Научная статья на тему 'Динамика адсорбции с учетом химической реакции при очистке стоков плавательных бассейнов'

Динамика адсорбции с учетом химической реакции при очистке стоков плавательных бассейнов Текст научной статьи по специальности «Математика»

CC BY
77
32
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МОДЕЛЬ / АДСОРБЦИЯ / МАССОПЕРЕНОС / ПРЕОБРАЗОВАНИЕ ЛАПЛАСА / ОРИГИНАЛ / ИЗОБРАЖЕНИЕ / MODEL / ADSORPTION / MASSTRANSFER / TRANSFORMATION OF LAPLACE / ORIGINAL / REPRESENTATION

Аннотация научной статьи по математике, автор научной работы — Каратаев О. Р., Анаников С. В.

В статье рассматривается модель адсорбции хлорорганических соединений на цеолитах с учетом химической реакции. Задача решается для случая, когда основное сопротивление массопереносу сосредоточено во внешней фазе. Решения получены методом преобразования Лапласа. Они могут быть распространены на аналогичные задачи при кусочно-линейной аппроксимации нелинейной изотермы адсорбции, осложнённой химической реакцией первого порядка.I

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

n the article is descrebed model adsorption of chlororganic compaunds on ceolits with chemical reaction of first order. It is taked into consideration masstransfer without calculation longitudinal diffusion (masstransfer). Solutions of task was obtained by method trasformation of Laplace and can be disseminate on analogy tasks at part-linear approximation unlinear isotherm of adsorption at chemical reaction of first order.

Текст научной работы на тему «Динамика адсорбции с учетом химической реакции при очистке стоков плавательных бассейнов»

УДК 544.35.03:665.7

О. Р. Каратаев, С. В. Анаников

ДИНАМИКА АДСОРБЦИИ С УЧЕТОМ ХИМИЧЕСКОЙ РЕАКЦИИ ПРИ ОЧИСТКЕ СТОКОВ ПЛАВАТЕЛЬНЫХ БАССЕЙНОВ

Ключевые слова: модель, адсорбция, массоперенос, преобразование Лапласа, оригинал, изображение.

В статье рассматривается модель адсорбции хлорорганических соединений на цеолитах с учетом химической реакции. Задача решается для случая, когда основное сопротивление массопереносу сосредоточено во внешней фазе. Решения получены методом преобразования Лапласа. Они могут быть распространены на аналогичные задачи при кусочно-линейной аппроксимации нелинейной изотермы адсорбции, осложнённой химической реакцией первого порядка.

Keywords: model, adsorption, masstransfer, transformation of Laplace, original, representation.

In the article is descrebed model adsorption of chlororganic compaunds on ceolits with chemical reaction of first order. It is taked into consideration masstransfer without calculation longitudinal diffusion (masstransfer). Solutions of task was obtained by method trasformation of Laplace and can be disseminate on analogy tasks at part-linear approximation unlinear isotherm of adsorption at chemical reaction offirst order.

В настоящей работе аналитически решается задача динамики адсорбции с использованием линейной изотермы наиболее общего вида с учетом изменения концентраций целевого компонента за счет химической реакции.

Как уже отмечалось [1, 2] задача динамики адсорбции основывается на уравнении баланса массы целевого компонента (адсорбтива) для бесконечно малого элемента слоя, уравнениях кинетики адсорбции и изотермы адсорбции. Решение данной задачи позволит при кусочно-линейной аппроксимации нелинейной изотермы адсорбции выяснить физическую сущность изучаемого процесса и без проблем описать любую часть изотермы сложной формы. Кстати, следует заметить, что синтетические цеолиты, которые часто применяются в процессах очистки, имеют слегка выпуклую изотерму адсорбции близкую к уравнению прямой [3].

Общая система дифференциальных уравнений, описывающих динамику адсорбции, в одномерном потоке без учета продольной диффузии (с учетом только внешнего массопереноса), с отрицательным источником массы, имеет вид

dC( х, т) + 3дСа(х,т) + W dC( х, т)

дт дт

= -KcC(х,т), х > 0, т > 0,

дх

=K

С(х,т) - С (Ca)\x > 0,т > 0.

(1)

(2)

дСа (х,т) дт

при краевых условиях

С(х,0) = 0, х > 0, (3)

Са(х,0) = 0,х > 0, (4)

С(0,т),т> 0. (5)

Отличие от [1] в данной задаче состоит в

учете отрицательного источника массы за счет хи-

мической реакции первого порядка.

Уравнение изотермы адсорбции

Ca(x,т) = AC (Ca) -B.

(6)

Здесь Са(х,т) - концентрация адсорбированного вещества в сорбенте в сечении х в момент времени т; С(х,т) - концентрация адсорбтива в

потоке на расстоянии х в момент времени т ; W -скорость потока; К - коэффициент массообмена;

Kc - константа скорости реакции; S =

(1 -е)

ко-

эффициент; е - доля свободного сечения адсорбента (постоянная по объему порозность неподвижного

слоя); С - концентрация целевого компонента в потоке равновесная со средним содержанием адсор-битива Са в слое.

Первые два слагаемых в левой части уравнения (1) представляют собой скорость изменения массы целевого компонента в зазорах между частицами и внутри частиц соответственно. Третье слагаемое соответствует приращению массы целевого компонента за счет конвективного переноса с потоком. Слагаемое в правой части уравнения (1) учитывает изменение массы целевого компонента за счет протекания химической реакции.

Краевые условия (3) - (5) выражают следующее.

В начальном сечении неподвижного слоя в произвольный момент времени т концентрация целевого компонента постоянны и равна С0 : условие (5); в начальный момент времени т = 0 неподвижный слой свободен от адсорбируемого вещества: условия (3), (4).

В целях обобщения задачи принимается, что коэффициенты А,В,К могут принимать как положительные, так и отрицательные значения.

При К > 0 имеет место сток вещества, при К < 0 источник массы за счет химической реакции.

Задача (1) - (5) решается с использованием одностороннего преобразования Лапласа по переменной т.

Преобразования (2) с учетом выражения (6),

а также (1) с учетом (2) и (6) позволяют записать

дС(х,т) 1Т7дС(х,т)

- + W - -

дт

= -SK

дх

^хт) - “ a

Ca (х, т) - B A A

- KC(х,т),

е

х > 0,т > 0 дСа(х,т)

дт

х > 0,т > 0.

= K

С(х,т) -

Са(х,т) B

A

A

(2а)

К уравнениям (1а), (2а) и граничным условиям (3) - (5) применяется прямое преобразование Лапласа [4]

С(х,т) о—» F(x,s) = JС(х,т)е STdT,

0

ТО

Са(х,т) о—« Ф(х,s) = JСа(х,т)е-STdT, 0

дС( х,т)

дт

дСа(х,т)

дт

sF(x,s) - С( х,0 ),

-• sФ(x,s) - Са(х,0).

(7)

(8)

(9)

(10)

Здесь знак о—« обозначает переход от оригинала к изображению и наоборот [4].

Если умножить обе части уравнений (1а),

(2а) и условие (5) на е-5т и проинтегрировать каждый член уравнений по т в пределах от 0 до ж, то после незначительных преобразований с учетом (7) -(10), можно получить

д¥(х,з)

sF(x,s) + W-

дх

г , 8K ^ . SKB 1

- (8 K + Kc)F(x,s) +--Ф( х,s) +-----,

A As

Ф(х^) = AK F(x,s)-- KB 1

F( 0,s) =

AS + K

Q

s

A s + K s

(11)

(12)

(*)

Если подставить Ф(х^) из (12) в (11), то совместно с граничным условием (*) получается задача Коши для обыкновенного дифференциального уравнения первого порядка

й¥(х,8)

dx

F( 0,s) = ■

- + A1F(x,s) - B1 = 0, С0

(13)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(14)

где A, = — +

8 Ks Kc

+ —c,B1 = W 1

КВ8

WK

(s +-)W

A

K

AW(s + -j)

Здесь буква 5 выполняет роль параметра.

Решением (13) с условием (14) будет функция

F(x,s) = — A

B1 + ^АС1-Bj |e~A'x

(15)

Подстановка (15) в соотношение (14) дает

Ф(х,8) = КАВ1 1К (1 - е-А х)+

А1 (^ + К)

1

A'

K С0 e- A x -

BK

~A~

(16)

Замена в решениях (15), (16) констант Ai, B1 их значениями приводит к выражениям

F(x,s) = ----1-------+

A s + а^ + а0 f \

K.

С0

+------exp

s

КВ8

s

8K_________

W ~W K

s +---

A

1

+ -

W

A s 2 + а^ + а0

f

х ехр

8K s

-b -

WW

Kc ■ +---

K W

Ф(х^) = -

1

K2 B8

s + —

A

1

(17)

A

K

s + —

A

"

1 - exp -

_ V

2

s + а^ + а0

s 8K

Kc

W W K W

s +-

A y

1

K С0 exp

f >

s 8K s Kc BK

— + K +— x

W W A

s + —

V A _

(18)

где а1 =

K+A8K+AK

c Kc K

,а0 = ■

А и А

В соотношениях (17), (18) необходимо преобразовать экспоненциальную функцию для получения табличных изображений.

Эти изображения будут использованы при свертке оригиналов для получения окончательного решения. Необходимо также выполнить преобразование отдельных членов, входящих в выражения

(17), (18).

( \

Кс

ехр

= exp\

х ехр

s

s 8K ---1----------

W W K

s +-

A

W

W

s | exp

K 28x

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

AW(s + K) A .

- (8K + Kc)

W

Решение в изображениях (17), (18) позволяют независимо друг от друга переходит к оригиналам. Поэтому можно осуществить последовательный переход к оригиналам сначала для функции

Е(х,з), а затем - Ф(х,8) или наоборот.

Преобразование (17) дает

х

X

s

х

X

s

+

X

х

X

s

х

х

X

х

F(x,S) =

A s2 + a-^s + üq

Г

x

£l e - ws exp

s

_ V

K 2Sx 1

AW K s +--------

A

-1

+ Cle" Ws - KBS

A s2 + ais + üq

X

-----s

о W

exp

к 2s x 1

AW K

s +---

A у

-1

KB8

--Xsl -(SK+Kc)X

A s2 + ais + üq

w

W

(17а)

Преобразование в (18) с раскрытием скобок и последующим умножением числителя и знаменателя у второго и третьего членов в правой части вы-

к

ражения на (5 н ) и выделение множителя

1

/ K .2

(s+A

A

можно получить

Ф(х^) =■

K 2 BS

1

1

A s 2 + a1s + aQ (s + K)

A

A

2

s + a1s + üq (s + K)2

A

(

X exp

K 2Sx 1 AW K

s +--

A

f

1

A

2

2

s + a1 s + a q

1

(,+K/

exp

(

1

K2 (s+a-12

exp

K 2Sx 1

AW , K

s +--

A у

Л

2

X

----s

- KCq e W x

K 2Sx 1

AW K

s +--

A

T X

JC. e- Ws 1.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1

A

f

X exp BK

Y

K 2Sx 1

AW K s +--------

A

1

-(SK +Kc)

W

A ( + K .

s(s+A

(18а)

Для перехода к оригиналам от изображений в данной задаче базовыми являются следующие соответствия [4, 5]

1

2

s + а^ + а0

а\Т

e 2 sin^yfä^T) при Ü2 > Q,

ÜT

(19)

Ü2

re 2 sh(^j- а2 t) при ü2 < Q;

2

s + Ü1s + ÜQ

1 -an

ze 2 sin(Sü^t +

a2

+ arctg—-------) при Ü2 > Q,

a1

2

Ü1 T

re 2 sh(y]- Ü2 T +

(2Q)

+ Arth

a1

2

-) при ü2 < Q;

(

exp

K 2S x 1

AW

K

---T

e A

JW

'k S x

K

s+

A У

f

—11 2

T V

-1

K 2Sx

AW

(21)

где I

K 2Sx

AW

- бесселева функция первого

рода мнимого аргумента первого порядка;

( ' \

1

K2 (s+A

exp

к 2Sx 1

AW , K

s +--

A у

--------- к f

AW -ATT

T e A І1

'к 2S x

K 2Sx

AW

x

-----s

, W

1

Q при Q < t < —,

W

! x

1 при t > —;

W

K

K

s + —

A

(22)

(23)

(24)

+

+

+

1

1

X

1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

s

s

1

e

e

a

2

a

Q

2

1

s

X

+

X

T

2

T

X

X

т

x

e

s

г

e

К

А А - АТ

-----е А .

КК

(25)

С целью получения окончательных формул (оригиналов) от изображений (17а), (18а) выполнялись операции свертывания оригиналов от произведения изображений с учетом таблицы оригиналов для отдельных членов, представленных соответствиями (19) - (25).

Операция свертывания оригиналов выполнялась по известному соотношению [4]

/1(^/2Е1(т)*Е2(т) =

Т Т

= |^ (^2 (т - = |^ (т - t)F2 «)Л. (26)

0 0

Кроме этого использовалась первая теорема смещения [4]

[0 при т < а,

(т - а) при т > а.

В результате были получены следующие выражения

е-аэ/(э)

(27)

¥

1

2

э + а^ + ао

А Х

0 при т < —,

¥

X

а1|Т- ¥

а2 | Т

¥

при т > — ,а2 > 0, ¥ 2

¥

(28)

а1| Т

V-

2 эН

а2

V-«2 |Т- ¥

при т > — ,а2 < 0; ¥ 2

е 1 ^|х ( Л

ехр К 2 8 х 1 -1

А¥ \ К э +— А

0 при т <

т

1

Ж

А Wt

¥ е А 11

2 к ( К 8 х --^

К 28х

А¥

б

(29)

¥

( Л

х —■* 1 ¥ 1 ехр К 28х 1 -1

2 э + а^ + а0 А¥ \ К э + — А

¥

а1 X-— т Ч ¥

яи-¥

К(Т-Х) К 8х —

х I

А¥(т-X) 2.

К 28х

А¥

(т-X)

б

при т > — ,а2 > 0, ¥ 2

Г-

1

а2 X

а1 X--------

т Ч ¥

2 эН

I х-¥

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

К(т-х)

К 8х :—

х I

А¥(т-X) 2

К 28х

А¥

(Т-X)

б

при т > — ,а2 < 0; ¥ 2

1

1

т а1

= |е 2

у[о2

1 ■ А(т- 1)

пе А б

0

при а2 > 0

Т а1

- —(т - ) е 2 эНи~а2 X )е А б

. 1 Iе 2 эН^- а2 X)е

V - а2 0

при а2 < 0; 1

X ехр

э2 + а1э + а0 + К )2

А

К 8 х 1

А¥ К э I-------

А

(30)

(31)

х

2

х

X

е

X

е

X

X

е

X

х

е

1

х

2

х

1

е

1

X

х

2

е

0 mu t < —, W

°i| t-—

t U w

- 5 ’

Ü2

2 x

a0 W

x sin

l--( x I J&2

Jü2 | t-----I + arctg——

y 2 ^ W ) ai

MW_

'K S x

K

(t-t) e

x Il

K 2 S x

AW

-(t-t)

-(T-t)

dt

mu t > — ,a2 > 0, W2

- 5 '

a0 w

ai t - — t l W

x sh

V- a2 [ t - WW I + Arth

K

I AW . ’ -A(T-t)

x —■------------(t-t) e A x

\K S x

x Ii

1

K 2Sx

AW

(t-t)

dt

при t > — ,a2 < 0; W2

(32)

rv

0 nрu t < —, W

ai| t -—

t \ W

yi°2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

W

x sin

« t - W

HW-

\K Sx

(t-t) e

- K(T-t)

x Ii

K 2Sx

AW

-(t-t)

dt

при t > — ,a2 > 0, W2

f

x sh

'= 5

a2 x

W

ai | t t H W

- a2|t-W

K

AW . , - A(T-t)

------(t-t) e A

\K 2Sx

x Ii

K 2Sx AW

(t-t)

dt

при t > — ,a2 < 0; W2

x

---s

eW

1

(s * A '2

exp

K 2Sx

K

AW(s * -j)

(33)

W

1

1

(

exp

K 2 S x 1

AW K s *-------

A)

-1

rv

0 при t <—,

W

1 AW (T x 1

K 2Sx [ W )

K 2Sx I AW

(t-t)

K| t-—

W

при t > — ;

W

(34)

x

-----s

e W

1

* (s + f)2

exp

K 2Sx

K

AW(s * —)

2

2

x

X

x

x

X

X

X

2

2

e

x

2

x

X

2

x

x

x

a

1

2

2

x

s

e

X

e

x

X

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

x

2

0 при т < —,

¥

------- К

А¥ -А

------X е А

К 2 8 х

(35)

¥

А¥

бЧ при т > — ;

¥

Наконец, можно, в соответствии с выполненными преобразованиями, записать окончательное решение исходной задачи

При т <—, а2 > 0 ¥ 2

F(x,s)^-o С(х,т) =

КВ8 -

«т

Ад/07

Ф(х,э)^<! Са(х,т) =

К 2 В8

Ктт (а1 К

е А |е \2 А, х

Ч-В

АЛ/а2

К Л

1-е А

При т <—, а2 < 0

¥ 2

F(x,s)^-° С(х,т) =

КВ8

АлЯ

«2

-«Т / ч

-е 2 эНи-а2 т) ,

К 2 В8 -1т

Ф(х,э)^~» Са(х,т) =

Ктт (а1 К

х эН| V -а2 X \dt - В

Ау]- а2

( -К Л

1-е А

е А |е \2 А, х

При т > —, а2 > 0

¥ 2

КВ8

Ал1а

¥

х

а2|Т-¥

-(8 К+Кс)— с ¥

К2В8 -1-т

Ф(х,э)^-° Са(х,т) =

Ктт (а1 К

е А |е \2 А, х

А\а

К 2 В8

( Кт

а1 К

А -2-

х

¥

¥

I-( х | \/«2

лЫЧ-Т77 \ + «гс^-—

А¥

'к 28х

х I

2,

К 28х

А¥

Т -(«1-К} х |е \ 2 А' эт х ¥

(т-Ч)

К 3 В8

а24«7

(т-Ч) х

( Кт а1х л

1К 28х

(т-Ч) х

х 11

К 28х А¥

(т-Ч)

бч - кс0

1 А¥ Т х \

К 28х V ¥ I

- К (т-х х е А \ ¥ 111

К 28х

¥

-(8К+Кс)—

К28х (т х Л С0 К 2

А¥ (т ¥ | А

Т 2 ¡К28х Ч А¥Ч х

V I

( Кт

3 1- -е А

V I

КВ8 «Т

F(x,s) •-<> С(х,т) = КВ___е 2 э1п^а2т)+

Ау]а2

С

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

. К (

1 + I К8хе ~ Д

А¥ Ч

К 2 8 х

А¥

КВ8

(К т а1х Л т («1 К

¥

К 2 8 х

\А¥(т-Ч)

а2 | Ч -

¥

К 28х I А¥

-(т-Ч)

При т > —, а2 < 0 ¥ 2

К В 8 «Т

F(x,s) «—о С(х,т) =—, е 2 эН^-а2т)+

а{-

«2

{ \

2 эНи-а2Т)+

С0

К (

1 +

IК8хе~ ЛЧ11 Л А¥Ч 1

К 28х

А¥

¥

КВ8

(К т а1х Л т («1 К

А а

х

¥

К 28х

УА¥(т-Ч)

2

е

х

I

1

х

т

X МП

2

ч

2

X

2

х

х

е

+

2

+

ч

X

ч

X

2

х

I

2

КВ8

х

а1( Т-¥

А¥

(т-Ч)

А^-с

Ф(х,э)

2 эН

а2 | Т

х

¥

- ( 8 К +Кс)— с ¥

2 Ктт (а1 К \ч

С/ , К2 В8 -—[■ -|--Ч

Са(х,т) =-■== е А |

АтТа2 I

2 -( Кт а1х I т («1 К \.

К2В8е V а 2¥ )'ДТТ/ х

А-

¥

х эН

у]- а2 (ч - ~Л+АгЧН

«2

«1

2

'К 8х

(т-Ч) х

х I

2.

К 28х

А¥ х| е \ 2 А' эН

х

¥

(Т-ч)

, Кт а1х

бчг + К3В8 е"1“¥ х

А2/-

«2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

4~а2 ( Ч-Т^

х I1

К 28х

А¥

-(т-Ч)

¥

бЧ-КС0,

Н8

!к 8 х

Т-ч; х

1 А¥ 1 Т х \

¡К 28х' V ¥ I

К 28х Т х \ С0 К 2

А¥ V ¥) А

¥

А¥ К 28х

Кт

Ч е А Il

К 28х

-( 8К +Кс)¥ х е ¥ -В

1-е

А¥

Кт Л

бч

V I

При переходе в пространство оригиналов для функции F(x,s) - использовались соответствия (19), (23), (28) - (30), а для функции Ф(х,э) - соответствия (31) - (35). При этом были преобразованы произведения экспоненциальных функций, имеющиеся в представленных оригиналах.

Следует отметить, что в решениях для

т < ¥ определенные интегралы могут быть вычислены в конечном виде.

Литература

1. С.В. Анаников, Вестн. Казан. технол. ун-та, 15, 8, 247253 (2012).

2. С.В. Анаников, Вестн. Казан. технол. ун-та, 15, 10, 247250 (2012).

3. Л.М. Никитина Термодинамические параметры и коэффициенты массопереноса во влажных материалах. Энергия, Москва, 1968. 500 с.

4. Г. Дёч, Руководство к практическому применению преобразования Лапласа. ГИФМЛ, Москва, 1958. 208 с.

5. В.А. Диткин, Справочник по операционному исчислению. ГИТТЛ, Москва - Ленинград, 1951. 256 с.

2

е

е

х

х

2

а

2

а

0

2

х

© О. Р. Каратаев - к.т.н., доцент каф. машиноведения КНИТУ, oskar_karataev@mail.ru; С. В. Анаников - д-р техн. наук, проф. каф. химической кибернетики КНИТУ; ananikovsv@rambler.ru.

i Надоели баннеры? Вы всегда можете отключить рекламу.