Научная статья на тему 'Mechanical behavior and physical properties of protein microtubules in living cells using the nonlocal beam theory'

Mechanical behavior and physical properties of protein microtubules in living cells using the nonlocal beam theory Текст научной статьи по специальности «Биотехнологии в медицине»

CC BY
88
87
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Физическая мезомеханика
WOS
Scopus
ВАК
RSCI
Ключевые слова
flexural rigidity / deformation behavior / physical properties of microtubules / mechanical properties of microtubules / vibrational analysis / жесткость на изгиб / деформационное поведение / физические свойства микротрубочек / механические свойства микротрубочек / вибрационный анализ

Аннотация научной статьи по биотехнологиям в медицине, автор научной работы — Alawiah M.S. Alhebshi, Ahmed M. Metwally, Khalil Salem Al-Basyouni, Samy Refahy Mahmoud, Habeeb M. Al-Solami

A biomechanical model for vibrational analysis with characteristics of protein microtubules based on the nanobeam shape inside the cellular structure is presented. The study of Young’s modulus of protein microtubules and unexplained length-dependent flexural rigidity using a higher-order nonlocal shear-deformation theory is presented. The governing equations are provided by employing the principle of virtual work. The protein microtubules are considered simply supported for all numerical studies. The obtained results are critically discussed together with the theories as well as demonstrated in each case graphically.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Исследование механического поведения и физических свойств белковых микротрубочек в живых клетках в рамках нелокальной теории балок

В статье представлена биомеханическая модель нанобалки внутри клеточной структуры для вибрационного анализа поведения белковых микротрубочек. Проведено исследование модуля Юнга белковых микротрубочек и зависимой от длины изгибной жесткости в рамках нелокальной теории сдвиговой деформации высшего порядка. Определяющие уравнения получены с использованием принципа работы на возможных перемещениях. Численные исследования проведены для свободно опертых белковых микротрубочек. Полученные результаты проанализированы и представлены графически для каждого случая.

Текст научной работы на тему «Mechanical behavior and physical properties of protein microtubules in living cells using the nonlocal beam theory»

Alhebshi A.M.S., Metwally A.M., Al-Basyouni K.S. et al. / Физическая мезомеханика 24 6 (2021) 99-102 99

УДК 531.011

Исследование механического поведения и физических свойств белковых микротрубочек в живых клетках в рамках нелокальной теории балок

A.M.S. Alhebshi1, A.M. Metwally2, K.S. Al-Basyouni1, S.R. Mahmoud1, H.M. Al-Solami1, A.S. Alwabli3

1 Университет короля Абдулазиза, Джидда, 21589, Саудовская Аравия 2 Центр ядерных исследований при Агентстве по атомной энергетике, Иншас, Каир, P.O. 13759, Египет 3 Университет короля Абдулазиза, Рабиг, 25732, Саудовская Аравия

В статье представлена биомеханическая модель нанобалки внутри клеточной структуры для вибрационного анализа поведения белковых микротрубочек. Проведено исследование модуля Юнга белковых микротрубочек и зависимой от длины изгибной жесткости в рамках нелокальной теории сдвиговой деформации высшего порядка. Определяющие уравнения получены с использованием принципа работы на возможных перемещениях. Численные исследования проведены для свободно опертых белковых микротрубочек. Полученные результаты проанализированы и представлены графически для каждого случая.

Ключевые слова: жесткость на изгиб, деформационное поведение, физические свойства микротрубочек, механические свойства микротрубочек, вибрационный анализ

DOI 10.24412/1683-805X-2021-6-99-102

Mechanical behavior and physical properties of protein microtubules in living cells using the nonlocal beam theory

A.M.S. Alhebshi1, A.M. Metwally2, K.S. Al-Basyouni3, S.R. Mahmoud4, H.M. Al-Solami1, and A.S. Alwabli5

1 Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia 2 Mathematics and Theoretical Physics Department, NRC, AEA, Inshas, Cairo, P.O. 13759, Egypt 3 Mathematics Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia 4 GRC Department, Applied College, King Abdulaziz University, Jeddah, 21589, Saudi Arabia 5 Department of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh, 25732, Saudi Arabia

A biomechanical model for vibrational analysis with characteristics of protein microtubules based on the nanobeam shape inside the cellular structure is presented. The study of Young's modulus of protein microtubules and unexplained length-dependent flexural rigidity using a higher-order nonlocal shear-deformation theory is presented. The governing equations are provided by employing the principle of virtual work. The protein microtubules are considered simply supported for all numerical studies. The obtained results are critically discussed together with the theories as well as demonstrated in each case graphically.

Keywords: flexural rigidity, deformation behavior, physical properties of microtubules, mechanical properties of microtubules, vibrational analysis

1. Introduction

Experimental investigations have been established in laboratories to study physical properties, mechanical properties, and the elastic characteristics and mechanics behavior of protein microtubules (MTs) under external force. Diminishing the structure's property dimensions to microscale leads to a different

mechanic response. Indeed, some experimental works have been shown that the scale effect plays a considerable role in the mechanic behaviors of small-scale structures. The conventional elasticity theories contain no intrinsic size parameters and do not permit predicting the size-dependent responses of nano- and microscaled structures. Consequently, various non-classical elasticity models have been introduced to

© Alhebshi A.M.S., Metwally A.M., Al-Basyouni K.S., Mahmoud S.R., Al-Solami H.M., Alwabli A.S., 2021

100 Alhebshi A.M.S., Metwally A.M., Al-Basyouni K.S. et al. / @u3uuecKan Me30MexanuKa 24 6 (2021) 99-102

examine the mechanic behaviors of structures on a reduced scale, such as the model of couple stress.

Smooth muscle cell movement plays a vital role in forming the tube of hollow organs, like the blood and airways vessels during growth. The motility of smooth muscle cells has also been concerned in the airway's pathogenesis remodeling, an essential kind of asthma. Additionally, the hypertrophy and hyper-plasia, airway plane muscle cell movement donate the expansion of airway renovation. The thickening of smooth muscle in the airways can stem from proliferating cell migration in the bundles of muscle or circulating recruitment of precursor cells in the flat muscle layer [1-3]. Microtubules (MTs), microfilaments, and intermediate filaments are three dissimilar kinds of filaments organized in the networks of eu-karyotic cells. Each of the filaments has particular physical properties and appropriate structures based on the cell functions. MTs contain compressive forces in living cells more than other filaments, which leads to the traction forces inside the cy-toskeleton of eukaryotic cells [4]. Three types of living cells are intermediate filaments, MTs, and actin [5]. The actins and intermediate filaments can tolerate only traction due to their minor cross-sections, but the MTs are generally under compression and behave like a rigid bar [6, 7]. Keeping in view, MTs provides support to the eukaryotic cell to preserve its shape [8-10]. MTs have essential roles in eukaryotic cell motility, meiosis, growth, and mitosis. MTs have highly dynamic structures based on rapid polymeri-zation/depolymerization and act within the eukaryotic cells for the proteins of motors to transmit car-

cgoes across the cytoplasm [11]. MTs have outer diameters 25 nm, inner diameters 17 nm, and length of MTs is between 10 nm-100 mm, illustrated in Fig. 1. In cytoskeleton, MTs don't need to exist straight; however, at least keep the magnitude less than its perseverance length that can be 0.2 to 9 mm [11]. The perseverance length of protein MT filaments is more significant than its length inside the eukaryotic cells.

MTs geometry is labeled by an integer's pair named N-S, which are protofilaments and starting plexus numbers. MTs 13-3 is one of the common types of MTs composed in the in vivo, as proto-filaments are taken as parallel to the longitudinal axis, i.e., deviation angle leads to zero [12-14]. Many exceptions in various kinds and models of cells have been observed and configured for typical MTs 13-3.

Recently, higher kinds of theories based on shear-deformation are applied to investigate the mechanical performance of structures in different scales [15-22]. These theories can be used for the biomechanical response of MTs. In addition, it should be noted that nonlocal elasticity theory and strain gradient theory are also used [23-25].

In this work, a biomechanical analysis of MTs is presented using a nonlocal higher-order shear-deformation beam model. This work deals with the vibration characteristics of MTs in the surrounding cytoplasm using a nonlocal continuum model. A higherorder shear deformation beam theory is very implemented rare and is still in the process of beginning. For the comparison, the previous and present nonlocal theories are presented along with the applications of thick supported MTs.

Fig. 1. The geometry of a microtubule [5, 8, 12] (color online)

Alhebshi A.M.S., Metwally A.M., Al-Basyouni K.S. et al. / Физическая мезомеханика 24 6 (2021) 99-102 101

Funding

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, using grant No. G-655-247-1439. The authors acknowledge with thanks the DSR for financial and technical support.

References

1. Gerthoffer W.T. Migration of airway smooth muscle cells // Proc. Am. Thorac. Soc. - 2008. - V. 5. - No. 1. -P. 97-105.

2. Tang D.D. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyper responsiveness and airway remodeling // Respir. Res. - 2015. - V. 16. - P. 134.

3. Cleary R.A., Wang R., Waqar O., Singer H.A., Tang D.D. Role of c-Abl tyrosine kinase in smooth muscle cell migration // Am. J. Physiol. Cell. Physiol. - 2014. -V. 306. - P. 753-761.

4. Tounsi A., Heireche H., Benhassaini H. Vibration and length-dependent flexural rigidity of protein micro-tubules using higher order shear deformation theory // J. Theor. Biol. - 2010. - V. 266. - No. 2. - P. 250-255.

5. Schaap I.A., Carrasco C., de Pablo P.J., MacKintosh F.C., Schmidt C.F. Elastic response, buckling, and instability of microtubules under radial indentation // Biophys. J. - 2006. - V. 91. - 4. - P. 1521-1531.

6. Wang N., Naruse K., Stamenovic D., Fredberg J.J., Mijailovich S.M., Tolic-N0rrelykke I.M., Polte T., Man-nix R., Ingber D.E. Mechanical behavior in living cells consistent with the tensegrity model // Proc. Nat. Acad. Sci. - 2001. - V. 98. - No. 14. - P. 7765-7770.

7. Pirentis A.P., Lazopoulos K.A. On the singularities of a constrained (incompressible-like) tensegrity-cytoskeleton model under equitriaxial loading // Int. J. Solids Struct. -2010. - V. 47. - No. 6. - P. 759-767.

8. Hawkins T., Mirigian M., Yasar M.S., Ross J.L. Mechanics of microtubules // J. Biomech. - 2010. - V. 43. -No. 1. - P. 23-30.

9. Li T. A mechanics model of microtubule buckling in living cells // J. Biomechanics. - 2008. - V. 41. -No. 8. - P. 1722-1729.

10. Shi Y.J., Guo W.L., Ru C.Q. Relevance of Timoshenko-beam model to microtubules of low shear modulus // Phys. E. Low-Dimens. Syst. Nanostruct. - 2008. -V. 41. - No. 2. - P. 213-219.

11. Wagner O.I., Rammensee S., Korde N., Wen Q., Leter-rier J.F., Janmey P.A. Softness, strength and self-repair in intermediate filament networks // Exp. Cell Res. -2007. - V. 313. - No. 10. - P. 2228-2235.

12. Mehrbod M., Mofrad M.R. On the significance of micro-tubule flexural behavior in cytoskeletal mechanics // PLoS one. - 2011. - V. 6. - No. 10. - P. e25627.

13. Aydogdu M. A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration // Phys. E. Low-Dimens. Syst. Nanostruct. - 2009. -V. 41. - No. 9. - P. 1651-1655.

14. Ishida T., Thitamadee S., Hashimoto T. Twisted growth and organization of cortical microtubules // J. Plant Res. - 2007. - V. 120. - No. 1. - P. 61-70.

15. Lata P., Kaur H. Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature // Steel Compos. Struct. - 2021. - V. 38. - No. 2. - P. 213-221.

16. Boussoula A., Boucham B., Bourada M., Bourada F., Tounsi A., Bousahla A.A., Tounsi A. A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates // Smart Struct. Syst. - 2020. - V. 25. - No. 2. -P. 197-218.

17. Al-Basyouni K.S., Ghandourah E., Mostafa H.M., Al-garni A. Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body // Geomech. Eng. - 2020. - V. 21. - No. 1. - P. 1-9.

18. Avcar M. Free vibration of imperfect sigmoid and power law functionally graded beams // Steel Compos. Struct. -2019. - V. 30. - No. 6. - P. 603-615.

19. Sahla M., Saidi H., Draiche K., Bousahla A.A., Boura-da F., Tounsi A. Free vibration analysis of angle-ply laminated composite and soft core sandwich plates // Steel Compos. Struct. - 2019. - V. 33. - No. 5. - P. 663-679.

20. Abualnour M., Chikh A., Hebali H., Kaci A., Tounsi A., Bousahla A.A., Tounsi A. Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory // Comput. Concret. - 2019. - V. 24. - No. 6. - P. 489-498.

21. Belbachir N., Draich K., Bousahla A.A., BouradaM., To-unsi A., Mohammadimehr M. Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings // Steel Compos. Struct. - 2019. - V. 33. - No. 1. - P. 81-92.

22. Chaabane L.A., Bourada F., Sekkal M., Zerouati S., Zaoui F.Z., Tounsi A., Derras A., Bousahla A.A., Tounsi A. Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation // Struct. Eng. Mech. - 2019. - V. 71. -No. 2. - P. 185-196. - https://doi.org/10.12989/sem. 2019.71.2.185

23. Rakrak K., Zidour M., Heireche H., Bousahla A.A., Chemi A. Free vibration analysis of chiral double-walled carbon nanotube using nonlocal elasticity theory // Adv. Nano Res. - 2016. - V. 4. - No. 1. - P. 031.

24. Ahmed R.A., Fenjan R.M., Faleh N.M. Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections // Geomech. Eng. -2019. - V. 17. - No. 2. - P. 175-180.

25. Semmah A., Heireche H., Bousahla A.A., Tounsi A. Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT // Adv. Nano Res. - 2019. -V. 7. - No. 2. - P. 89.

26. Schaap I.A., Carrasco C., de Pablo P.J., MacKintosh F.C., Schmidt C.F. Elastic response, buckling, and instability of microtubules under radial indentation // Biophys. J. -2006. - V. 91. - No. 4. - P. 1521-1531.

27. Felgner H., Frank R., Schliwa M. Flexural rigidity of microtubules measured with the use of optical tweezers // J. Cell Sci. - 1996. - V. 109. - No. 2. - P. 509-516.

102 Alhebshi A.M.S., Metwally A.M., Al-Basyouni K.S. et al. / Физическая мезомеханика 24 6 (2021) 99-102

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Kollar L.P., Springer G.S. Mechanics of Composite Structures. - Cambridge: Cambridge University Press, 2003. Heussinger C., Bathe M., Frey E. Statistical mechanics of semiflexible bundles of wormlike polymer chains // Phys. Rev. Lett. - 2007. - V. 99. - No. 4. - P. 048101. Hunyadi V., Chretien D., Janosi I.M. Mechanical stress induced mechanism of microtubule catastrophes // J. Molec. Biology. - 2005. - V. 348. - No. 4. - P. 927-938. Alberts B., Bray D., Hopkin K., Johnson A.D., Lewis J., Raff M., Roberts K., Walter P. Essential Cell Biology. -New York: Garland Publishing, 2015. - https://books. google.com.tr/books?id=Cg4WAgAAQBAJ&dq=Essenti al+cell+biology&lr=&source=gbs_navlinks_s Gittes F., Mickey B., Nettleton J., Howard J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape // J. Cell Biol. -1993. - V. 120. - No. 4. - P. 923-934. - https://doi.org/ 10.1083/jcb.120.4.923

Keller P.J., Pampaloni F., Lattanzi G., Stelzer E.H. Three-dimensional microtubule behavior in Xenopus egg extracts reveals four dynamic states and state-dependent elastic properties // Biophys. J. - 2008. - V. 95. -No. 3. - P. 1474-1486. - https://doi.org/10.1529/bio physj.107.128223

Reddy J.N., Pang S.D. Nonlocal continuum theories of beams for the analysis of carbon nanotubes // J. Appl. Phys. - 2008. - V. 103. - No. 2. - P. 023511. Shen H.S. Nonlocal shear deformable shell model for torsional buckling and postbuckling of microtubules in thermal environments // Mech. Res. Comm. - 2013. -V. 54. - P. 83-95.

Desai A., Mitchison T.J. Microtubule polymerization dynamics // Annual Rev. Cell Develop. Biol. - 1997. -V. 1. - P. 83-117.

Ghandourah E. Nonlocal elasticity theory for the mechanical behavior of protein microtubules // Phys. Me-somech. - 2021. - V. 24. - No. 3. - P. 319-325. -https://doi.org/10.1134/S1029959921030103 Kurachi M., Hoshi M., Tashiro H. Buckling of a single microtubule by optical trapping forces: Direct measure-

ment of microtubule rigidity // Cell Motil. Cytoskele-ton. - 1995. - V. 30. - No. 3. - P. 221-228.

39. Alwabli A.S., Kaci A., Bellifa H., Bousahla A.A., Toun-si A., Alzahrani D.A., Abulfaraj A.A., Bourada F., Benra-hou K.H., Tounsi A., Mahmoud S.R. The nanoscale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory // Adv. Nano Res. - 2021. -V. 10. - No. 1. - P. 15.

40. Mahmoud S.R., Al-Solami H.M., Alkenani N., Alhebshi A.M.S., Alwabli A.S., Bahieldin A. Membrane // Water Treatment. - 2020. - V. 11. - No. 6. - P. 399.

41. Ramady A., Mahmoud S.R., Atia H.A. A theoretical approach in 2D-space with applications of the periodic wave solutions in the elastic body // Membrane Water Treatment. - 2020. - V. 11. - No. 4. - P. 295-302. -https://doi.org/10.12989/mwt.2020.11.4.295

42. Ramady A., Dakhel B., Balubaid M., Mahmoud S.R. A mathematical approach for the effect of the rotation on thermal stresses in the piezo-electric homogeneous material // Comput. Concret. - 2020. - No. 5. - P. 471-478.

43. Benmansour D.L., Kaci A., Bousahla A.A., Heireche H., Tounsi A., Alwabli A.S., Alhebshi A.M., Al-ghmady K., Mahmoud S.R. The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory // Adv. Nano Res. - 2019. -V. 7. - No. 6. - P. 443-457. - https://doi.org/10.12989/ anr.2019.7.6.443

44. Al-Basyouni K.S., Mahmoud S.R. Effect of the magnetic field, initial stress, rotation, and nonhomogeneity on stresses in orthotropic material // Phys. Mesomech. -2021. - V. 24. - No. 3. - P. 303-310. - https://doi.org/ 10.1134/S1029959921030085

45. Al-Basyouni K.S., Dakhel B., Ghandourah E., Ali Al-garni. An analytical solution for the problem of stresses in magneto-piezoelectric thermoelastic material under the influence of rotation // Phys. Mesomech. - 2020. -V. 23. - No. 4. - P. 362-368. - https://doi.org/10.1134/ S1029959920040116

Received 19.04.2021, revised 05.06.2021, accepted 05.06.2021

This is an excerpt of the article "Mechanical Behavior and Physical Properties of Protein Microtubules in Living Cells Using the Nonlocal Beam Theory". Full text of the paper is published in Physical Mesomechanics Journal. DOI: 10.1134/S1029959922020096

Сведения об авторах

Alawiah M.S. Alhebshi, Dr., Assoc. Prof., King Abdulaziz University, Saudi Arabia, [email protected]

Ahmed M. Metwally, Dr., Assoc. Prof., NRC, AEA, Egypt, [email protected]

Khalil Salem Al-Basyouni, Dr., Assist. Prof., King Abdulaziz University, Saudi Arabia, [email protected]

Samy Refahy Mahmoud, Prof., King Abdulaziz University, Saudi Arabia, [email protected]

Habeeb M. Al-Solami, Dr., Assist. Prof., King Abdulaziz University, Saudi Arabia, [email protected]

Afaf S. Alwabli, Dr., Assist. Prof., King Abdulaziz University, Saudi Arabia, [email protected], [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.