Experiments and theory in strain gradient elasticity // J. Mech. Phys. Solids. - 2003. - V. 51(8). - P. 1477-1508. - https://doi. org/10.1016/S0022-5096(03)00053-X

25. Li L., Hu Y. Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory // Int. J. Eng. Sci. - 2015. - V. 97. - P. 84-94. -https://doi.org/10.1016/j.ijengsci.2015.08.013

26. Farajpour A., Yazdi M.R.H., Rastgoo A.A. higherorder nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment // Acta Mech. - 2016. - V. 227(7). - P. 1849-1867. -https://doi.org/10.1007/s00707-016-1605-6

27. Selvamani R., Ponnusamy P. Damping of generalized thermoelastic waves in a homogeneous isotropic plate // Mater. Phys. Mech. - 2012. - V. 14(1). - P. 64-73.

28. Selvamani R. Influence of thermo-piezoelectric field in a circular bar subjected to thermal loading due to laser pulse // Mater. Phys. Mech. - 2016. - V. 27(1). - P. 18.

29. Selvamani R. Free vibration analysis of rotating piezoelectric bar of circular cross section immersed in fluid // Mater. Phys. Mech. - 2015. - V. 24(1). - P. 24-34.

30. Selvamani R. Dynamic response of a heat conducting solid bar of polygonal cross sections subjected to moving heat source // Mater. Phys. Mech. - 2014. -V. 21(2). - P. 177-193.

31. Selvamani R., Ponnusamy P. Elasto dynamic wave propagation in a transversely isotropic piezoelectric circular plate immersed in Fluid // Mater. Phys. Mech. - 2013. - V. 17(2). - P. 164-177.

32. Selvamani R., Ponnusamy P. Effect of rotation in an axisymmetric vibration of a transversely isotropic solid bar immersed in an inviscid fluid // Mater. Phys. Mech. - 2012. - V. 15(2). - P. 97-106.

33. Selvamani R., Sujitha G. Effect of non-homogeneity in a magneto electro elastic plate of polygonal cross-sections // Mater. Phys. Mech. - 2018. - V. 40(1). -P. 84-103.

34. Selvamani R. Flexural wave motion in a heat conducting doubly connected thermo-elastic plate of polygonal cross-sections // Mater. Phys. Mech. - 2014. -V. 19(1). - P. 51-67.

35. Selvamani R., Ponnusamy P. Generalized thermoelas-tic waves in a rotating ring shaped circular plate immersed in an inviscid fluid // Mater. Phys. Mech. -2013. - V. 18(1). - P. 77-92.

36. Selvamani R., Ponnusamy P. Extensional Waves in a Transversely Isotropic Solid Bar Immersed in an Inviscid Fluid Calculated Using Chebyshev Polynomials // Mater. Phys. Mech. - 2013. - V. 16(1). - P. 82-91.

37. Narendar S., Gopalakrishnan S. Study of terahertz wave propagation properties in nanoplates with surface and small-scale effects // Int. J. Mech. Sci. - 2012. -V. 64(1). - P. 221-231. - https://doi.org/10.1016/j.ij mecsci.2012.06.012

38. Bounouara F., Sadoun M., Saleh M.M.S., Chikh A., Bousahla A.A., Kaci A., Tounsi A. Effect of visco-Pas-ternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates // Steel Compos. Struct. - 2023. - V. 47(6). -P. 693707. - https://doi.org/10.12989/SCS.2023.47.6. 693

39. Khorasani M., Lampani L., Tounsi A. A refined vibrational analysis of the FGM porous type beams resting on the silica aerogel substrate // Steel Compos. Struct. - 2023. - V. 47(5). - P. 633-644.

40. Tounsi A., Bousahla A.A., Tahir S.I., Mostefa A.H., Bourada F., Al-Osta M.A., Tounsi A. Influences of different boundary conditions and hygro-thermal environment on the free vibration responses of FGM sandwich plates resting on viscoelastic foundation // Int. J. Struct. Stab. - 2023. - P. 2450117. - https://doi.org/ 10.1142/S0219455424501190

41. Tounsi A., Mostefa A.H., Attia A., Bousahla A.A., Bourada F., Tounsi A., Al-Osta M.A. Free vibration investigation of functionally graded plates with temperature dependent properties resting on a viscoelastic foundation // Struct. Eng. Mech. - 2023. - V. 86(1). - P. 1. -https://doi.org/10.12989/sem.2023.86.L001

42. Tounsi A., Mostefa A.H., Bousahla A.A., Tounsi A., Ghazwani M.H., Bourada F., Bouhadra A. Thermody-namical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak's elastic foundations // Steel Compos. Struct. - 2023. - V. 49(3). - P. 307323. - https://doi.org/10.12989/scs.2023.49.3307

43. Belbachir N., Bourada F., Bousahla A.A., Tounsi A., Al-Osta M.A., Ghazwani M.H., Tounsi A.A. Refined quasi-3D theory for stability and dynamic investigation of cross-ply laminated composite plates on Winkler-Pasternak foundation // Struct. Eng. Mech. -2023. - V. 85(4). - P. 433. - https://doi.org/10.12989/ sem.2023.85.4.433

44. Mudhaffar I.M., Chikh A., Tounsi A., Al-Osta M.A., Al-Zahrani M.M., Al-Dulaijan S. U. Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads // Struct. Eng. Mech. - 2023. - V. 86(2). - P. 167. - https://doi.org/ 10.12989/sem.2023.86.2.167

45. Zaitoun M.W., Chikh A., Tounsi A., Sharif A., Al-Os-ta M.A., Al-Dulaijan S. U., Al-Zahrani M.M. An efficient computational model for vibration behavior of a functionally graded sandwich plate in a hygrothermal environment with viscoelastic foundation effects //

Eng. Comput. - 2023. - V. 39(2). - P. 1127-1141. -https://doi.org/10.1007/s00366-021-01498-1

46. Tahir S.I., Tounsi A., Chikh A., Al-Osta M.A., Al-Du-laijan S.U., Al-Zahrani M.M. The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT // Steel Compos. Struct. - 2022. -V. 42(4). - P. 501. - https://doi.org/10.12989/scs. 2022.42.4.501

47. Bouafia K., Selim M.M., Bourada F., Bousahla A.A., Bourada M., Tounsi A., Tounsi A. Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model // Steel Compos. Struct. - 2021. - V. 41(4). - P. 487-503.

48. Lee C., Wei X., Kysar J.W. Measurement of the elastic properties and intrinsic strength of monolayer gra-phene // Science. - 2008. - V. 321(5887). - P. 385388. - https://doi.org/10.1126/science.1157996

49. Seol J.H., Jo I., Moore A.L. Two-dimensional phonon transport in supported graphene // Science. - 2010. -V. 328(5975). - P. 213-216. - https://doi.org/10.1126/ science.1184014

50. Murmu T., Pradhan S.C. Vibration analysis of nano-single-layered graphene sheets embedded in elastic

medium based on nonlocal elasticity theory // J. Appl. Phys. - 2009. - V. 105(6). - https://doi.org/10.1063/1. 3091292

51. Ansari R., Rouhi S. Atomistic finite element model for axial buckling of single-walled carbon nanotubes // Phys. E. Low-Dimens. Syst. Nanostruct. - 2010. -V. 43(1). - P. 58-69. - https://doi.org/10.1016/j.physe. 2010.06.023

52. Arash B., Wang Q., Liew K.M. Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation // Comput. Methods Appl. Mech. Eng. - 2012. - V. 223. - P. 1-9. - https://doi.org/10. 1016/j.cma.2012.02.002

53. Arani A.G. Haghparast E., Babaakbar Zarei H. Nonlocal vibration of axially moving graphene sheet resting on orthotopic visco-Pasternak foundation under longitudinal magnetic field // Phys. B. Condens. -2016. - V. 495. - P. 35-49. - https://doi.org/10.1016/ j.physb.2016.04.039

54. Xiao W., Li L., Wang M. Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory // Appl. Phys. A. - 2017. - V. 123(6). -P. 1-9. - https://doi.org/10.1007/s00339-017-1007-1

Received 29.11.2023, revised 22.12.2023, accepted 26.12.2023

This is an excerpt of the article "Damping Characteristics of Nonlocal Strain Gradient Waves in Thermovisco-elastic Graphene Sheets Subjected to Nonlinear Substrate Effects". Full text of the paper is published in Physical Mesomechanics Journal. DOI: 10.1134/S1029959924040106

Сведения об авторах

R. Selvamani, Dr., Karunya Institute of Technology and Sciences Coimbatore, India, selvamani@karunya.edu T. Prabhakaran, Karunya Institute of Technology and Sciences Coimbatore, India, prabha251999@gmail.com F. Ebrahimi, Dr., Imam Khomieni International University, Iran, febrahimy@eng.ikiu.ac.ir

i Надоели баннеры? Вы всегда можете отключить рекламу.