НОВОСТИ НАУКИ И ТЕХНИКИ
УДК 51:37;517.958
А.В. Коновко, к.т.н.
Академия государственной противопожарной службы МЧС России ВЕЛИКАЯ ТЕОРЕМА ФЕРМА ДОКАЗАНА. ИЛИ НЕТ?
В течение нескольких столетий доказать, что уравнение xn+yn=zn при n>2 неразрешимо в рациональных, а значит, и целых числах не удавалось. Родилась эта задача под авторством французского юриста Пьера Ферма, который параллельно профессионально занимался математикой. Её решение признаётся за американским учителем математики Эндрю Уайлсом. Это признание длилось с 1993 по 1995 г.
A.V. Konovko
THE GREAT FERMA'S THEOREM IS PROVED. OR NO?
The dramatic history of Fermat's last theorem proving is considered. It took almost four hundred years. Pierre Fermat wrote little. He wrote in compressed style. Besides he did not publish his researches. The statement that equation xn+yn=zn is unsolvable on sets of rational numbers and integers if n>2 was attended by Fermat's commentary that he has found indeed remarkable proving to this statement. The descendants were not reached by this proving. Later this statement was called Fermat's last theorem. The world best mathematicians broke lance over this theorem without result. In the seventies the French mathematician member of Paris Academy of Sciences Andre Veil laid down new approaches to the solution. In 23 of June, in 1993, at theory of numbers conference in Cambridge, the mathematician of Princeton University Andrew Whiles announced that the Fermat's last theorem proving is gotten. However it was early to triumph.
В 1621 году французским литератором и любителем математики Клодом Гаспаром Баше де Мезириаком был издан греческий трактат "Арифметики" Диофанта с латинским переводом и комментариями. Роскошная, с необыкновенно широкими полями "Арифметика", попала в руки двадцатилетнему Ферма и на долгие годы стала его настольной книгой. На ее полях он оставил 48 замечаний, содержащих открытые им факты о свойствах чисел. Здесь же, на полях "Арифметики" была сформулирована великая теорема Ферма: "Невозможно разложить куб на два куба или биквадрат на два биквадрата, или вообще степень, большую двух, на две степени с тем же показателем; я нашел этому поистине чудесное доказательство, которое из-за недостатка места не может поместиться на этих полях". Кстати, на латыни -это выглядит таким образом: «Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duas ejusdem nominis fas est dividere; cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet».
Великий французский математик Пьер Ферма (1601-1665) развил метод определения площадей и объемов, создал новый метод касательных и экстремумов. Наряду с Декартом он стал создателем аналитической геометрии, вместе с Паскалем стоял у истоков теории вероятностей, в области метода бесконечно малых дал общее правило дифференцирования и доказал в общем виде правило интегрирования степенной функции... Но, главное, с этим именем связана одна из самых загадочных и драматичных историй, когда-либо потрясавших математику - история доказательства великой теоремы Ферма. Сейчас эту теорему выражают в виде простого утверждения: уравнение xn + yn = zn при n>2 неразрешимо в рациональных, а значит, и целых числах. Кстати, для случая n = 3 эту теорему в X веке пытался доказать среднеазиатский математик Ал-Ходжанди, но его доказательство не сохранилось.
Уроженец юга Франции, Пьер Ферма получил юридическое образование и с 1631 состоял советником парламента города Тулузы (т.е. высшего суда). После рабочего дня в стенах парламента, он принимался за математику и тут же погружался в совершенно другой мир. Деньги, престиж, общественное признание - все это не имело для него никакого значения. Наука никогда не становилась для него заработком, не превращалась в ремесло, всегда оставаясь лишь захватывающей игрой ума, понятной лишь единицам. С ними он и вел свою переписку.
Ферма никогда не писал научных работ в нашем привычном понимании. А в его переписке с друзьями всегда присутствует некоторый вызов, даже своеобразная провокация, а отнюдь не академическое изложение проблемы и ее решения. Потому многие из его писем впоследствии так и стали именоваться: вызовом.
Быть может, именно поэтому он так и не осуществил своего намерения написать специальное сочинение по теории чисел. А между тем это была его любимейшая область математики. Именно ей Ферма посвятил самые вдохновенные строки своих писем. "Арифметика, - писал он, - имеет свою собственную область, теорию целых чисел. Эта теория была лишь слегка затронута Евклидом и не была достаточно разработана его последователями (если только она не содержалась в тех работах Диофанта, которых нас лишило разрушительное действие времени). Арифметики, следовательно, должны ее развить и возобновить".
Отчего же сам Ферма не боялся разрушительного действия времени? Писал он мало и всегда очень сжато. Но, самое главное, он не публиковал свои работы. При его жизни они циркулировали лишь в рукописях. Не удивительно поэтому, что результаты Ферма по теории чисел дошли до нас в разрозненном виде. Но, вероятно, прав был Булгаков: великие рукописи не горят! Работы Ферма остались. Они остались в его письмах к друзьям: лионскому учителю математики Жаку де Билли, сотруднику монетного двора Бернар Френикель де Бесси, Марсенни, Декарту, Блез Паскалю... Осталась "Арифметика" Диофанта с его замечаниями на полях, которые после смерти Ферма, вошли вместе с комментариями Баше в новое издание Диофанта, выпущенное старшим сыном Самюэлем в 1670 году. Не сохранилось только самого доказательства.
За два года до смерти Ферма отправил своему другу Каркави письмо-завещание, которое вошло в историю математики под названием «Сводка новых результатов в науке о числах». В этом письме Ферма доказал свое знаменитое утверждение для случая п = 4. Но тогда его интересовало, скорее всего, не само утверждение, а открытый им метод доказательств, названный самим Ферма бесконечным или неопределенным спуском.
Рукописи не горят. Но, если бы не самоотверженность Самюэля, собравшего после смерти отца все его математические наброски и небольшие трактаты, а затем издавшего их в 1679 году под названием «Разные математические сочинения», ученым математикам многое бы пришлось открывать и переоткрывать заново. Но и после их издания проблемы, поставленные великим математиком, пролежали без движения более семидесяти лет. И это не удивительно. В том виде, в каком они появились в печати, теоретико-числовые результаты П. Ферма предстали перед специалистами в виде серьезных, далеко не всегда понятных современникам проблем, почти без доказательств, и указаний на внутренние логические связи между ними. Возможно, в отсутствии стройной, продуманной теории и кроется ответ на вопрос, отчего сам Ферма так и не собрался издать книгу по теории чисел. Через семьдесят лет этими работами заинтересовался Л. Эйлер, и это было воистину их вторым рождением...
Математика дорого заплатила за своеобразную манеру Ферма излагать свои результаты, как будто специально опуская их доказательства. Но, если уж Ферма утверждал, что доказал ту или иную теорему, то впоследствии эту теорему обязательно доказывали. Однако с великой теоремой получилась заминка.
Загадка всегда будоражит воображение. Целые континенты покорила загадочная улыбка Джоконды; теория относительности, как ключ к загадке пространственно-временных связей стала самой популярной физической теорией века. И можно смело утверждать, что не было другой такой математической проблемы, которая была бы столь популярна, как вели__93
Научные и образовательные проблемы гражданской защиты
кая теорема Ферма. Попытки доказать ее привели к созданию обширного раздела математики - теории алгебраических чисел, но (увы!) сама теорема оставалась недоказанной. В 1908 году немецкий математик Вольфскель завещал 100000 марок тому, кто докажет теорему Ферма. Это была огромная по тем временам сумма! В один момент можно было стать не только знаменитым, но и сказочно разбогатеть! Не удивительно поэтому, что гимназисты даже далекой от Германии России наперебой бросились доказывать великую теорему. Что уж говорить о профессиональных математиках! Но ...тщетно! После Первой мировой войны деньги обесценились, и поток писем с псевдодоказательствами начал иссякать, хотя совсем, конечно, так и не прекратился. Рассказывают, что известный немецкий математик Эдмунд Ландау заготовлял печатные формуляры для рассылки авторам доказательств теоремы Ферма: "На стр. ... , в строке ... имеется ошибка". (Находить ошибку поручалось доценту.) Курьезов и анекдотов, связанных с доказательством этой теоремы, набралось столько, что из них можно было бы составить книгу. Последним анекдотом выглядит детектив А. Марининой «Стечение обстоятельств», экранизированный и прошедший по телеэкранам страны в январе 2000 года. В нем недоказанную всеми своими великими предшественниками теорему доказывает наш с вами соотечественник и претендует за это на Нобелевскую премию. Как известно, изобретатель динамита проигнорировал в своем завещании математиков, так что автор доказательства мог претендовать разве что на Филдсовскую золотую медаль - высшую международную награду, утвержденную самими математиками в 1936 году.
В классической работе выдающегося отечественного математика А.Я. Хинчина, посвященной великой теореме Ферма, даются сведения по истории этой проблемы и уделяется внимание методу, которым мог пользоваться Ферма при доказательстве своей теоремы. Приводятся доказательство для случая п = 4 и краткий обзор других важнейших результатов.
Но к моменту написания детектива, а тем более, к моменту его экранизации общее доказательство теоремы было уже найдено. 23 июня 1993 года на конференции по теории чисел в Кембридже математик из Принстона Эндрю Уайлс анонсировал, что доказательство великой теоремы Ферма получено. Но совсем не так, как «обещал» сам Ферма. Тот путь, по которому пошел Эндрю Уайлс, основывался отнюдь не на методах элементарной математики. Он занимался так называемой теорией эллиптических кривых.
Чтобы получить представление об эллиптических кривых, необходимо рассмотреть плоскую кривую, заданную уравнением третьей степени
У(х,у) = а30Х + а21х2у+ ... + а1х+ а2у + а0 = 0. (1)
Все такие кривые разбиваются на два класса. К первому классу относятся те кривые, у которых имеются точки заострения (как, например, полукубическая парабола у2 = а2-Х с точкой заострения (0; 0)), точки самопересечения (как Декартов лист х3+у3-3аху = 0, в точке (0; 0)), а также кривые, для которых многочлен Дх,у) представляется в виде
f(x^y)=:fl(x^y)■:f2(x,y),
где ^(х,у) и ^(х,у) — многочлены меньших степеней. Кривые этого класса называются вырожденными кривыми третьей степени. Второй класс кривых образуют невырожденные кривые; мы будем называть их эллиптическими. К таковым может быть отнесен, например, Локон Аньези (х2 + а2)у - а3 = 0). Если коэффициенты многочлена (1) - рациональные числа, то эллиптическая кривая может быть преобразована к так называемой канонической форме
у2= х3 + ах +Ь. (2)
В 1955 году японскому математику Ю. Танияме (1927-1958) в рамках теории эллиптических кривых удалось сформулировать гипотезу, которая открыла путь для доказательства теоремы Ферма. Но об этом не подозревал тогда ни сам Танияма, ни его коллеги. Почти двадцать лет эта гипотеза не привлекала к себе серьезного внимания и стала популярной лишь в середине 70-х годов. В соответствии с гипотезой Таниямы всякая эллиптическая
кривая с рациональными коэффициентами является модулярной. Однако пока что формулировка гипотезы мало говорит дотошному читателю. Потому потребуются некоторые определения.
С каждой эллиптической кривой можно связать важную числовую характеристику — ее дискриминант. Для кривой, заданной в канонической форме (2), дискриминант А определяется формулой
3 о
А = -(4а + 27b2).
Пусть Е — некоторая эллиптическая кривая, заданная уравнением (2), где а и b — целые числа.
Для простого числа р рассмотрим сравнение
y2 = х3 + ах + b(mod p), (3)
где а и b - остатки от деления целых чисел а и b на р, и обозначим через np число решений этого сравнения. Числа пр очень полезны при исследовании вопроса о разрешимости уравнений вида (2) в целых числах: если какое-то пр равно нулю, то уравнение (2) не имеет целочисленных решений. Однако вычислить числа пр удается лишь в редчайших случаях. (В то же время известно, что р-п| < 2Vp (теоремаХассе)).
Рассмотрим те простые числа р, которые делят дискриминант А эллиптической кривой (2). Можно доказать, что для таких р многочлен х3 + ах + b можно записать одним из двух способов:
х3 + ах + b = (х + а)2 (х + ß)(mod Р)
или
х3 + ах + b = (х + у )3 (mod p),
где а, ß, у - некоторые остатки от деления на р. Если для всех простых р, делящих дискриминант кривой, реализуется первая из двух указанных возможностей, то эллиптическая кривая называется полустабильной.
Простые числа, делящие дискриминант, можно объединить в так называемый кондуктор эллиптической кривой. Если Е - полустабильная кривая, то ее кондуктор N задается формулой
N = П PSp, (4)
p / А
где для всех простых чисел p > 5, делящих А, показатель еР равен 1. Показатели 82 и 83 вычисляются с помощью специального алгоритма.
По существу - это всё, что необходимо для понимания сути доказательства. Однако в гипотезе Таниямы присутствует непростое и в нашем случае ключевое понятие модулярности. Поэтому забудем на время об эллиптических кривых и рассмотрим аналитическую функцию f (т.е. ту функцию, которая может быть представлена степенным рядом) комплексного аргумента z, заданного в верхней полуплоскости.
Обозначим через Н верхнюю комплексную полуплоскость. Пусть N - натуральное и к - целое числа. Модулярной параболической формой веса к уровня N называется аналитическая функцияf(z), заданная в верхней полуплоскости и удовлетворяющая соотношению
f = (cz + d)kf (z) (5)
cz + d
для любых целых чисел а, b, с, d таких, что аё - bc = 1 и с делится на N. Кроме того, предполагается, что
lim f (r + it) = 0,
t ^+0
где r - рациональное число, и что
lim f (it) = 0.
t
Пространство модулярных параболических форм веса k уровня N обозначается через Sk(N). Можно показать, что оно имеет конечную размерность.
В дальнейшем нас будут особо интересовать модулярные параболические формы веса 2. Для малых N размерность пространства S2(N) представлена в табл. 1. В частности,
dimS2(2) = 0.
Размерности пространства S2(N)
(6)
Таблица 1
dimS2(N)
N<10 11 12 13 14 15 16 17 18 19 20 21 22
0 1 0 0 1 1 0 1 0 1 1 1 2
Из условия (5) следует, что % + 1) = для каждой формы f е S2(N). Стало быть, f является периодической функцией. Такую функцию можно представить в виде
f ( z ) = Z an4
q = e
(7)
n=1
Назовем модулярную параболическую форму А^) в S2(N) собственной, если ее коэффициенты - целые числа, удовлетворяющие соотношениям:
а1 = 1;
а г ■ а = а г+1 ■ р ■ с Г_1 для простого р, не делящего число N; (8)
a r ■
p
aP ={ aP
(ap ) для простого р, делящего число N;
атп = ат ап , если (т,п) = 1.
Сформулируем теперь определение, играющее ключевую роль в доказательстве теоремы Ферма. Эллиптическая кривая с рациональными коэффициентами и кондуктором N называется модулярной, если найдется такая собственная форма
f (z) = ^anq" g S2(N),
(9)
n=1
что ар = р - пр для почти всех простых чисел р. Здесь пр — число решений сравнения (3).
Трудно поверить в существование хотя бы одной такой кривой. Представить, что найдется функция А(г), удовлетворяющая перечисленным жестким ограничениям (5) и (8), которая разлагалась бы в ряд (7), коэффициенты которой были бы связаны с практически невычислимыми числами Пр, довольно сложно. Но смелая гипотеза Таниямы отнюдь не ставила под сомнение факт их существования, а накопленный временем эмпирический материал блестяще подтвердил ее справедливость. После двух десятилетий почти полного забвения гипотеза Таниямы получила в работах французского математика, члена Парижской Академии наук Андре Вейля как бы второе дыхание.
Родившийся в 1906 году А. Вейль стал со временем одним из основателей группы математиков, выступавших под псевдонимом Н. Бурбаки. С 1958 года А. Вейль становится профессором Принстонского института перспективных исследований. И к этому же периоду относится возникновение его интереса к абстрактной алгебраической геометрии. В семидесятые годы он обращается к эллиптическим функциям и гипотезе Таниямы. Монография, посвященная эллиптическим функциям, была переведена у нас, в России [1]. В своем увлечении он не одинок. В 1985 году немецкий математик Герхард Фрей предположил, что если теорема Ферма неверна, то есть если найдется такая тройка целых чисел а, Ь, с, что а" + Ьп = = с" (п > 3), то эллиптическая кривая
у2 = х (х - а")-(х - сп)
п
не может быть модулярной, что противоречит гипотезе Таниямы. Самому Фрею не удалось доказать это утверждение, однако вскоре доказательство было получено американским математиком Кеннетом Рибетом. Другими словами, Рибет показал, что теорема Ферма является следствием гипотезы Таниямы.
Он сформулировал и доказал следующую теорему:
Теорема 1 (Рибет). Пусть Е — эллиптическая кривая с рациональными коэффициентами, имеющая дискриминант
Д = П Р8
р
Д
и кондуктор
N = ПР" .
Д
Предположим, что Е является модулярной, и пусть
ад
/ ( г ) = q + 2 аАп е ^ (N)
п=2
есть соответствующая собственная форма уровня N. Фиксируем простое число £, и
N
N = . (11)
П р
, 1
р:еР =1;— " 8 р
Тогда существует такая параболическая форма
ОТ
/(г) = 2 dnqn е N)
п=1
пусть
с целыми коэффициентами, что разности ап - dn делятся на I для всех 1 < п<ад.
Ясно, что если эта теорема доказана для некоторого показателя, то тем самым она доказана и для всех показателей, кратных п. Так как всякое целое число п > 2 делится или на 4, или на нечетное простое число, то можно поэтому ограничиться случаем, когда показатель равен либо 4, либо нечетному простому числу. Для п = 4 элементарное доказательство теоремы Ферма было получено сначала самим Ферма, а потом Эйлером. Таким образом, достаточно изучить уравнение
а1 + Ь1 =с1, (12)
в котором показатель I есть нечетное простое число.
Теперь теорему Ферма можно получить простыми вычислениями (2).
Теорема 2. Из гипотезы Таниямы для полустабильных эллиптических кривых следует последняя теорема Ферма.
Доказательство. Предположим, что теорема Ферма неверна, и пусть есть соответствующий контрпример (как и выше, здесь I - нечетное простое число). Применим теорему 1 к эллиптической кривой
у2 = х (х - ае) (х - с1).
Несложные вычисления показывают, что кондуктор этой кривой задается формулой
N = П " . (13)
р
аЬс
Сравнивая формулы (11) и (13), мы видим, что N = 2. Следовательно, по теореме 1 найдется параболическая форма
(г) = 2 dnqn,
п=1
лежащая в пространстве 82(2). Но в силу соотношения (6) это пространство нулевое. Поэтому dn = 0 для всех п. В то же время а^ = 1. Стало быть, разность аг - dl = 1 не делится на I и мы приходим к противоречию. Таким образом, теорема доказана.
Эта теорема давала ключ к доказательству великой теоремы Ферма. И все же сама гипотеза оставалась все ещё недоказанной.
Анонсировав 23 июня 1993 года доказательство гипотезы Таниямы для полустабильных эллиптический кривых, к которым относятся и кривые вида (8), Эндрю Уайлс поторопился. Математикам было рано праздновать победу.
Быстро закончилось теплое лето, осталась позади дождливая осень, наступила зима. Уайлс писал и переписывал набело окончательный вариант своего доказательства, но дотошные коллеги находили в его работе все новые и новые неточности. И вот, в начале декабря 1993 года, за несколько дней до того, как рукопись Уайлса должна была пойти в печать, в его доказательстве были вновь обнаружены серьезные пробелы. И тогда Уайлс понял, что за день-два он уже не сможет ничего исправить. Здесь требовалась серьезная доработка. Публикацию работы пришлось отложить. Уайлс обратился за помощью к Тейлору. «Работа над ошибками» заняла больше года. Окончательный вариант доказательства гипотезы Таниямы, написанный Уайлсом в сотрудничестве с Тейлором, вышел в свет лишь летом 1995 года.
В отличие от героя А. Марининой Уайлс не претендовал на Нобелевскую премию, но, все же... какой-то наградой его должны были отметить. Вот только какой? Уайлсу в то время уже перевалило на пятый десяток, а золотые медали Филдса вручаются строго до сорока лет, пока еще не пройден пик творческой активности. И тогда для Уайлса решили учредить специальную награду - серебряный знак Филдсовского комитета. Этот знак и был вручен ему на очередном конгрессе по математике в Берлине.
А что же дальше?
Из всех проблем, способных с большей или меньшей вероятностью занять место великой теоремы Ферма, наибольшие шансы имеет проблема плотнейшей упаковки шаров. Проблему плотнейшей упаковки шаров можно сформулировать как задачу о том, как наиболее экономно сложить из апельсинов пирамиду. Молодым математикам такая задача досталась в наследство от Иоганна Кеплера. Проблема родилась в 1611 году, когда Кеплер написал небольшое сочинение «О шестиугольных снежинках». Интерес Кеплера к расположению и самоорганизации частиц вещества и привел его к обсуждению другого вопроса — о плотней-шей упаковке частиц, при которой они занимают наименьший объем. Если предположить, что частицы имеют форму шаров, то ясно, что как бы они ни располагались в пространстве, между ними неизбежно останутся зазоры, и вопрос состоит в том, чтобы объем зазоров свести к минимуму. В работе [4], например, утверждается (но не доказывается), что такой формой является тетраэдр, оси координат внутри которого определяют базисный угол ортогональности в 109о28', а не 90о. Эта проблема имеет огромное значение для физики элементарных частиц, кристаллографии и др. разделов естествознания.
Литература
1. Вейль А. Эллиптические функции по Эйзенштейну и Кронекеру. - М., 1978.
2. Соловьев Ю.П. Гипотеза Таниямы и последняя теорема Ферма // Соросовский образовательный журнал. - № 2. - 1998. - С. 78-95.
3. Сингх С. Великая теорема Ферма. История загадки, которая занимала лучшие умы мира на протяжении 358 лет / Пер. с англ. Ю.А. Данилова. М.: МЦНМО. 2000. - 260 с.
4. Мирмович Э.Г., Усачёва Т.В. Алгебра кватернионов и трёхмерные вращения // Настоящий журнал № 1(1), 2008. - С. 75-80.