Научная статья на тему 'Synthesis and structure of triphenylbut-2-enyl- and triphenylmetoxymethylphosphonium hexachlorozirconates'

Synthesis and structure of triphenylbut-2-enyl- and triphenylmetoxymethylphosphonium hexachlorozirconates Текст научной статьи по специальности «Химические науки»

CC BY
33
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
TETRAALKYLPHOSPHONIUM HEXACHLOROZIRCONATES / CRYSTAL STRUCTURE / X-RAY ANALYSIS / ГЕКСАХЛОРЦИРКОНАТЫ ТРИФЕНИЛОРГАНИЛФОСФОНИЯ / КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА / РСА

Аннотация научной статьи по химическим наукам, автор научной работы — Sharutin Vladimir V., Sharutina Olga K., Tarasova Natalya M., Lobanova Evgeniya V., Andreev Pavel V.

Triphenylbut-2-enyl- (1a) and triphenylmetoxymethylphosphonium (1b) hexachlorozirconates have been synthesized by the reactions of zirconium tetrachloride with the triphenylalkylphosphonium chlorides in acetonitrile for the first time and characterized by the IR, NMR spectroscopy and X-ray analysis. The most intensive bands in IR spectra correspond to the valence vibrations of the CAr-H and the СAr-СAr bonds in the triphenylalkylphosphonium cations. The splitting of carbon atoms signals is observed due to the presence of 13C - 31P coupling. SSCC for carbon atoms directly connected with phosphorus are about 48-85 Hz. According to the X-Ray data, compound 1a crystallizes in the monoclinic crystal lattice (the P21/c space symmetry group). Hexachlorozirconate 1b forms the triclinic crystals belong to the P-1 space symmetry group. Crystals of compound 1a is characterized by the less dense molecular packing in the crystal lattice in comparison with compound 1b. Calculated densities for the structures 1a,b are 1.355 g/cm3 and 1.466 g/сm3, respectively. Structural organization of the complexes in crystals is caused by the formation of hydrogen bonds between chlorine atoms of the anion and hydrogens of phenyl and alkyl groups of the cations. The phosphorus atoms in the triphenylalkylphosphonium cations have distorted tetrahedral coordination (CPC 107.01(4)°-114.10(6)° for 1а, 107.38(9)°-112.06(7)° for 1b, the P-С bonds are 1.790(14)-1.865(14) Å for 1а, 1.7838(12)-1.8293(18) Å for 1b). In centrosymmetric octahedral anions [ZrCl6]2- (trans-ClZrCl 180°) the Zr-Cl distances are 2.4654(15)-2.4952(17) Å for 1а and 2.4641(14)-2.4711(12) Å for 1b.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

СИНТЕЗ И СТРОЕНИЕ ГЕКСАХЛОРЦИРКОНАТОВ ТРИФЕНИЛБУТ-2-ЕНИЛ- И ТРИФЕНИЛМЕТОКСИМЕТИЛФОСФОНИЯ

Взаимодействием тетрахлорида циркония с хлоридами трифенилорганилфосфония в ацетонитриле впервые синтезированы и охарактеризованы методами ИК-, ЯМР-спектроскопии и рентгеноструктурного анализа гексахлорцирконаты трифенил(бут-2-енил)фософония (1а) и трифенилметоксиметилфосфония (1b). В ИК спектрах синтезированных соединений наиболее интенсивными являются полосы, относящиеся к валентным колебаниям CAr-H и СAr-СAr связей ароматических колец трифенилорганилфосфониевых катионов. В спектрах 13С ЯМР исследуемых комплексов наблюдается характерное для фосфорсодержащих органических соединений расщепление сигналов атомов углерода ароматических колец и алкильных групп за счет взаимодействий с атомом 31Р, КССВ атомов углерода, непосредственно связанных с фосфором составляют 48-85 Гц. По данным РСА соединение 1а кристаллизуется в моноклинной кристаллической решетке (пространственная группа симметрии P21/c), для гесахлорцирконата 1b характерна триклинная кристаллическая решетка и пространственная группа симметрии - P-1. Кристалл соединения 1а характеризуется менее плотной упаковка молекул в кристаллической решетке по сравнению с соединением 1b, вычисленная плотность для данных структур составляет 1,355 г/см3 1,466 г/см3 соответственно. Структурная организация комплексов в кристаллах обусловлена образованием водородных связей между атомами хлора аниона и водорода фенильных и алкильных групп катионов. Атомы фосфора в катионах трифенилорганилфосфония имеют искаженную тетраэдрическую координацию (углы CPC составляют 107,01(4)°-114,10(6)° для 1а, 107,38(9)°-112,06(7)° Å для 1b, длины связей P-С равны 1,790(14)-1,865(14) Å для 1а, 1,7838(12)-1,8293(18) Å для 1b). В центросимметричных октаэдрических гексахлорцирконатных анионах (транс ClZrCl 180°) расстояния Zr-Cl составляют 2,4654(15)-2,4952(17) Å для 1а и 2,4641(14)-2,4711(12) Å для 1b.

Текст научной работы на тему «Synthesis and structure of triphenylbut-2-enyl- and triphenylmetoxymethylphosphonium hexachlorozirconates»

DOI: 10.6060/ivkkt.20196206.5885

УДК: 546.185+546.831.4+547.53.024+548.312.2

СИНТЕЗ И СТРОЕНИЕ ГЕКСАХЛОРЦИРКОНАТОВ ТРИФЕНИЛБУТ-2-ЕНИЛ-И ТРИФЕНИЛМЕТОКСИМЕТИЛФОСФОНИЯ

В.В. Шарутин, О.К. Шарутина, Н.М. Тарасова, Е.В. Лобанова, П.В. Андреев

Владимир Викторович Шарутин, Ольга Константиновна Шарутина, Наталья Михайловна Тарасова*, Евгения Вадимовна Лобанова

Кафедра теоретической и прикладной химии, Южно-Уральский государственный университет, пр. Ленина, 76, Челябинск, Российская Федерация, 454080

E-mail: sharutinvv@susu.ru, sharutinaok@susu.ru, tarasovanm@susu.ru *, ev_lobanova@inbox.ru Павел Валерьевич Андреев

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, пр. Гагарина, 23, Нижний Новгород, Российская Федерация, 603950 E-mail: andreev@phys.unn.ru

Взаимодействием тетрахлорида циркония с хлоридами трифенилорганилфосфо-ния в ацетонитриле впервые синтезированы и охарактеризованы методами ИК-, ЯМР-спек-троскопии ирентгеноструктурного анализа гексахлорцирконаты трифенил(бут-2-енил)фо-софония (1а) и трифенилметоксиметилфосфония (1b). В ИК спектрах синтезированных соединений наиболее интенсивными являются полосы, относящиеся к валентным колебаниям CAr-H и CAr-CAr связей ароматических колец трифенилорганилфосфониевых катионов. В спектрах 13С ЯМР исследуемых комплексов наблюдается характерное для фосфорсодержащих органических соединений расщепление сигналов атомов углерода ароматических колец и алкильных групп за счет взаимодействий с атомом 31Р, КССВ атомов углерода, непосредственно связанных с фосфором составляют 48-85 Гц. По данным РСА соединение 1а кристаллизуется в моноклинной кристаллической решетке (пространственная группа симметрии P21/c), для гесахлорцирконата 1b характерна триклинная кристаллическая решетка и пространственная группа симметрии -P-1. Кристалл соединения 1а характеризуется менее плотной упаковка молекул в кристаллической решетке по сравнению с соединением 1b, вычисленная плотность для данных структур составляет 1,355 г/см3 1,466 г/см3 соответственно. Структурная организация комплексов в кристаллах обусловлена образованием водородных связей между атомами хлора аниона и водорода фенильных и алкильных групп катионов. Атомы фосфора в катионах трифенилорганилфосфония имеют искаженную тет-раэдрическую координацию (углы CPC составляют 107,01(4)°-114,10(6)° для 1а, 107,38(9)°-112,06(7)°Â для 1b, длины связей P-Cравны 1,790(14)-1,865(14) Â для 1а, 1,7838(12)-1,8293(18) Â для 1b). В центросимметричных октаэдрических гексахлорцирконатных анионах (транс ClZrCl 180°) расстояния Zr-Cl составляют 2,4654(15)-2,4952(17) Â для 1а и 2,4641(14)-2,4711(12) Â для 1b.

Ключевые слова: гексахлорцирконаты трифенилорганилфосфония, кристаллическая структура, РСА

SYNTHESIS AND STRUCTURE OF TRIPHENYLBUT-2-ENYL-AND TRIPHENYLMETOXYMETHYLPHOSPHONIUM HEXACHLOROZIRCONATES

V.V. Sharutin, O.K. Sharutina, N.M. Tarasova, E.V. Lobanova, P.V. Andreev

Vladimir V. Sharutin, Olga K. Sharutina, Natalya M. Tarasova*, Evgeniya V. Lobanova

Theoretical and Applied Chemistry Department, South Ural State University, Lenin ave., 76, Chelyabinsk, 454080, Russia

E-mail: sharutinvv@susu.ru, sharutinaok@susu.ru, tarasovanm@susu.ru *, ev_lobanova@inbox.ru Pavel V. Andreev

Lobachevsky State University, Gagarin ave., 23, Nizhniy Novgorod, 603950, Russia E-mail: andreev@phys.unn.ru

Triphenylbut-2-enyl- (1a) and triphenylmetoxymethylphosphonium (1b) hexachlorozir-conates have been synthesized by the reactions of zirconium tetrachloride with the triphenyl-alkylphosphonium chlorides in acetonitrile for the first time and characterized by the IR, NMR spectroscopy and X-ray analysis. The most intensive bands in IR spectra correspond to the valence vibrations of the CAr-H and the CAr-CAr bonds in the triphenylalkylphosphonium cations. The splitting of carbon atoms signals is observed due to the presence of 13C - 3 P coupling. SSCC for carbon atoms directly connected with phosphorus are about 48-85 Hz. According to the X-Ray data, compound 1a crystallizes in the monoclinic crystal lattice (the P21/c space symmetry group). Hexachlorozirconate 1b forms the triclinic crystals belong to the P-1 space symmetry group. Crystals of compound 1a is characterized by the less dense molecular packing in the crystal lattice in comparison with compound 1b. Calculated densities for the structures 1a,b are 1.355 g/cm3 and 1.466 g/cm3, respectively. Structural organization of the complexes in crystals is caused by the formation of hydrogen bonds between chlorine atoms of the anion and hydrogens ofphenyl and alkyl groups of the cations. The phosphorus atoms in the triphenylalkylphosphonium cations have distorted tetrahedral coordination (CPC 107.01(4)°-114.10(6)° for 1а, 107.38(9)°-112.06(7)°for 1b, the P-C bonds are 1.790(14)-1.865(14) A for 1а, 1.7838(12)-1.8293(18) A for 1b). In centrosym-metric octahedral anions [ZrCl6]2- (trans-ClZrCl 180°) the Zr-Cl distances are 2.4654(15)-2.4952(17) A for 1а and 2.4641(14)-2.4711(12) A for 1b.

Key words: tetraalkylphosphonium hexachlorozirconates, crystal structure, X-Ray analysis

Для цитирования:

Шарутин В.В., Шарутина О.К., Тарасова Н.М., Лобанова Е.В., Андреев П.В. Синтез и строение гексахлорцирконатов три-фенилбут-2-енил- и трифенилметоксиметилфосфония. Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 6. С. 36-40 For citation:

Sharutin V.V., Sharutina O.K., Tarasova N.M., Lobanova E.V., Andreev P.V. Synthesis and structure of triphenylbut-2-enyl- and triphenylmetoxymethylphosphonium hexachlorozirconates. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2019. V. 62. N 6. P. 36-40

INTRODUCTION

Many achievements in the field of organic chemistry are associated with the use of transition metal complexes. Among them, zirconium compounds have been described as effective catalysts for transformation of unsaturated hydrocarbons and organometal-lic compounds [1]. Zirconium (IV) complexes exhibit high catalytic activity in the polymerization reactions of ethylene [2-9], hydrogenation of olefins [10] and en-antioselective alkylation of aromatic compounds [11, 12]. Furthermore, the reactions of stereoselective carbalu-mination of alkenes and alkynes with participation of zirconium complexes (ZACA-reactions) are widely applied [13-21]. It is also worth noting that ZrCU itself is widely used in catalysis [22]. On the other hand, moisture-resistant hexachlorozirconate complexes, for example tetraalkylphosphonium hexachlorozirconates, can be used to prepare multicomponent catalysts. Among them only ¿«(tetraphenylphosphonium) hexa-chlorozirconate has been structurally characterized [22-25]. In the present study the zirconium complexes [Ph3PR]+2[ZrCl6]2-, R = CH2CH=CHCH2 (1a), CH2OMe (1b) have been synthesized and structurally characterized for the first time.

2 [Ph3PR]Cl + ZrCl4 ^ [Ph3PR]2[ZrCl6]

R = CH2CH=CHMe (1a), C^OMe (1b)

EXPERIMENTAL

IR-spectra of complexes 1a and 1b were obtained with the use of a IR-Fourier spectrometer Shi-madzu IR Affinity-1S in the KBr pellets.

The 1H NMR and 13C NMR spectra were recorded on a Bruker Avance-500 500 and 126 MHz apparatus (TMS as an internal standard).

X-ray diffraction study. Diffraction data of 1a and 1b were collected on a Bruker D8 QUEST dif-fractometer with graphite-monochromated Mo Ka radiation (^ = 0.71073 Â). Collection, data editing and refinement of element cell parameters, as well as absorption record were carried up on programs SMART and SAINT-Plus [26]. All calculations on determination and definition of structures were performed using the SHELXTL/PC [27], OLEX2 programs [28]. The structure was solved by direct methods and refined by least-squares method in anisotropic approximation for non-hydrogen atoms. The main crystallographic data and results of structure refinement are presented in Table 1, and main bond distances and valent angles are presented in Table 2. Full tables of atomic coordinates, bond lengths, and valence angles are deposited in the Cambridge Crystallographic Data Centre (CCDC 1587676 (for 1a) and CCDC 1587677 (for 1b) www .ccdc.cam.ac.uk/data_reque st/cif).

General procedure of synthesis

To the solution of 0.86 mmol triphenylbut-2-enylphosphonium chloride (or (methoxymethyl)tri-phenylphosphonium chloride) in 15 mL acetonitrile (MeCN) 100 mg (0.43 mmol) ZrCU was added under stirring. Colorless crystals were observed during slowly concentrating the clear solution to 3 mL. They were filtered and dried.

[Ph3PCH2CH=CHCH3]+2[ZrCl6]- (1a). 351 mg (87%) (colorless transparent crystals, mp (decomp.) 244.8-245.7 °С). IR-spectra (v, cm1): 509 (s), 690 (s), 719 (s), 1111 (s), 1437 (Ph), 1483 (m), 1587 (m), 2897 (m), 2937 (m) 3026 (Cat-H), 3057 (Cat-H). 1H NMR (DMSO-J6): 1.59 (6H, t, 3J = 5.99 Hz, CH3); 4.61 (4Н, dd, 3J = 16.02 Hz, 3J = 7.17 Hz, PCH2); 5.34 (2Н, m, =СН-); 5.74 (2Н, m, =СН-); 7.74-7.84 (24 Н, m, СНаг.); 7.887.94 (6Н, м, СНаг). 13С NMR (DMSO-J6): 17.92 (2С, d, 4J = 2.68 Hz, CH3); 25.52 (2С, d, J = 48.80 Hz, PCH2); 116.3 (2С, d, 3J = 9.91 Hz, -CH=) 118.40 (d, J = 85.30 Hz, 6Саг); 130.20 (d, 2J = 12.44 Hz, 12Са.); 133.80 (d, 3J = 9.88 Hz, 12Саг); 134.90 (d, 4J = 2.65 Hz, 6Саг); 135.9 (2С, d, 2J = 13.72 Hz, -CH=). Found, %: С 56.21, Н 4.73. C44H44Cl6P2Zr. Calculated, %: С 56.29, Н 4.69.

[Ph3PCH2OMe]+2[ZrCl6]- (1b) 359 mg (91%) (colorless transparent crystals, mp (decomp.) 232.6 - 233.4°С). IR-spectra (v, cm1): 501 (s), 530 (s), 688 (s), 1112 (s), 1437 (Ph), 2827 (w), 2929 (w), 3055 (Cat-H), 3080 (Cat-H). 1H NMR (DMSO-J6): 3.49 (3Н, d, 4J = 0.6 Hz, ОСН3); 5.72 (2Н, d, 2J = 4.9 Hz, РСН2); 7.70-7.87 (12Н, m, СНаг); 7.89-7.98 (3Н, m, СНаг). 13С NMR (DMSO-J6): 61.82 (d, 3J = 13.0 Hz, ОСН3); 64.50 (d, 1J = 66.9 Hz, РСН2); 116.78 (d, J = 85.6 Hz, 3Саг.); 130.31 (d, 2J = 12.6 Hz, 6Саг); 133.95 (d, 3J = 10.2 Hz, 6Саг); 135.32 (d, 4J = 2.8 Hz, 3Са.). Found, %: С 52.16, Н 4.41. C40H40CkO2P2Zr. Calculated, %: С 52.29, Н 4.36.

Table 1

Crystal data, experimental parameters and structure

refinement parameters for 1a and 1b Таблица 1. Кристаллические данные, экспериментальные параметры и параметры уточнения струк-

Z 2 1

yO(calc.), g/sm3 1.355 1.466

mm4 0.686 0.760

F(000) 960 468

Crystal size, mm 0.78x0.41x0.40 0.35x0.24x0.13

28 Range of data collection, deg 5.96-72.64 5.96-94.04

Range of refraction indices -18 < h < 18, -27 < k < 27 , -21 < l < 21 -21 < h < 20, -21 < k < 21, -22 < l < 22

Measured reflections 86799 163988

Independent re- 11147 (Rint = 18779 (Rint =

flections 0.0386) 0.0392)

Refinement 358 254

variables

GOOF 1.042 1.050

R factors for F2 > R1 = 0.0411, wRi = R1 = 0.0477, WR1 =

2ct(F2) 0.0815 0.1113

R factors for all R1 = 0.0666, WR1 = R1 = 0.0891, WR1 =

reflections 0.0925 0.1367

Residual electron

density (min/max), e/A3 -0.679/0.679 -0.998 / 0.824

Table 2

Selected bond lengths and valent angles in 1a and 1b

Таблица 2. Выбранные длины связей и валентных

туры для 1a и 1b

1a 1b

M 938.65 918.58

T, K 293(2) 293(2)

Crystal system Monoclinic Triclinic

Space group P21/c Р-1

a, Â 11.233(10) 10.240(5)

b, Â 16.284(12) 10.493(6)

c, Â 12.691(10) 10.805(6)

a, deg 90 80.19(3)

P, deg 97.60(4) 69.35(2)

7, deg 90 73.96(2)

V, Â3 2301(3) 1040.6(10)

углов в 1a и 1b

Bond d, Â Angle a, grad

1a

Zr(1)-Cl(3) 2.4654(15) Cl(3)Zr(1)Cl(3)* 180.0

Zr(1)-Cl(3)* 2.4654(15) Cl(3)Zr(1)Cl(1)* 90.13(6)

Zr(1)-Cl(1)* 2.4785(15) Cl(3)*Zr(1)Cl(1)* 89.87(6)

Zr(1)-Cl(1) 2.4785(15) Cl(3)Zr(1)Cl(1) 89.87(6)

Zr(1)-Cl(2)* 2.4951(17) Cl(3)*Zr(1)Cl(1) 90.13(6)

Zr(1)-Cl(2) 2.4952(17) Cl(2)*Zr(1)Cl(2) 180.0

P(1)-C(27B) 1.790(14) Cl(3)Zr(1)Cl(1) 89.87(6)

P(1)-C(11) 1.7973(19) Cl(3)*Zr(1)Cl(1) 90.13(6)

P(1)-C(1) 1.806(2) Cl(3)Zr(1)Cl(2) 90.53(5)

P(1)-C(21) 1.808(2) Cl(3)*Zr(1)Cl(2) 89.47(5)

P(1)-C(27A) 1.865(14) Cl(1)Zr(1)Cl(2) 90.25(4)

Symmetry codes: *) -x+1, -y+1, -z+2

1b

Zr(1)-Cl(3) 2.4641(14) Cl(3)Zr(1)Cl(3)* 180.00(2)

Zr(1)-Cl(3)* 2.4642(14) Cl(3)Zr(1)Cl(2)* 90.59(4)

Zr(1)-Cl(2)* 2.4673(10) Cl(3)*Zr(1)Cl(2)* 89.41(4)

Zr(1)-Cl(2) 2.4673(10) Cl(3)Zr(1)Cl(2) 89.41(4)

Zr(1)-Cl(1) 2.4711(12) Cl(3)*Zr(1)Cl(2) 90.59(4)

Zr(1)-Cl(1)* 2.4711(12) Cl(2)*Zr(1)Cl(2) 180.0

P(1)-C(1) 1.7838(15) Cl(3)Zr(1)Cl(1) 90.01(4)

P(1)-C(21) 1.7872(15) Cl(3)*Zr(1)Cl(1) 89.99(4)

P(1)-C(11) 1.7927(16) Cl(2)*Zr(1)Cl(1) 90.12(4)

P(1)-C(7B) 1.8293(18) Cl(2)Zr(1)Cl(1) 89.88(4)

P(1)-C(7A) 1.8293(18) Cl(3)Zr(1)Cl(1)* 89.99(4)

Symmetry codes: *) -x+1, -y, -z+2

RESULTS AND DISCUSSION

Complexes 1a,b have been synthesized from zirconium tetrachloride and triphenylalkylphospho-nium chlorides in MeCN, wherein zirconium chloride was added to an acetonitrile solution of triphenyl-alkylphosphonium chloride:

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2 [PhsPRJCl + ZrCl4 ^ [PhsPRMZrCy R = CH2CH=CHMe (1a), C^OMe (1b) The formation of large colorless crystals of the desired product was observed during the slow evaporation of the solution.

According to the X-ray data, the crystals consist of tetrahedral cations of triphenylalkylphospho-nium (the CPC angles 107.01(4)°-114.10(6)° for 1a, 107.38(9)°-112.06(7)° for 1b, the P-C bonds are 1.790(14)-1.865(14) Á for 1a, 1.7838(12)-1.8293(18) Á for 1b) and the centrosymmetric hexachlorozir-conate anion, with ideal octahedral shape (trans-ClZrCl angles are 180°), in which the Zr-Cl distances are 2.4654(15)-2.4952(17) Á for 1a and 2.4641(14) -2.4711(12) Á for 1b (Figs. 1 and 2). It is slightly larger than the sum of the covalent zirconium and chlorine semidiameters (2.44 Á [34]).

The crystals of compounds 1a,b are characterized by the presence of statistical disorder. In the crystal the cation of compound 1a contains the disordered butenylic fragment, in which the probability of occupancy of positions A and B is 47% and 53%, respectively. The cation in the crystal of compound 1b contains disordered methoxymethylic fragment, in which the probability of occupancy of positions A and B is 62% and 48%, respectively.

The structural organization of the crystals 1a and 1b is caused by intermolecular hydrogen bonds Cl-H (2.73-2.89 Á and 2.80-2.92 Á, respectively) (Figs. 3 and 4).

Fig. 1. The structure of complex 1a Рис. 1. Строение комплекса 1а

Fig. 2. The structure of complex 1b Рис. 2. Строение комплекса 1b

X

Fig. 3. The intramolecular hydrogen bonds of compound 1a Рис. 3. Внутримолекулярные водородные связи соединения 1а

Fig. 4. The intramolecular hydrogen bonds of compound 1b Рис. 4. Внутримолекулярные водородные связи соединения 1b

CONCLUSION

Thereby, the [Ph3PR]+2[ZrCl6]2- complexes have been synthesized by the reaction of triphenyl(meth-oxymethyl)phosphonium and triphenyl(but-2-enyl)phos-phonium chlorides with ZrCl4. The structures of the obtained compounds are fully characterized by spectral methods and the X-ray analysis. According to the obtained results, the crystals consist of tetrahedral tri-phenylalkylphosphonium cations and centrosymmetric octahedral ZrCb- anions. Alkylphosphonium cations are characterized by the presence of statistical disorder in the butenylic and methoxymethylic fragments.

This work was supported by the Ministry of Education and Science of the Russian Federation [grantnumber 4.6151.2017/8.9].

REFERENCES ЛИТЕРАТУРА

1. Rogers J.S., Bazan G.C., Sperry C.K. Ethoxyboratabenzene zirconium complexes: catalysts for a-olefin production. J. Am. Chem. Soc. 1997. V. 119. P. 9305-9306. DOI: 9305. 10.1021/ja971976n.

2. Wang KT., Wang Y.X, Wang B., Li Y.G., Li Y.S. Novel zirconium complexes with constrained cyclic ß-enaminoketonato ligands: improved catalytic capability toward ethylene polymerization. Dalton Trans. 2016. V. 45. P. 10308-10318. DOI: 10.1039/c6dt01391k

3. Yu S. M., Tritschler U., Göttker-Schnetmann Ь, Mecking S. Zirconium enolatoimine complexes in olefin polymerization. Dalton Trans. 2010. V. 39. P. 4612-4618. DOI: 10.1039/b916289e.

4. Fraser D.A.X., Turner Z.R., Buffet J.C., O'Hare D. Titanium and zirconium permethylpentalene complexes, Pn*MCpRX, as ethylene polymerization catalysts. Organometallics. 2016. V. 35. P. 2664-2674. DOI: 10.1021/acs.organomet.6b00417.

5. Xu X., Kehr G., Daniliuc C.G., Erker G. 1,1-Carbozirconation: unusual reaction of an alkyne with a methyl zirconocene cation and subsequent frustrated Lewis pair like reactivity. Angew. Chem. Int. Ed. 2013. V. 52. P. 13629-13632. DOI: 10.1002/anie.201307493.

6. Nakata N., Toda T., Saito Y., Watanabe T., Ishii A. Highly active and isospecific styrene polymerization catalyzed by zirconium complexes bearing aryl-substituted [OSSO]-type bis(phenolate) ligands. Polymers. 2016. V. 8. N 2. 31. DOI: 10.3390/polym8020031.

7. Theaker G.W., Morton C., Scott P. Zirconium-catalyzed polymerization of a styrene: catalyst reactivation mechanisms using alkenes and dihydrogen. Macromolecules. 2011. V. 44. N 6. P. 1393-1404. DOI: 10.1021/ma102835p.

8. Holtrichter-Rößmann Th., Häger I., Daniliiic C.-G., Fröhlich R., Bergander К, Troll C., Rieger B., Rojas R.S., Würthwei E.-U. Catalytically active N acylamidine-zirconium complexes: synthesis, structures, and application in ethylene polymerization. Or-ganometallics. 2016. V. 35. N 11. P. 1906-1915. DOI: 10.1021/acs.organomet.6b00240.

9. Yuan Sh., Wang L. Hua Y., Zhang J., Sun W.H Arylimido zirconium and titanium complexes: characteristic structures and application in ethylene polymerization. Z. Naturforsch., B: Chem. Sci. 2016. V. 71. P. 1019-1024. DOI: 10.1515/znb-2016-0084.

10. Xu X., Kehr G., Daniliuc C.G., Erker G. Stoichiometric reactions and catalytic hydrogenation with a reactive intramolecular Zr+/amine frustrated Lewis pair. J. Am. Chem. Soc. 2015. V. 137. P. 4550-4557. DOI: 10.1021/jacs.5b01623.

11. Blay G., Fernandez I, Monleon A., Pedro J.R., Vila C. Highly enantioselective Friedel-Crafts alkylations of indoles with simple enones catalyzed by zirconium(IV)-BINOL complexes. Org. Lett. 2007. V. 9. N 13. P. 2601-2604. DOI: 10.1021/ol0710820.

12. Blay G., Fernandez I., Monleon A., Pedro J.R., Vila C. Enantiose-lective zirconium-catalyzed Friedel-Crafts alkylation of pyrrole with

trifluoromethyl ketones. Org. Lett. 2009. V. 11. N 2. P. 441-444. DOI: 10.1021/ol802509m.

13. Pitsinos E., Athinaios N., Xu Z.Q., Wang G.W., Negishi E.I.

Total synthesis of (+)-scyphostatin featuring an enantioselective and highly efficient route to the side chain via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA). Chem. Commun. 2010. V. 46. P. 2200-2202. DOI: 10.1039/b920261g.

14. Xu Zh., Negishi E. Efficient and stereoselective synthesis of yellow scale pheromone via alkyne haloboration, Zr-catalyzed asymmetric carboalumination of alkenes (ZACA reaction), and Pd-catalyzed tandem Negishi coupling. Org Lett. 2008. V. 10. N 19. P. 4311-4314. DOI: 10.1021/ol8017566.

15. Zhu G., Liang B., Negishi E. Efficient and selective synthesis of (S,R,R,S,R,S)- 4,6,8,10,16,18-hexamethyldocosane via Zr-cata-lyzed asymmetric carboalumination of alkenes (ZACA reaction). Org Lett. 2008. V. 10. P. 1099-1101. DOI: 10.1021/ol703056u.

16. Parfenova L.V., Berestova T.V., Tyumkina T.V., Kovyazin P.V., Khalilov L.M., Whitby R.J., Dzhemilev U.M. Enantiose-lectivity of chiral zirconocenes as catalysts in alkene hydro-, carbo-and cycloalumination reactions. Tetrahedron. Asymmetry. 2010. V. 21. N 3. P. 299-310. DOI: 10.1016/j.tetasy .2010.01.001.

17. Xu S., Lee Ch.-T., Wang G., Negishi E. Widely applicable synthesis of enantiomerically pure tertiary alkyl-containing 1-alkanols by zirconium-catalyzed asymmetric carboalumination of alkenes and palladium- or copper-catalyzed cross-coupling. Chem. Asian J. 2013. V. 8. N 8. P. 1829-1835. DOI: 10.1002/asia.201300311.

18. Xu S., Oda A., Negishi E. Enantioselective synthesis of chiral isotopomers of 1 -alkanols by a ZACA-Cu-catalyzed cross-coupling protocol. Chem. Eur. J. 2014. V. 20. P. 16060-16064. DOI: 10.1002/chem.201405053.

19. Xu S., Oda A., Kamada H., Negishi E. Highly enantioselective synthesis of y-, 5-, and s-chiral 1-alkanols via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA)-Cu- or Pd-catalyzed cross-coupling. Proc. Natl. Acad. Sci. U. S. A. 2014. V. 111. P. 8368-8373. DOI: 10.1073/pnas.1401187111.

20. Xu Sh., Negishi E. Zirconium-catalyzed asymmetric carboalumi-nation of unactivated terminal alkenes. Acc. Chem. Res. 2016. V. 49. P. 2158-2168. DOI: 10.1021/acs.accounts.6b00338.

21. Ramazanov I.R., Kadikova R.N., Saitova Z.R., Dzhemilev U.M. A Route to 1 -alkenylphosphine derivatives via the Zr-catalyzed reaction of 1 -alkynylphosphines with triethylaluminum. Asian J. Org. Chem. 2015. V. 4. P. 1301-1307. DOI: 10.1002/ajoc.201500274.

22. Mo L.-P., Zhang Zh.-H. Recent applications of zirconium compounds as catalysts or reagents in organic synthesis. Curr. Org. Chem. 2011. V. 15. N 22. P. 3800-3823. DOI: 10.2174/138527211797884520.

23. Chen L., Cotton F.A., Wojtczak W.F. Synthesis and structural characterization of compounds containing the [Zr6Cl18H5]3- cluster anion. Determination of the number of cluster hydrogen atoms. Inorg. Chem. 1997. V. 36. P. 4047-4054. DOI: 10.1021/ic960173i.

24. Gauch F., Strahle J. Synthese und kristallstrukturen der mehrkernigen rhenium-nitrido-komplexe [Re2N2Cl4(PMe2Ph)4(MeCN)] und [Re4№Cl9(PMe2Ph)6]. Z. Anorg. Allg. Chem. 2000. V. 626. N 5. P. 1153-1158. DOI: 10.1002/(SICI)1521-3749(200005)626:5< 1153: AID-ZAAC1153>3.0.CO;2-0.

25. Minasian S.G., Boland K.S., Feller R.K., Gaunt A. J., Kozimor S.A., May I., Reilly S.D., Scott B.L., Shuh D.K Synthesis and structure of (Ph4P)2MCl6 (M = Ti, Zr, Hf, Th, U, Np, Pu). Inorg. Chem. 2012. V. 51. P. 5728-5736. DOI: 10.1021/ic300179d.

26. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA. 1998.

27. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA. 1998.

28. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009. V. 42. P. 339-341. DOI: 10.1107/S0021889808042726.

Поступила в редакцию (Received) 07.08.2018 Принята к опубликованию (Accepted) 12.03.2019

i Надоели баннеры? Вы всегда можете отключить рекламу.