Научная статья на тему 'Buckling behavior of SWCNTs and MWCNTs resting on elastic foundations using an optimization technique'

Buckling behavior of SWCNTs and MWCNTs resting on elastic foundations using an optimization technique Текст научной статьи по специальности «Физика»

CC BY
129
109
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Физическая мезомеханика
WOS
Scopus
ВАК
RSCI
Область наук
Ключевые слова
buckling behavior / multi-walled carbon nanotubes / van der Waals interaction / nonlocal elasticity theory / cylindrical shell theory / поведение при изгибе / многослойные углеродные нанотрубки / ван-дер-ваальсово взаимодействие / нелокальная теория упругости / теория цилиндрических оболочек

Аннотация научной статьи по физике, автор научной работы — Abdelaziz Timesli

This paper aims to investigate the buckling behavior of multi walled carbon nanotubes (MWCNTs) and single walled carbon nanotubes (SWCNTs) embedded in an elastic medium using the nonlocal cylindrical shell theory. The SWCNT is treated as a cylindrical shell and MWCNT is considered as multiple SWCNTs nested inside one another, they interact with each other via van der Waals interactions. The interaction between the matrix and the outer wall is modeled as a foundation using Winkler, Pasternak, and Kerr models. An optimization technique is developed to estimate the nonlocal critical buckling load of SWCNT and MWCNT. Furthermore, analytical formulas are proposed to describe the buckling behavior of SWCNTs embedded in an elastic medium without taking into account the effects of the nonlocal parameter. In the proposed formulas, van der Waals interactions between adjacent tubes and the effect of terms involving tube radii differences are taken into account, although they are generally neglected in expressions published in the literature. The effects of the number of layers, the nonlocal parameter, and the elastic foundation parameters are investigated. Moreover, the effects of different parameters on the stability behavior of the carbon nanotubes are also discussed.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Исследование изгибного поведения одно- и многослойных углеродных нанотрубок на упругом основании в рамках метода оптимизации

В рамках нелокальной теории цилиндрических оболочек изучено поведение при продольном изгибе многослойных и однослойных углеродных нанотрубок, внедренных в упругую среду. Однослойная нанотрубка рассматривается как цилиндрическая оболочка, а многослойная — как несколько вложенных друг в друга однослойных нанотрубок, взаимодействующих посредством ван-дер-ваальсовых сил. Взаимодействие между матрицей и внешним слоем моделируется как основание с использованием моделей Winkler, Pasternak и Kerr. Разработана методика оптимизации для оценки нелокальной критической нагрузки однои многослойных углеродных нанотрубок. Предложены аналитические формулы для описания потери устойчивости однослойных нанотрубок, погруженных в упругую среду, без учета влияния нелокального параметра. Данные уравнения учитывают ван-дер-ваальсовы взаимодействия между соседними трубками и влияние членов, содержащих разницу радиусов трубок, которые обычно не учитываются в уравнениях. Численно исследовано влияние количества слоев, нелокального параметра, а также параметров упругого основания, а также стабильность углеродных нанотрубок в зависимости от различных параметров.

Текст научной работы на тему «Buckling behavior of SWCNTs and MWCNTs resting on elastic foundations using an optimization technique»

УДК 539.4

Исследование изгибного поведения одно- и многослойных углеродных нанотрубок на упругом основании в рамках метода оптимизации

A. Timesli

Университет им. Хасана II, Касабланка, 20670, Марокко

В рамках нелокальной теории цилиндрических оболочек изучено поведение при продольном изгибе многослойных и однослойных углеродных нанотрубок, внедренных в упругую среду. Однослойная нанотрубка рассматривается как цилиндрическая оболочка, а многослойная — как несколько вложенных друг в друга однослойных нанотрубок, взаимодействующих посредством ван-дер-ваальсовых сил. Взаимодействие между матрицей и внешним слоем моделируется как основание с использованием моделей Winkler, Pasternak и Kerr. Разработана методика оптимизации для оценки нелокальной критической нагрузки одно- и многослойных углеродных нанотрубок. Предложены аналитические формулы для описания потери устойчивости однослойных нанотрубок, погруженных в упругую среду, без учета влияния нелокального параметра. Данные уравнения учитывают ван-дер-ваальсовы взаимодействия между соседними трубками и влияние членов, содержащих разницу радиусов трубок, которые обычно не учитываются в уравнениях. Численно исследовано влияние количества слоев, нелокального параметра, а также параметров упругого основания, а также стабильность углеродных на-нотрубок в зависимости от различных параметров.

Ключевые слова: поведение при изгибе, многослойные углеродные нанотрубки, ван-дер-ваальсово взаимодействие, нелокальная теория упругости, теория цилиндрических оболочек

DOI 10.24412/1683-805X-2021-6-36-40

Buckling behavior of SWCNTs and MWCNTs resting on elastic foundations using an optimization technique

A. Timesli

AICSE Laboratory, National Higher School of Arts and Crafts, Hassan II University of Casablanca,

Casablanca, 20670, Morocco

This paper aims to investigate the buckling behavior of multi walled carbon nanotubes (MWCNTs) and single walled carbon nanotubes (SWCNTs) embedded in an elastic medium using the nonlocal cylindrical shell theory. The SWCNT is treated as a cylindrical shell and MWCNT is considered as multiple SWCNTs nested inside one another, they interact with each other via van der Waals interactions. The interaction between the matrix and the outer wall is modeled as a foundation using Winkler, Pasternak, and Kerr models. An optimization technique is developed to estimate the nonlocal critical buckling load of SWCNT and MWCNT. Furthermore, analytical formulas are proposed to describe the buckling behavior of SWCNTs embedded in an elastic medium without taking into account the effects of the nonlocal parameter. In the proposed formulas, van der Waals interactions between adjacent tubes and the effect of terms involving tube radii differences are taken into account, although they are generally neglected in expressions published in the literature. The effects of the number of layers, the nonlocal parameter, and the elastic foundation parameters are investigated. Moreover, the effects of different parameters on the stability behavior of the carbon nano-tubes are also discussed.

Keywords: buckling behavior, multi-walled carbon nanotubes, van der Waals interaction, nonlocal elasticity theory, cylindrical shell theory

© Timesli A., 2021

1. Introduction

Carbon nanotubes (CNTs) were discovered by Ii-jima [1]. Since that time, many scientific research activities have been carried out on CNTs. In these scientific research works, the study of the mechanical behavior of CNTs is based on two main types of modeling: atomistic modeling [2-4] and continuum mechanic modeling [5-7]. However, atomistic modeling is very expensive, which limits the computational capacity. To give an idea on the problem of the atomistic modeling in molecular dynamics (MD) simulation [8], we refer readers to the work of Liew et al. [9] which shows that the calculation of buckling behavior for SWCNTs needs 36 hours using a single CPU SGI origin 2000 system and 2000 atoms. In addition, the computation time increases considerably with increasing number of atoms or number of layers of MWCNT. The analysis of SWCNT and MWCNT was conducted by several continuum models [1016]. One of the most important researches is the excellent mechanical resilience of CNTs embedded in a matrix, the researchers continue to study this kind of problems until now as evidenced by the following research work [5, 7, 17-28]. In the following, we present some examples of scientific research for each foundation model. For the Winkler foundation model based on a single parameter, the stability analysis of cantilevered curved microtubules in axons is presented by Shariati et al. [29], the impacts of covering MAP Tau proteins have been taken into account using the Winkler elastic medium. Chaabane et al. [30] studied the mechanic behavior of functionally graded materials (FGM) beams using a model based on the hyperbolic shear deformation theory, the authors also discussed the effect of several parameters such as the Winkler spring constant, fundamental frequency, normal and shear stresses. Here are some other recent research papers [13, 31, 32] that study the effect of the Winkler elastic medium on CNTs. Using the Pasternak foundation model based on two parameters, Chikr et al. [33] studied the buckling behavior of material sandwich plates with several boundary conditions using a refined trigonometric shear deformation theory. Refrafi et al. [34] analyzed the buckling and hygrothermal of the FGM sandwich plate embedded in an elastic foundation. Bousahla et al. [35] studied the buckling and vibration of composite beams reinforced by SWCNTs and embedded in an elastic foundation. Bellal et al. [36] studied the buckling behavior of a single layer graphene sheet seated on an visco-Pasternak medium. Tounsi et al. [37] analyzed the static effects of nonlinear hygrothermo-mechani-

cal loading on advanced FGM ceramic-metal plates. Boukhlif et al. [38] presented a dynamic investigation of FGM plates seated on an elastic foundation. Some works focus on the study of structures resting on viscoelastic foundations [39-41]. Boulefrakh et al. [39] studied the FGM plates embedded in visco-Pas-ternak foundations using a quasi three-dimensional (quasi 3D) model of hyperbolic shear deformation. Malikan et al. [40] analyzed the damped forced vibration of SWCNTs seated on a viscoelastic foundation and under a thermal environment. Malikan et al. [41] used a viscoelastic nanobeam resting on a visco-Pasternak foundation to examine the transient response of CNTs. There is still recent work on the Pasternak model such as [42, 43]. For the Kerr foundation model based on three parameters, Kaddari et al. [44] discussed the mechanic behavior of functionally graded porous plates embedded in elastic foundations. Timesli [45] analyzed the buckling of double-walled carbon nanotubes (DWCNTs) seated on Winkler, Pasternak, and Kerr elastic foundations using the nonlocal Donnell shell theory. Addou et al. [46] investigated the dynamic behavior of FGM plates with porosities using different elastic foundation models.

There are several applications of CNTs such as nanocomposite structures, some references are given in the following. Arshid et al. [47] analyzed the vibration of FGM microplates with porosities embedded in polymeric nanocomposite patches, an innovative plate theory is also used to take into account the hygrothermal effect. Bendenia et al. [48] presented studies on defections, stresses and free vibration of FGM reinforced by CNTs and embedded in an elastic foundation of the Pasternak-type model. Al-Furjan et al. [49] investigated frequency analysis of viscoelas-tic multi-phase reinforced fully symmetric systems resting on an elastic foundation. Bourada et al. [50] analyzed the dynamic and stability of SWCNT reinforced concrete beam on elastic foundation using an integral first-order shear deformation beam theory. Al-Furjan et al. [51] investigated characteristics of the propagated wave in a sandwich doubly curved nanocomposite panel, a parametric study is presented such as the effects of the weight fraction of CNTs. Timesli [6] studied the stability analysis of the concrete cylindrical shell reinforced by SWCNTs and embedded in an elastic foundation using the Donnell cylindrical shell theory.

The continuum model of CNT based on Donnell shell theory [6, 52, 53] was chosen in this work to describe the mechanical behavior of CNTs.

References

1. Iijima S. Helical microtubules of graphitic carbon // Nature. - 1991. - V. 354. - P. 56-58.

2. Hernandez E., Goze C., Bernier P., Rubio A. Elastic properties of C and BxCyNz composite nanotubes // Phys. Rev. Lett. - 1998. - V. 80. - P. 4502-4505.

3. Sanchez-Portal D., Artacho E., Soler J.M. Ab-initio structural, elastic, and vibrational properties of carbon nanotubes // Phys. Rev. B. - 1999. - V. 59. -P. 12678-12688.

4. Yakobson B.I., Brabec C.J., Bernholc J. Nanomecha-nics of carbon tubes: Instabilities beyond linear response // Phys. Rev. Lett. - 1996. - V. 76. - P. 25112514. - https://doi.org/10.1103/PhysRevLett.76.2511

5. Jena S.K., Chakraverty S., Malikan M. Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory: An analytical approach // Eur. Phys. J. Plus. - 2020. -V. 135. - P. 164.

6. Timesli A. Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation // Comput. Concret. -2020. - V. 26. - P. 53-62.

7. Wu C.P., Chen Y.H., Hong Z.L., Lin C.H. Nonlinear vibration analysis of an embedded multi-walled carbon nanotube // Adv. Nano Res. - 2018. - V. 6. -P. 163-182.

8. Liew K.M., Wong C.H., He X.Q., Tan M.J., Megu-id S.A. Nanomechanics of single and multiwalled carbon nanotubes // Phys. Rev. B. - 2004. - V. 69. - P. 231247. - https://doi.org/10.1103/PhysRevB.69.115429

9. Liew K.M., He X.Q., Kitipornchai S. Buckling characteristics of embedded multi-walled carbon nanotubes // Proc. R. Soc. A. - 2005. - V. 461. - P. 37853805. - https://doi.org/10.1098/rspa.2005.1526

10. Asghar S., Naeem M.N., Hussain M., Taj M., Toun-si A. Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis // Com-put. Concr. - 2020. - V. 25. - P. 133-144.

11. Falvo M.R., Clary G.J.,Taylor R.M., Chi V., Brooks F.P. Bending and buckling of carbon nanotubes under large strain // Nature. - 1997. - V. 389. -P. 582-584. - https://doi.org/10.1038/39282

12. Iijima S., Brabec C., Maiti A., Bernholc J. Structural exibility of carbon nanotubes // J. Chem. Phys. -1996. - V. 104. - P. 2089-2092.

13. Mohamed N., Mohamed S.A., Eltaher M.A. Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model // Eng. Comput. - 2020. - https://doi.org/10.1007/s00366-020-00976-2

14. Malikan M. On the plastic buckling of curved carbon nanotubes // Theor. Appl. Mech. Lett. - 2020. -V. 10. - P. 46-56.

15. Rahmani R., Antonov M. Axial and torsional buckling analysis of single- and multi- walled carbon nano-

tubes: Finite element comparison between armchair and zigzag types // SN Appl. Sci. - 2019. - V. 1. -P. 1134. - https://doi.org/10.1007/s42452-019-1190-0

16. Xie B., Li Q., Zeng K., Sahmani S., Madyira D.M. Instability analysis of silicon cylindrical nanoshells under axial compressive load using molecular dynamics simulations // Microsyst. Technol. - 2020. - https:// doi.org/10.1007/s00542-020-04851-4

17. Bensattalah T., Bouakkaz K., Zidour M., Daoua-dji T.M. Critical buckling loads of carbon nanotube embedded in Kerr's medium // Adv. Nano Res. -2018. - V. 6. - P. 339-356.

18. Calvert P. A recipe for strength // Nature. - 1999. -V. 399. - P. 210-211. - https://doi.org/10.1038/20326

19. Gul U., Aydogdu M. Noncoaxial vibration and buckling analysis of embedded double-walled carbon nanotubes by using doublet mechanics // Compos. B. Eng. - V. 137. - P. 60-73.

20. Kuzumaki T., Miyazawa K., Ichinose H., Ito K. Processing of carbon nanotube reinforced aluminum composites // J. Mater. Res. - 1998. - V. 13. - P. 24452449. - https://doi.org/10.1557/JMR.1998.0340

21. Lourie O., Cox D.M., Wagner H.D. Buckling and collapse of embedded carbon nanotubes // Phys. Rev. Lett. - 1998. - V. 81. - P. 1638-1641.

22. Lourie O., Wagner H.D. Evaluation of Young's modulus of carbon nanotubes by micro-Raman spectroscopy // J. Mater. Res. - 1998. - V. 13. - P. 2418-2422.

23. Malikan M., Eremeyev V.A. Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method // Mater. Res. Express. - 2020. - V. 7. - P. 025005.

24. Schadler L.S., Giannaris S.C., Ajayan P.M. Load transfer in carbon nanotubes epoxy composites // Appl. Phys. Lett. - 2018. - V. 73. - P. 3842-3844.

25. Salvetat J.P., Bonard J.M., Thomson N.H., KulikA.J., Forro L., Benoit W., Zuppiroli L. Mechanical properties of carbon nanotubes // Appl. Phys. A. - 1999. -V. 69. - P. 255-260.

26. Shahsavari D., Karami B., Mansouri S. Shear buckling of single layer grapheme sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories // Eur. J. Mech. A. Solids. - 2018. - V. 67. - P. 200-214.

27. Wagner H.D., Lourie O., Feldman Y., Tenne R. Stress induced fragmentation of multi-wall carbon nanotubes in a polymer matrix // Appl. Phys. Lett. - 1998. -V. 72. - P. 188. - https://doi.org/10.1063/L120680

28. Zhou L., Cheny F., Zhao Z. Subharmonic bifurcation and chaos of a carbon nanotube supported by a Winkler and Pasternak foundation // Int. J. Mod. Phys. B. - 2019. - V. 33. - P. 1950207.

29. Shariati A., Habibi M., Tounsi A., Safarpour H., Safa M. Application of exact continuum size-dependent theory for stability and frequency analysis of a curved

cantilevered microtubule by considering viscoelastic properties // Eng. Comput. - 2020. - https://doi.org/ 10.1007/s00366-020-01024-9

30. Chaabane L.A., Bourada F., Sekkal M., Zerouati S., Zaoui F.Z., Tounsi A.M., Derras A., Bousahla A.A., Tounsi A. Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation // Struct. Eng. Mech. - 2019. -V. 7. - P. 185-196.

31. Jena S.K., Chakraverty S., Malikan M., Tornabene F. Stability analysis of single- walled carbon nanotubes embedded in Winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory // Mech. Based Des. Struct. Mach. - 2019. - https://doi.org/10.1080/15397734. 2019.1698437

32. Teifouet M., Robinson A., Adali S. Buckling of non uniform and axially functionally graded nonlocal Ti-moshenko nanobeams on Winkler-Pasternak foundation // Compos. Struct. - 2018. - V. 206. - P. 95103.

33. Chikr S.C., Kaci A., Bousahla A.A., Bourada F., Tounsi A., Adda Bedia E.A., Mahmoud S.R., Benra-hou K.H., Tounsi A. A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach // Geomech. Eng. - 2020. - V. 21. - P. 471-487.

34. Refrafi S., Bousahla A.A., Bouhadra A., Menasria A., Bourada F., Tounsi A.J., Bedia E.A.A., Mahmoud S.R., Benrahou K.H., Tounsi A. Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations // Comput. Concr. - 2020. - V. 25. - P. 311-325.

35. Bousahla A.A., Bourada F., Mahmoud S.R., Tounsi A., Algarni A., Adda Bedia E.A., Tounsi A. Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory // Comput. Concr. - 2020. - V. 25. - P. 155-166.

36. Bellal M., Hebali H., Heireche H., Bousahla A.A., To-unsi A.J., Bourada F., Mahmoud S.R., Bedia E.A.A., Tounsi A. Buckling behavior of a single-layered grapheme sheet resting on viscoelastic medium via nonlocal four-unknown integral model // Steel. Compos. Struct. - 2020. - V. 34. - P. 643-655.

37. Tounsi A., Al-Dulaijan S.U., Al-Osta M.A., Chikh A., Al-Zahrani M.M., Sharif A., Tounsi A. A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation // Steel Compos. Struct. - 2021. - V. 34. - P. 511524. - https://doi.org/10.12989/scs.2020.34.4.511

38. Boukhlif Z., Bouremana M., Bourada F., Bousah-la A.A., Bourada M., Tounsi A., Al-Osta M.A. A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation // Steel Compos. Struct. - 2019. - V. 31. - P. 503-516.

39. Boulefrakh L., Hebali H., Chikh A., Bousahla A.A., Tounsi A., Mahmoud S.R. The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate // Geomech. Eng. -2019. - V. 18. - P. 161-178.

40. Malikan M., Nguyen V.B., Tornabene F. Damped forced vibration analysis of single-walled carbon nanotu-bes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory // Eng. Sci. Technol. Int. J. - 2018. - V. 21. - P. 778-786.

41. Malikan M., Dimitri R., Tornabene F. Transient response of oscillated carbon nanotubes with an internal and external damping // Compos. B. Eng. - 2019. -V. 158. - P. 198-205.

42. Karami B., Janghorban M., Tounsi A. Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation // Struct. Eng. Mech. - 2019. - V. 70. - P. 55-66.

43. Mahmoudi A., Benyoucef S., Tounsi A., Benachour A., Bedia E.A., Mahmoud S.R. A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations // J. Sandw. Struct. Mater. - 2019. - V. 21. -https://doi.org/10.1177/1099636217727577

44. Kaddari M., Kaci A., Bousahla A.A., Tounsi A., Bourada F., Tounsi A., Bedia E.A.A., Al-Osta M.A. A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis // Comput. Concr. - 2020. - V. 25. - P. 37-57.

45. Timesli A. Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory // Adv. Nano Res. - 2020. - V. 9. - P. 69-82.

46. Addou F.Y., Meradjah M., Bousahla A.A., Benachour A., Bourada F., Tounsi A., Mahmoud S.R. Inuences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT // Comput. Concr. - 2019. - V. 24. - P. 347367. - https://doi.org/10.12989/cac.2019.24.4.347

47. Arshid E., Khorasani M., Soleimani-Javid Z., Amir S., Tounsi A. Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory // Eng. Comput. - 2021. - https:// doi.org/10.1007/s00366-021-01382-y

48. Bendenia N., Zidour M., Bousahla A.A., Bourada F., Tounsi A., Benrahou K.H., Adda Bedia E.A., Mahmoud S.R., Tounsi A. Deections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation // Comput. Concr. - 2020. - V. 26. - P. 213-226.

49. Al-Furjan M.S.H., Habibi M, Ni J., Jung D. W, Toun-si A. Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems // Eng. Com-put. - 2020. - https://doi.org/10.1007/s00366-020-01 200-x

50. Bourada F., Bousahla A.A., Tounsi A., Adda Be-dia E.A., Mahmoud S.R., Benrahou K.H., Tounsi A. Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation // Com-put. Concr. - 2020. - V. 25. - P. 485-495.

51. Al-Furjan M.S.H., Habibi M., Jung D.W., Sadeghi S., Safarpour H., Tounsi A., Chen G. A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel // Eng. Comput. -2020. - https://doi.org/10.1007/s00366-020-01130-8

52. Donnell L.H. Stability of thin-walled tubes under torsion // N.A.C.A. Technical Report. - 1934. - No. 479.

53. Timesli A. Analytical modeling of buckling behavior of porous FGM cylindrical shell embedded within an elastic foundation // Gazi Univ. J. Sci. - 2021. -https://doi.org/10.35378/gujs.860783

54. Bao W.X., Zhu C.C., Cui W.Z. Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics // Phys. B. Condens. Matter. -2004. - V. 352. - P. 156-163.

55. He X.Q., Kitipornchai S., Liew K.M. Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction // J. Mech. Phys. Solids. - 2005. - V. 53. - P. 303-326.

56. Timesli A. An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory // SN Appl. Sci. - 2020. - V. 2. - P. 407.

57. Kerr A.D. A study of a new foundation model // Acta Mech. - 1965. - V. 1. - P. 135-147.

58. Pasternak P.L. On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants. - Moscow: Gos. Izd. Lit. Stroit. Arkhitekt., 1954.

59. Winkler E. Die Lehre von Elastizitat und Festigkeit (on Elasticity and Fixity). - Prague: Dominicus, 1867.

60. Eringen A.C. Nonlocal polar elastic continua // Int. J. Eng. Sci. - 1972. - V. 10. - P. 1-16.

61. Eringen A.C., Edelen D.G.B. On nonlocal elasticity // Int. J. Eng. Sci. - 1972. - V. 10. - P. 233-248.

62. Hussain M., Naeem M.N., Tounsi A., Taj M. Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity // Adv. Nano Res. -2019. - V. 7. - P. 431-442.

63. Semmah A., Heireche H., Bousahla A.A., Tounsi A. Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT // Adv. Nano Res. -2019. - V. 7. - P. 89-98.

64. Rouabhia A., Chikh A., Bousahla A.A., Bourada F., Heireche H., Tounsi A., Benrahou K.H., Tounsi A., Al-Zahrani M.M. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory // Steel Compos. Struct. - 2020. -V. 37. - P. 695-709.

65. Matouk H., Bousahla A.A., Heireche H., Bourada F., Adda Bedia E.A., Tounsi A., Benrahou K.H. Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory // Adv. Nano Res. - 2020. - V. 8. - P. 293305. - http://dx.doi.org/10.12989/anr.2020.8.4.293

66. Berghouti H., Adda Bedia E.A., Benkhedda A., Toun-si A. Vibration analysis of nonlocal porous nanobeams made of functionally graded material // Adv. Nano Res. - 2019. - V. 7. - P. 351-364.

67. Khadimallah M.A., Hussain M., Taj M., Ayed M., Tounsi A. Vibration analysis of nonlocal porous nano-beams made of functionally graded material // Adv. Nano Res. - 2021. - V. 10. - P. 165-174.

68. Brush D., Almroth B. Buckling of Bars, Plates and Shells. - New York: McGraw-Hill, 1975.

69. Hunt G. W., Lucena N. Localized buckling in long axi-ally loaded cylindrical shells // J. Mech. Phys. Solids. - 1991. - V. 39. - P. 770-783.

70. Chen W., Hong Y., Lin J. The sample solution approach for determination of the optimal shape parameter in the multiquadric function of the Kansa method // Comput. Math. Appl. - 2018. - V. 75. - P. 29422954. - https://doi.org/10.1016/j.camwa.2018.01.023

71. Saffah Z., Timesli A., Lahmam H., Azouani A., Am-di M. New collocation path- following approach for the optimal shape parameter using Kernel method // SN Appl. Sci. - 2021. - V. 3. - P. 249.

72. Timesli A. Optimized radius of influence domain in meshless approach for modeling of large deformation problems // Iran. J. Sci. Technol.-Trans. Mech. Eng. -2021. - https://doi.org/10.1007/s40997-021-00427-3

Received 10.03.2021, revised 09.07.2021, accepted 09.07.2021

This is an excerpt of the article "Buckling Behavior of SWCNTs and MWCNTs Resting on Elastic Foundations Using an Optimization Technique". Full text of the paper is published in Physical Mesomechanics Journal. DOI: 10.1134/S1029959922020047

Сведения об авторе

Abdelaziz Timesli, Prof., Hassan II University of Casablanca, Morocco, [email protected], [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.