Научная статья на тему 'Возможности линейных прекодеров по управлению ресурсами и характеристиками систем mimo'

Возможности линейных прекодеров по управлению ресурсами и характеристиками систем mimo Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
501
107
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ТЕХНОЛОГИЯ MIMO / ЛИНЕЙНОЕ ПРЕКОДИРОВАНИЕ / ВИРТУАЛЬНЫЙ КАНАЛ / ПРОСТРАНСТВЕННОЕ РАЗНЕСЕНИЕ / ПРОПУСКНАЯ СПОСОБНОСТЬ КАНАЛА

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Волчков В. П., Шурахов А. А.

Системы MIMO позволяют применять для передачи сигналов пространственно-временно кодирование, что обеспечивает им более высокие характеристики по помехоустойчивости и пропускной способности по сравнению с классическими системами. Среди различных форм пространственно-временного кодирования линейное прекодирование позволяет гибко использовать возможности MIMO систем, обладая при этом простой технической реализацией. В работе дана количественная оценка возможностей MIMO систем, а также проведен сравнительный анализ характеристик ряда классических линейных прекодеров при использовании их в системах MIMO.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Возможности линейных прекодеров по управлению ресурсами и характеристиками систем mimo»

ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

УДК 519.6

ВОЗМОЖНОСТИ ЛИНЕЙНЫХ ПРЕКОДЕРОВ ПО УПРАВЛЕНИЮ РЕСУРСАМИ И ХАРАКТЕРИСТИКАМИ СИСТЕМ MIMO

Системы MIMO позволяют применять для передачи сигналов пространственно-временно кодирование, что обеспечивает им более высокие характеристики по помехоустойчивости и пропускной способности по сравнению с классическими системами. Среди различных форм пространственно-временного кодирования линейное прекодирование позволяет гибко использовать возможности MIMO систем, обладая при этом простой технической реализацией. В работе дана количественная оценка возможностей MIMO систем, а также проведен сравнительный анализ характеристик ряда классических линейных прекодеров при использовании их в системах MIMO.

Ключевые слова: технология MIMO, линейное прекодирование, виртуальный канал, пространственное разнесение, пропускная способность канала.

Мультиплексирование и разнесение. Технология MIMO основана на использовании нескольких антенн на передающей и приемной сторонах радиосистемы, что позволяет получать выигрыши в части пространственного разнесения и мультиплексирования по сравнению с системами SISO, использующими одну передающую и приемную антенны [1-3]. Количественно выигрыши (эффекты) от пространственного разнесения и мультиплексирования можно оценить следующим образом.

Эффект от пространственного разнесения связан с приемом одного и того же сигнала на несколько антенн, либо с передачей одного сигнала несколькими передающими антеннами. В условиях канала с замираниями это позволяет получать на приемной стороне несколько реализаций передаваемого сигнала и за счет их статистической обработки более достоверно детектировать передаваемый сигнал. В общем случае средняя вероятность ошибки ML-детектора в канале с затуханиями при больших отношениях сигнал/шум оценивается следующей формулой [4]:

Рош : Gc • SNR-g , (1)

В.П. ВОЛЧКОВ11 А.А. ШУРАХОВ21

1) Московский технический университет связи и информатики Москва, Россия

e-mail: [email protected]

2) ФГУП НИИР

e-mail: [email protected]

где Gc - коэффициент, характеризующий влияние кодирования на ошибку детектирования (выигрыш от кодирования); Gd - коэффициент, характеризующий

влияние пространственного разнесения на ошибку детектирования (выигрыш от разнесения); SNR - среднее отношение сигнал/шум.

Оценим значение коэффициента Gd. Для этого рассмотрим классическую модель MIMO канала:

h1,1 "'

y = Hx + e, H =

eX N xM (2)

h ••• h

LhN,1 hN,M

где H e xNxM - комплексная матрица канала; M, N - количество передающих и

приемных антенн; х еХ - вектор передаваемых комплексных символов; у, е еХ -

вектор принимаемых комплексных символов и вектор гауссовского шума N (0,а21).

Пусть И = уве(Н) - вектор, составленный из столбцов матрицы Н, т.е.

Ь = гес(Н) = (Ь* П,Ь‘ 21,...,Ь* т,Ь* 21,...,Ь* км)г. Тогда, используя свойства

кронекеровского произведения матриц, модель (2) может быть записана в следующем виде:

у = (хг 0 1)И + е = ХИ + е, (3)

где X = (хг 0 I) - модифицированная матрица передаваемых символов размерности (N хМЫ) 0 - символ кронекеровского произведения.

Для модели (з) известно [4], что вероятность попарной ошибки МЬ-детектора, т.е. вероятность выбора матрицы X вместо X, при фиксированной матрице канала И, определяется следующей формулой:

(

(Xo - X)h||

z 1^- \е

2<г2

2 /

1 % [-Х/ I

Q( x) = -¡= Í е- 2 j dx (4)

у12л x

Тогда, для гауссовской случайной матрицы канала с ковариационной матрицей Т = Е[ИИН ] , оценку среднего значения попарной ошибки можно записать в виде:

/^(Хо -Х)Т(Хо -X)Н)<(-!

4а {4а , к=г

E[P(X0 ^X)]< det-1(I + - 2(Xq -X)Y(X0 -Xf ) <[ —j- I Us-1, (5)

где n - ранг матрицы Y' = (X - X)Y(X0 - X)H exNxN, sk - ненулевые собственные числа матрицы Y'; Ей['] - оператор математического ожидания при усреднении по h; " н" -

символ эрмитового сопряжения.

Сравнивая формулы (5) и (1) видно, что для MIMO канала с матрицей канала

h □ N (0,Y) выигрыш от разнесения Gd равен л, т.е. рангу матрицы Yf eXNxN. Для случая некоррелированного канала, т.е. hD iVc (0,р21), ранг матрицы Y'равен N. Таким образом, для случая некоррелированного MIMO канала выигрыш от пространственного разнесения равен количеству приемных антенн, т.е. Gd = n = N.

Оценим теперь выигрыш системы MIMO от пространственного мультиплексирования. Выигрыш от мультиплексирования является следствием того факта, то MIMO канал может быть разложен на K параллельных независимых каналов. Осуществляя мультиплексную передачу независимых данных по этим независимым

каналам, мы получаем увеличение в скорости передачи по сравнению с одноантенной системой SISO.

Рассмотрим, как получить независимые каналы в MIMO системе. В модели (2) матрицу канала H представим в виде ее сингулярного разложения:

где U - унитарная матрица размером N x N, V - унитарная матрица размером M xM, а £ - диагональная матрица N x M сингулярных значений {£} матрицы H (напомним,

унитарность U и V означает, что U - UH = I и V - VH = I). Тогда параллельное разложение канала MIMO получается путем представления входного вектора x в виде x = VHX и умножения выхода канала y на матрицу Uн :

Данные линейные преобразования входа и выхода преобразуют MIMO канал в K параллельных скалярных каналов =<^Д + , где K число положительных

сингулярных чисел {£}. т.е. ранг матрицы H. Заметим, что умножение на унитарную

матрицу не меняет распределение шума, т.е. случайные векторы n и n одинаково распределены. Пропускная способность MIMO канала в общем случае определяется следующей формулой:

где B - полоса канала в Гц; P - ковариационная матрица вектора x є CM .

В случае разложения MIMO канала на K независимых подканалов (см. (7)) и при допущении, что элементы вектора ~ - некоррелированные случайные величины с дисперсией р , пропускная способность (8) записывается в виде:

Таким образом, пропуская способность MIMO канала, является суммой пропускных способностей K независимых виртуальных подканалов

Линейное прекодирование. Проблема адаптирования современных сетей радиосвязи, в том числе сетей MIMO, к изменяющимся внешним условиям, активно исследуется в последние годы [5, 6, 7]. Одним из способов гибкого управлениям ресурсами и характеристики системами MIMO является применение в них алгоритмов линейного прекодирования [2, 3, 8]. Оценим характеристики линейных прекодеров и их возможности по изменению помехоустойчивости и пропускной способности систем MIMO. Общая модель MIMO систем с линейным прекодированием показана на рис 1.

H = UEVH,

(6)

y = UH (Hx + n) = UH (UTVx + n) = UH (UTVV H ~ + n) = UH UTV~ + UH n = + ~ .

(7)

(8)

С £2 Л

(9)

Входные

символы

Передатчик

(формирует L виртуальных потоков)

S/P • • • B

s

Приемник

(опт. лин. приемник + ML демодулятор)

G • • • P/S

s

Выходные символы —►

Обратная связь, f(H)

Рис. 1. Система MIMO с линейным прекодером

Модель MIMO системы с линейным прекодером и декодером описывается выражением

s = Gy = GHx + n = GHBs + n,

XN *-* '\zN *-* *-*

- принимаемый вектор; n ел - комплексный гауссовский вектор шумов с

нулевым средним и ковариационной матрицей E[nnH ] = a^IN; s eXL - вектор

информационных символов (из алфавита QAM или PSK), B еХмxL - комплексная матрица прекодера; L < K = rank(H), т.е. вектор информационных символов s е CL прекодируется с помощью линейной процедуры:

x = Bs.

Предполагаем, что в системе связи элементы матрицы канала H е X x ранга K = rank(H) < min{M, N} идеально оцениваются и известны на приемной и передающей сторонах, что обеспечивается за счет цепи обратной связи f(H). Информационные символы s имеют нулевое среднее, нормированы и некоррелированы, т.е. E[ssH ] = IL. В этом случае суммарная средняя передаваемая мощность равна Pa = E[xxff ] = Tr(BBff), где Tr(-) - оператор следа.

Рассмотрим случай, когда прием осуществляется с помощью оптимального линейного MMSE приемника с матрицей преобразования G:

G = BH HH (hBB h H h + a2nI) 1, (10)

который на выходе дает оценку информационных символов

s = Gy.

Тогда, при использовании прекодера В и приемника G матрица среднеквадратических ошибок равна:

E = (IL + a^BH HH HB )^= MSE(B),

(11)

где a 1 □ E[| jc. |2]/<x2 = 1/<х2. Определим матрицу отношений сигнал/шум SNR(B):

SNRB) = E-1 - \L = a^BH HH HB. (12)

s

Серия История. Политология. Экономика. Информатика.

2014 № 8 (179). Выпуск 30/1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

При принятых допущениях на s, а так же, учитывая формулы (8) и (10), пропускная способность MIMO канала (т.е. максимальная взаимная информация между принятыми s и переданными x символами) может быть записана в следующем виде [4, 5]:

C(s, x | B) = log^det^HBBHHH + \N)) (13)

Рассмотрим следующие линейные прекодеры:

1. Линейный прекодер, минимизирующий среднеквадратическую ошибку на выходе приемника (Система 1: “Min-Trace-MSE Loading” ):

Bopt = arg min Tr{MSE(B)}, при условии Tr(BHB) = Po , (14)

B

2. Линейный прекодер, максимизирующий минимальное собственное значение матрицы SNR(B) (Система 2: “Max Min-Eig-SNR Loading” ):

Bopt = arg min Л™ (SNR(B)), при условии Tr(BHB) = Po, (15)

B

3. Линейный прекодер, максимизирующий взаимную информацию C(s, x | B) между переданными x и принятыми s данными (Система 3: “Max-Capasity Loading’”):

Bopt= arg max C(s, x | B), при условии Tr(BHB) = Po , (16)

B

Решая соответствующие вариационные задачи, можно показать, что оптимальные прекодеры, удовлетворяющие перечисленным выше критериям, имеют структуру вида:

Bopt= VФ1/2 .

Матрица V е XMxL для всех прекодеров одинакова и состоит из первых L столбцов унитарной матрицы V, входящей в спектральное разложение эрмитовой матрицы:

Н*Н = УАУН, A = diaё(Ли,...,Лш)-

Матрицы Ф = diag(^n,...,^LL) eXLxL - вещественные диагональные и для разных

критериев оптимальности различаются рангом и составом неотрицательных чисел, стоящих на диагонали. Данные матрицы фактически определяют способ загрузки мощностей в независимые виртуальные потоки. Причем число таких потоков

определяется рангом L = гшЦФ) < L, а значения мощностей - набором чисел

Для полноты анализа, дополнительно с прекодируемыми системами 1-3 исследовалась MIMO система без прекодирования с оптимальным нелинейным ML-приемником (Система 4: “No Precoding”), что, очевидно, эквивалентно прекодированию с единичной матрицей B = I.

Нетрудно убедиться, что прекодеры (14) - (16) диагонализируют сквозную матрицу приемно-передающего тракта:

G s = GHB opt = Афа1 = diag( giS,..., gLZ )

между входом s и выходом s. То есть, оптимальное прекодирование позволяет мультиплексировать передаваемую информацию в L независимых виртуальных потоков, что упрощает реализацию линейного приемника и последующее ML-детектирование

вектора s. Причем, в эти прекодеры входит одна и та же матрица V, но разные диагональные матрицы Ф. Поэтому выбор вида прекодера позволяет гибко изменять характеристики приемно-передающего тракта, оставаясь в рамках практически одной и той же структуры.

Результаты моделирования. Анализ линейных прекодеров (14-16) проводился путем расчета характеристик BER и характеристик пропускной способности

176

НАУЧНЫЕ ВЕДОМОСТИ

Серия История. Политология. Экономика. Информатика. 2014. №8 (179). Выпуск 30/1

для различных значений SNR и количества виртуальных каналов L. В расчетах использовалась система MIMO в конфигурации 8x8 с модуляцией QPSK, при средней излучаемой мощности Po = M .

Емкость MIMO канала оценивалась для разных отношений сигнал/шум SNR = 10log0(a-1) [дБ] с помощью дополняющей кумулятивной функции распределения CCDF для неусредненной емкости канала C :

представляющей вероятность того, что величина С = log2(det(^ *HB HoptH1 Í + IN ))

превысит заданный уровень x. Характеристики BER и CCDF рассчитывались путем статистического моделирования системы MIMO в среде MATLAB в предположении, что элементы матрицы канала H случайны, некоррелированы и идеально оцениваются на приемной и передающей сторонах.

На рисунках 2-4 для каждого из линейных прекодеров (14) - (16) приведены зависимости пропускной способности С0 9, определяемой по характеристикам CCDF для

значения вероятности Рс =0,9 от отношения сигнал/шум SNR и числа виртуальных

потоков. Видно, что для всех прекодеров пропускная способность канала почти линейно увеличивается с ростом отношения сигнал/шум. Также, в целом, увеличение числа виртуальных потоков L приводит в плавному увеличение пропускной способности. Это верно до значений L < 8. При L = 8 для прекодеров «Min-Trace-MSE» и «Max Min-Eig-SNR» пропускная способность снижается и имеет нелинейных характер. Это объясняется особенностью работы этих алгоритмов. В частности алгоритм « Max Min-Eig-SNR» должен обеспечивать одинаковые отношения сигнал/шум во всех виртуальных потоках. Поэтому при появлении слабых виртуальных потоков, прекодер направляет в них значительную часть энергии, что значительно снижает общее значение сигнал/шум, а значит и общую пропускную способность.

Pc(x) = Preble^ > x}, x є [0,œ),

MIMO 8x8, некореллированный канал

5

10

15

20

25

30

35

40

45

50

SNR, dB

Рис. 2. Зависимость пропускной способности прекодера Max-Capacity (по уровню 0,9) от отношения SNR

MIMO 8x8, некореллированный канал

Рис. 3. Зависимость проп}$МВэй1ЕЬособности прекодера Min-Trace-MSE (по уровню 0,9) от отношения SNR

SNR, dB

Рис. 4. Зависимость пропускной способности прекодера Max-Min-Eig-SNR (по уровню 0,9) от отношения SNR

На рисунках 5-7 показана зависимость вероятности ошибки BER от значений SNR для прекодеров (i4)-(i6). Видно, что в целом сокращение количества виртуальных каналов приводит к плавному снижению BER для всех трех прекодеров. При этом прекодер «Max-Capasity Loading» по характеристикам BER немного хуже прекодеров «Min-Trace-MSE» и «Max Min-Eig-SNR». Сравнивая линейные прекодеры (14)-(1б) с системой MIMO без прекодирования («No precoding + ML»), видно, что прекодеры «Min-Trace-MSE» и «Max Min-Eig-SNR» выигрывают у системы MIMO без прекодирования при числе виртуальных потоков меньше 7, в то время как «Max-Capasity Loading» имеет более низкие значения BER по сравнению с системой MIMO без прекодирования только, если число виртуальных потоков ниже 6.

На рисунке 8 на плоскости Capacity - BER (пропускная способность - вероятность ошибки) показаны области работы линейных прекодеров в зависимости от отношения

SNR. Каждая из областей включает точки, соответствующие заданному SNR, но разным типам линейных прекодеров и разному числу виртуальных потоков. Видно, что с ростом SNR область работы линейных прекодеров расширяется, т.е. с помощью выбора типа прекодера и числа виртуальных потоков при больших значениях SNR можно изменять характеристики по BER и емкость Сор в более широких пределах. При этом интересно,

что в среднем, при фиксированном SNR, емкость С09 линейно зависит от BER, т.е.

уменьшая количество виртуальных потов, мы снижаем пропускную способность, но при этом снижаем и BER, т.е. повышаем помехоустойчивость системы.

На рис. 2-8 так же приведены зависимости для одноантенной системы SISO.№ рисунков 2-4 видно, что применение нескольких антенн увеличивает пропускную способность, и даже в случае использования одного виртуального потока (L=i) пропускная способность системы увеличивается по сравнению с системой SISO. При этом максимальная пропускная способность системы MIMO (случаи L=6...8, в зависимости от алгоритма) в среднем увеличивается пропорционально числу антенн.

MIMO 8x8, некореллированный канал

10

10

10

РІ

w

PQ

10

10

10

15

20

25

SNR, dB

30

35

40

45

50

Рис. 5. Зависимость вероятности ошибки прекодера Max-Capacity (по уровню 0,9) от отношения SNR

10

10

10

Рч

W

и

10

MIMO 8x8, некореллированный канал

10

15

20

25

SNR, dB

30

35

40

45

50

РРи

с. 6. Зависимость вероятности ошибки прекодера Min-Trace-MSE (по уровню 0,9) от отношения SNR

0

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

5

0

5

10

10

10

P¿

W

И

10

10

MIMO 8x8, некореллированный канал

10

15

20

30

35

25

SNR, dB

Рис. 7. Зависимость вероятности ошибки прекодера Max-Min-Eig-SNR (по уровню 0,9) от отношения SNR

40

45

50

0

5

В части помехоустойчивости, системы MIMO с линейными прекодерами при L=1...4 имеют более низкие значения BER по сравнению с системой SISO при всех значениях SNR. При L=4...7 использование линейных прекодеров приводит к выигрышам в помехоустойчивости по сравнению с системой SISO только при SNR выше 13 дБ. Например, для L=6 выигрыш наблюдается при SNR>i6...i9 дБ, а для L=7 - при SNR>22-28 дБ. Для L=8 все прекодируемые MIMO системы проигрывают системе SISO по BER.

Таким образом, проведенный анализ (в частности рисунок 8) показал, что благодаря тому, что рассматриваемые линейные прекодеры имеют одинаковую структуру, можно, динамически меняя на передающей стороне тип линейного перекодировании и количество виртуальных потоков, гибко адаптироваться к изменяющимся внешним условиям.

120

100-

о

o'

II

&

80-

60-

о

СІ

а

сЗ 40

20-

10

MIMO 8x8, некоррелированный канал

10

* SNR=5 О SNR=10

* SNR=15 V SNR=20 < SNR=25

SNR=30 ± SNR=35

* SNR=40

* SNR=45

* SNR=50

D No precoding SISO

SNR=15 "

SNR=10

SNR=5

10

10' BER

10

10

10

Рис. S. Сравнительные характеристики линейных прекодеров.

0

Список литературы

1. Space-Time Processing for MIMO Communications. A. B. Gershman, N. D. Sidiropoulos. John Willey & Sons, 2005.

Серия История. Политология. Экономика. Информатика. ^ ¡

2014. №8 (179). Выпуск 30/1

2. Волчков В.П., Шурахов А.А. Исследование эффективности алгоритмов линейного прекодирования в системах MIMO.// Электросвязь. - 2012. - № 5. - С. 15-16.

3. Волчков В.П., Шурахов А.А., Двухкритериальная оптимизация линейных прекодеров для системы MIMO.//C6. трудов Международной молодежной конференции «Прикладная математика, управление и информатика». - 2012,, Т.1. С. 330 - 334, БелГу,

4. E.Larsson, P.Stoica, «Space-Time Block Coding for Wireless Communications», Cambridge University Press, UK, 2003.

5. Гибридная модель модуля управления когнитивной самоорганизующейся сети базовых станций. А.А. Серков, И.И. Обод, Научные ведомости Белгородского государственного университета. История Политология Экономика Информатика. № 15 (158) 2013. Выпуск 27/1 .

6. 3G Americas White Papers. MIMO Transmission Schemes for LTE and HSPA Networks. 2009.

7. L. Zheng and D. Tse, "Diversity and multiplexing: A fundamental trade-off in multiple-antenna channels," IEEE Transactions on Information Theory, vol. 49, pp. 1073-1096, May 2003.

8. A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, "Optimal designs for space-time linear precoders and decoders,"IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1051-1064, May 2002.

POSIBILITIES OF LINER PRECODERS TO MANAGE RESOURESES AND PERFORMANCE OF MIMO SYSTEMS

НАУЧНЫЕ ВЕДОМОСТИ

V. VOLCHKOV" A. SHURAKHOV21

1) Moscow technical university of telecommunications and informatics, Russia

e-mail: [email protected]

2) Radio Research and Development Institute, Russia

e-mail: [email protected]

MIMO systems use space-time coding to transmit the signals which provides them higher performance on interference robustness and throughput than classical transmit systems have. Among other form of space-time coding, liner precoding allows flexibly to apply possibilities of MIMO systems and requires quite simple technical realization. In the article quantitative estimation of MIMO systems performance is provided and comparative performance analysis of some classical liner precoders in MIMO systems is done.

Key words: MIMO technology, liner precoding, virtual channel, space diversity, channel capacity.

i Надоели баннеры? Вы всегда можете отключить рекламу.