Научная статья на тему 'Экстраполяция волновых полей с поверхности в глубину на основе решения трехмерного одностороннего волнового уравнения'

Экстраполяция волновых полей с поверхности в глубину на основе решения трехмерного одностороннего волнового уравнения Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
53
14
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по наукам о Земле и смежным экологическим наукам , автор научной работы — А В. Терехов

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Экстраполяция волновых полей с поверхности в глубину на основе решения трехмерного одностороннего волнового уравнения»

Обратные задачи 101

Экстраполяция волновых полей с поверхности в глубину на основе решения трехмерного одностороннего волнового уравнения

А. В. Терехов

1Институт вычислительной математики и математической геофизики СО РАН 2Новосибирский государственный технический университет Email: [email protected] DOI: 10.24411/9999-017A-2019-10209

Разработаны новые спектрально-разностные алгоритмы высоких порядков точности для решения трехмерного одностороннего волнового уравнения. Замена преобразования Фурье на преобразование Лагерра позволяет после разностной аппроксимации пространственных производных получить хорошо обусловленную систему линейных алгебраических уравнений. Численные эксперименты показали, что разностные схемы, сохраняющие дисперсионное соотношение, позволяют уменьшить шаг сетки в горизонтальном направлении приблизительно два раза по сравнению с классическими разностными схемами. Для стабилизации неустойчивости математической модели была разработана стабилизирующая процедура на основе сплайн-фильтрации, что позволило реализовать методы типа предиктор-корректор высоких порядков точности. Использование схем предиктор-корректор позволило перейти от решения системы эллиптических уравнений к решению отдельных эллиптических уравнений. Такой подход обеспечивает экономичное решение трехмерных задач.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 18-41-543002).

Метод последовательного конструирования потенциала в задаче рассеяния для уравнения Шрёдингера на квантовых сетях

С. А. Фадеев1

Новосибирский государственный университет Email: [email protected] DOI: 10.24411/9999-017A-2019-10210

В работе рассматривается задача рассеяния на квантовых сетях. Основной интерес представляет спектр энергий уравнения Шредингера, определенного на каждом ребре, а также спектр энергий гамильтониана для всей квантовой сети. Используемый в работе подход основан на последовательном приближении рассеивающего потенциала более простыми функциями, а также изменении данных рассеяния при подобных приближениях. Для решения задачи использован метод последовательного конструирования потенциала на графах специального вида: петлях с n полубесконечными ребрами, кольцах с n полубесконечными ребрами.

Список литературы

1. Kottos T., Smilansky U. Periodic Orbit Theory and Spectral Statistics for Quantum Graphs // Annals of Physics, 1999, Volume 274, Issue 1, p. 76-124

2. Kostrykin V., Schrader R. Kirchhoff's rule for quantum wires // J. Phys. A: Math. Gen. 32 (1999) 595-630.

Применение методов "Последовательные приближения по характерным взаимодействиям" при интерпретации (усвоении) данных измерений ядерно-геофизических технологий

А. И. Хисамутдинов

Институт нефтегазовой геологии и геофизики СО РАН Новосибирский государственный университет Email: [email protected] DOI: 10.24411/9999-017A-2019-10211

В докладе речь идет об уравнениях переноса и о соответствующих марковских скачкообразных процессах в условиях, типичных при применениях ядерно-геофизических технологий для определения параметров горных пород и пластов. Формулируются проблемы интерпретации данных измерений; последние представляются как заданные функции выборочных значений математических ожиданий по траекториям пучков частиц. Уравнения "измерений" дополняются системой уравнений ограничений на неизвестную совокупность параметров, и численное решение именно двух этих систем трактуется как

i Надоели баннеры? Вы всегда можете отключить рекламу.