DOI: 10.6060/ivkkt.20206304.6132
УДК: 546.571+546.185+547.53.024+548.312.2+547.491
СИНТЕЗ И СТРОЕНИЕ ДИЦИАНОАРГЕНТАТОВ ОРГАНИЛТРИФЕНИЛФОСФОНИЯ: [Ph3P(CH2)3PPh3]2+ [Ag(CN)2]- [Br]- И [Ph3PR]+ [Ag(CNb]-, R = CH2CH2OH, CH2C6H4F-4
В.В. Шарутин, О.К. Шарутина, М.А. Попкова, Е.И. Данилина
Владимир Викторович Шарутин, Oльга Kонстантиновна Шарутина, Марина Аркадьевна Попкова*, Елена Ивановна Данилина
Кафедра теоретической и прикладной химии, кафедра экологии и химической технологии, Химический факультет, Южно-Уральский государственный университет, просп. Ленина, 76, Челябинск, Российская Федерация, 454080
E-mail: [email protected], [email protected], [email protected]*, [email protected]
По реакции дицианоаргентата калия с бромидами органилтрифенилфосфония в воде синтезированы комплексы [Ph3P(CH2)PPh3]2+[Ag(CN)2r[Br]- (1), [PhPR]*[Ag(CN)2T, R = CH2CH2OH (2), CH2C6H4F-4 (3), строение которых установлено методом рентгенострук-турного анализа. Известно, что в ИК-спектрах органических и неорганических соединений область поглощения циано-групп находится в достаточно узком интервале значений, 2200-2000 см-1, что указывает на отсутствие сильного влияния окружения на колебания этих связей. Полосы поглощения в области 1450-1435 см-1, характерные для связей P-Ph, присутствующие в спектрах соединений 1, 2, 3, проявляют себя в области 1437-1439 см-1. По данным РСА, проведенного при 293 К на автоматическом четырехкружном дифрактометре D8 QuestBruker, кристаллы 1 (C4iHiAgBrNP2, М 806,44, сингония триклинная, размер кристалла 0,72 х 0,37 х 0,3 мм), 2 (C22H2oAgN2OP, M467,24, сингония триклинная, размер кристалла 0,8 х 0,52 х 0,35 мм), 3 (C27H2iAgFNP, M531,30, сингония моноклинная, размер кристалла 0,28 х 0,23 х 0,22 мм). По данным РСА, в кристалах 1, 2, 3 присутствуют катионы органилтрифенилфосфония и линейные дицианоаргентатные анионы. В кристалле 1 наблюдаются еще и бром-анионы. Особенность комплексов с анионами [Ag(CN)2f состоит в том, что они являются перспективными в плане создания новых нано- и жидкокристаллических систем. Катионы органилтрифенилфосфония имеют искаженную тетраэдрическую конфигурацию (углы CPC изменяются в интервале 106,70(8)°-113,37(9)°), в анионах [Ag(CN)2f углы CAgCравны 171,75(10)° - 178,37(8)°.
Ключевые слова: дицианоаргентат калия, бромиды органилтрифенилфосфония, рентгенострук-турные исследования, дицианоаргентаты алкилтрифенилфосфония
SYNTHESIS AND STRUCTURE OF ORGANYLTRIPHENYLPHOSPHONIUM DICYANOARGENTATES: [Ph3P(CH2)3PPh3]2+ [Ag(CN)2]- [Br]- AND [Ph3PR]+ [Ag(CNb]-, R = CH2CH2OH, CH2C6H4F-4
V.V. Sharutin, O.K. Sharutina, M.A. Popkova, E.I. Danilina
Vladimir V. Sharutin, Olga K. Sharutina, Marina A. Popkova*, Elena I. Danilina
Department of Theoretical and Applied Chemistry, Department of Ecology and Chemical Engineering, Faculty
of Chemistry, South Ural State University, Lenin ave., 76, Chelyabinsk, 454080, Russia
E-mail: [email protected], [email protected], [email protected]*, [email protected]
The reaction of potassium dicyanoargentate with organyltriphenylphosphonium bromides in an aqueous solution has led to synthesis of complexes [PhP(CH2)PPh3]2+[Ag(CN)2r[Br]~ (1), [PhPR]+[Ag(CN)2r, R = CH2CH2OH (2), CH2CH4F-4 (3), whose structures have been characterized by X-ray diffraction analysis (XRD). It is known that the absorption range of cyano groups in IR spectra of organic and inorganic compounds is in the form of a narrow interval of2200-2000 cm1, which points at the absence of strong surroundings influence on vibrations of these bonds. The absorption bands in the range 1450-1435 cm1 peculiar to the P-Ph bands that are present in the
spectra of compounds 1, 2, 3 are apparent in the range 1437-1439 cm1. The XRD data have been obtained at 293 K on a Bruker D8 QUEST automatic four-circle diffractometer: crystals 1 (CnH3AgBrNP2, М 806.44, triclinic syngony, crystal size 0.72 x 0.37 x 0.3 mm), 2 (C22H2cAgN2OP, M 467.24, triclinic syngony, crystal size 0.8 x 0.52 x 0.35 mm), 3 (C27^AgFNP, M 531.30, monoclinic syngony, crystal size 0.28 x 0.23 x 0.22 mm). According to the XRD data, crystals 1, 2, 3 contain organyltriphenylphosphonium cations and linear dicyanoargentate anions. Besides, bromide anions are observed in crystal 1. A characteristic feature of complexes with the [Ag(CN)2r anions is their perspective utility for development of new nano- and liquid crystal systems. The organyltriphenylphosphonium cations have a distorted tetrahedral configuration: the CPCangles vary within the range 106.70(8)° - 113.37(9)°. In the[Ag(CN)2f anions the CAgCangles equal 171.75(10) ° -178.37(8)
Key words: potassium dicyanoargentate, organyltriphenylphosphonium bromide, X-ray diffraction analysis, alkyltriphenylphosphonium dicyanoargentates
Для цитирования:
Шарутин В.В., Шарутина О.К., Попкова М. А., Данилина Е.И. Синтез и строение дицианоаргентатов органилтрифе-нилфосфония: [PhsPCC^sPPhsp [Ag(CN^]- [Br]- и [PhsPR]+ [Ag(CNb]-, R = CH2CH2OH, CH2C6H4F-4. Изв. вузов. Химия и хим. технология. 2020. Т. 63. Вып. 4. С. 17-21
For citation:
Sharutin V.V., Sharutina O.K., Popkova M.A., Danilina E.I. Synthesis and Structure of organyltriphenylphosphonium dicyanoargentates: [Ph3P(CH2)3PPh3]2+ [Ag(CN)2]- [Br]- and [PhsPR]+ [Ag(CNh]-, R = CH2CH2OH, CH2C6H4F-4. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [Russ. J. Chem. & Chem. Tech.]. 2020. V. 63. N 4. P. 17-21
INTRODUCTION
At the present time complexes of metal dicya-nides attract researchers' interest in the context of their use for production of semiconductors and optically active materials, which take on various properties [1-6]. Thus, the peculiar structure of dicyanoargentate anions favoring oligomer formation leads to appearance of magnetic activity [7]. Complexes with the [Ag(CN)2]-anions show great promise for development of new nano- and liquid crystal systems [8, 9].
From the standpoint of a search for structures with valuable physicochemical properties, variation of a cation part of the dicyanoargentate complexes looks promising [10], as the dicyanoargentate anions in crystals, depending on the cation structure, can appear as monomers [2, 11, 12], branched polymers [13,14], perform the bridging function for cations and anions [15], form "dimers" with short Ag--Ag distances [16]. It is pertinent to note that the [Ag(CN)2]- complexes with organic and organoelement cations are practically unstudied. In the literature the examples of such systems are few in number: with imidazolium cations [11, 17, 18], fe(triphenylphosphine)iminium [19] and triphenyltel-lurium [20].
EXPERIMENTAL PART
In the present study organyltriphenylphospho-nium dicyanoargentate complexes were synthesized and their structures were characterized, namely: [Ph3P(CH2)3PPh3]2+[Ag(CN)2][Br]- (1) and [Ph3PR]+ [Ag(CN)2]-, R = CH2CH2OH (2), CH2C6H4F-4 (3).
18
Complexes 1-3 were synthesized from potassium di-cyanoargentate and organyltriphenylphosphonium bromides in aqueous solutions:
[Ph3P(CH2)3PPh3]2+[Br]-2+ K[Ag(CN)2] ^ ^ [Ph3P(CH2)3PPh3]2+[Ag(CN)2] [Br]- + KBr (1) K[Ag(CN)2] + [Ph3PR]Br ^ ^ [Ph3PR]2[Ag(CN)2] + KBr, R = CH2CH2OH (2), CH2C6H4F-4 (3)
After evaporation of water, drying of the solid precipitate and its recrystallization from acetonitrile, thecolorless crystals, stable in air, were obtained. It is known that in IR spectra of organic and inorganic compounds the range of the cyano groups absorption is in the fairly narrow range of 2200-2000 cm-1, which means that the surroundings do not influence the vibrations of these bonds significantly [21]. Consequently, cyanides are easily identified on the strength of their absorption in the stated range. Thus, in the spectra of compounds 1, 2, 3 the intensive bands have been observed at 2133,2135, 2131 cm-1, respectively.
The absorption bands existing in the spectra of compounds 1, 2, 3 that characterize the P-Ph bonds [21] are observed in the range 1437-1439 cm-1. Besides, spectrum 2 contains the absorption band at 3283 cm-1 that characterizes the hydroxyl group vibrations [21].
According to the XRD data, crystals 1, 2, 3 consist of organyltriphenylphosphonium cations and monomer dicyanoargentate anions, and in crystal 1 bromide anions are also observed (Fig. 1-3).
Изв. вузов. Химия и хим. технология. 2020. Т. 63. Вып. 4
В.В. Шарутин, О.К. Шарутина, М.А. Попкова, Е.И. Данилина
Fig. 1. The structure of complex 1 (hydrogen atoms are not shown) Рис. 1. Строение комплекса 1 (атомы водорода не показаны)
Fig. 2. The structure of complex 2 Рис. 2. Строение комплекса 2
Fig. 3. The structure of complex 3 Рис. 3. Строение комплекса 3
Tetrahedral coordination of the phosphorus atoms in cations is somewhat distorted: the CPC angles deviate from the theoretical value and amount to
106.70(8)°-113.37(9)° (1), 106.75(10)°-112.67(10)°
(2), 106.88(7)°-111.09(7)° (3); the lengths ofthe P-Cph bonds (1.7875(19)-1.8049(18), 1.7925(19)-1.7983(19) A (1), 1.7926( 19)-1.798(2) A (2), 1.7977(16)-1.8009(17) A
(3)) are close to each other, but they are shorter than the P—Calk distances (1.7987(17), 1.8112(18) A (1), 1.807(2) A (2), 1.8123(16) A (3). The [Ag(CN)2]- anions deviate from the linear configuration, the CAgC angles equal 176.10(11)° (1), 171.75(10)° (2), 178.37(8)° (3). The Ag-C distances in anions 1-3 are significantly different: 2.063(3) and 2.089(3) A in1, 2.054(3) and 2.186(3) in2, 2.069(2) and 2.062(2) A in3. The C=N triple bonds in the cyanide ligands of these anions equal 1.035(3), 1.091(4) A (1); 0.841(4), 1.134(4) A (2), 1.114(3), 1.130(3) A (3). Structural organization of the crystals is caused by weak hydrogen bonds N—H-C between cations and anions (2.74-2.58 A (1), 2.54-2.68 A (2), 2.48-2.73 A (3)),as well asC-H-C (2.77 A (1),(2.81-2.90 A (2)). In crystals 1 and 2 close contacts H-Br (2.69-2.99 A) andN-H-0 (1.98 A) are present, respectively.
Thus, the silver complexes, obtained from or-ganyltriphenylphosphonium bromides and potassium dicyanoargentates in water, have ionic structure with monomer dicyanoargentate anions.
RESULTS AND DISCUSSION
The IR spectra of complexes 1-3 were recorded on a Fourier transform infrared spectrophotometer Shimadzu IR Affinity-1S in a KBr pellet.
The XRD analysis of crystals 1-3 was performed on a Bruker D8 QUEST automatic four-circle diffractometer (two-coordinate CCD detector, Mo Ka-emission, X = 0.71073 A, graphite monochromator) at 293 K. The data were collected and analyzed, the unit cell parameters were refined, and the absorption correction was applied using the SMART and SAINT-Plus programs [22]. All calculations for structure determination and refinement were performed using the SHELXL/PC [23] and OLEX2 [24] programs. The structures were determined by the direct method and refined by the least-squares method in the anisotropic approximation for non-hydrogen atoms. The main crystallographic data and refinement results for structures 1-3 are listen in Table.
The full tables of atomic coordinates, bond lengths, and bond angles were deposited with the Cambridge Crystallographic Data Centre (CCDC 1897387 (1), 1897370 (2),1897369 (3); [email protected]; http: //www .ccdc.cam.ac.uk).
Table
Crystallographical data and refinement results for structures 1-3 Таблица. Кристаллографические данные и результаты структур 1-3
Parameter Value
1 2 3
M 806.44 467.24 531.30
Crystal system Triclinic Triclinic Monoclinic
Space group Р- Р- P2\/c
a, A 9.577(4) 7.808(3) 9.872(4)
b, A 10.527(5) 9.392(4) 15.100(6)
c, A 18.830(10) 15.704(9) 15.551(6)
a, deg 88.80(3) 99.71(3) 90.00
P, deg 86.52(2) 100.328(18) 90.987(14)
7, deg 73.978(18) 108.276(17) 90.00
V, A3 1821.4(16) 1044.1(9) 2317.9(15)
Z 2 2 4
p(calcd),g/cm3 1.470 1.486 1.523
H, mm-1 1.769 1.055 0.964
F(000) 816.0 472.0 1072.0
Crystal size, mm 0.72 x 0.37 x 0.3 0.8 x 0.52 x 0.35 0.28 x 0.23 x 0.22
Range of data collection 28, deg 5.92-63.18 5.94-81.08 6.62-60.1
-14 < h < 14, -14 < h < 14, -13 < h < 13,
Range of refraction indices -15 < к < 15, -27 < l < 27 -17 < к < 17, -28 < l < 28 -21 < к < 21, -21 < l < 18
Measured reflections 116476 87190 69762
Independent reflections 12125 (Rint = 0.0336) 13311 (Rint = 0.0425) 6773 (Rint = 0.0371)
Rint/> 2ct(T) 8543 6976 5032
Refinement variables 424 245 289
GOOF 1.008 1.014 1.031
.-factors for R\ = 0.0360, R1 = 0.0580, R1 = 0.0320,
F> 2a(F2) wR2 = 0.0829 wR2 = 0.1266 wR2 = 0.0750
R-factors for all reflections R1 = 0.0628, wR2 = 0.0944 R1 = 0.1292, wR2 = 0.1523 R1 = 0.0536, wR2 = 0.0831
Residual electron density (max/min), e/A3 0.38/-0.80 0.92/-0.55 0.25/-0.70
Synthesis of trimethylene-bis(triphe-nylphosphonium) dicyanoargentate bromide [Ph3PCH2CH2CH2PPh3]2+[Ag(CN)2]-[Br]- (1). To the solution of 181 mg (0.25 mmol) trimethylene-bis(tri-phenylphosphonium) dibromide in 10 mL of water the solution of 50 mg (0.25 mmol) potassium dicyanoargentate in 4 mL of water was added. The mixture was kept at 20 °C for 14 h. Water was removed, the residue was extracted into acetonitrile (4 mL twice). During slow evaporation of the solvent formation of colorless crystals was observed. The yield was 185 mg (92%) of complex 1, m.p. 139.6 °C.
The IR spectrum (v cm1): 3446, 3170, 3163, 3086, 3057, 3047, 3010, 2993, 2945, 2916, 2877, 2808, 2690, 2250, 2214, 2137, 2129, 2090, 2002, 1973, 1901, 1816, 1778, 1631, 1587, 1487, 1438, 1415, 1338, 1319, 1290, 1251, 1195, 1163, 1112, 1028, 997, 962, 929, 846, 825, 767, 742, 732, 723, 700, 688, 669, 655, 617, 538, 526, 513, 495, 480, 445, 435, 418.
20
Found, %: C 59.75, Н 4.53. ForC4lH36ÄgBrN2P2 calculated, %: С 61.01, Н 4.46. Compounds 2, 3 were synthesized along similar lines.
(2) (91%), m.p. 153.0 °С. The IR spectrum (v, cm"1): 3282, 3086, 3059, 3028, 2947, 2899, 2881, 2850,2833,2750,2216,2135, 1975, 1905, 1826, 1782, 1670,1610,1587,1483,1436,1394, 1340, 1315, 1296, 1213, 1192, 1163, 1112, 1078, 1026,1008, 997, 948, 854, 812, 754, 748, 731, 717, 694, 686, 661, 543, 499, 491, 462, 439.
Found, %: C 56.39, Н 4.35. ForC22H20AgN2OP calculated, %: С 56.53, Н 4.28.
(3) (93%), m.p. 214.0 °С. The IR spectrum (v, cm1): 3441, 3167, 3095, 3072, 3057, 3024, 2993, 2972, 2935, 2895, 2848, 2804, 2686, 2586, 2208, 2131,
Изв. вузов. Химия и хим. технология. 2020. Т. 63. Вып. 4
В.В. Шарутин, O.K. Шарутина, М.А. Попкова, Е.И. Данилина
2086,1978,1913,1894, 1824, 1770, 1666, 1600, 1585, 1510,1489,1481,1435, 1425, 1409, 1338, 1319, 1294, 1274,1255, 1236, 1228, 1199, 1182, 1163, 1155, 1107, 1072, 1020, 995, 979, 972, 956, 939, 931, 856, 831, 786, 759, 750, 740, 717, 702, 688, 669, 634, 615, 551, 509, 501, 489, 476, 445, 437, 414. Found, %: C 60.57, Н 4.07. ForC27H21ÂgFN2P calculated, %: С 60.98, Н 3.95.
CONCLUSION
Thus, the interaction of potassium dicyanoar-gentate with organyltriphenylphosphonium bromides in water was used to synthesize new complexes of organyltriphenylphosphonium dicyanoargentates [Ph3P(CH2)3PPh3]2+ [Ag(CN)2]- [Br]- and [Ph3PR]+ [Ag(CN)2]-, R = CH2CH2OH, CH2C6H4F-4, whose structure was characterized by X-ray diffraction and IR spectroscopy.
South Ural State University thanks the Ministry of Science and Higher Education of the Russian Federation for its financial support (grant No. 4.6151.2017/8.9).
REFERENCES ЛИТЕРАТУРА
1. Xiaobo L., Patterson H. A Review of luminescent anionic nano system: d10 metallocyanide excimers and exciplexes in alkali hal-ide hosts. Materials. 2013. V. 6. N 7. P. 2595-2611. DOI: 10.3390/ma6072595.
2. Dechambenoit P., Ferlay S., Kyritsakas N., Hosseini M.W. Molecular tectonics: control of packing of luminescent networks formed upon combining bisamidinium tectons with dicyanometal-lates. Cryst. Eng. Comm. 2011. V. 13. N 6. P. 1922-1930. DOI: 10.1039/c0ce00607f.
3. Hill J.A., Thompson A.L., Goodwin A.L. Dicyanometallates as model extended frameworks. J. Am. Chem. Soc. 2016. V. 138. N 18. P. 5886-5896. DOI: 10.1021/jacs.5b13446.
4. Assefa Z., Haire R.G., Sykora R.E. Hydrothermal syntheses, structural, Raman, and luminescence studies of Cm[M(CN)2]3- 3H2O and Pr[M(CN)2]3-3H2O (M=Ag, Au). J. Sol. St. Chem. 2008. V. 181. N 2. P. 382-391. DOI: 10.1016/j .j ssc.2007.11.036.
5. Brown M.L., Ovens J.S., Leznoff D.B. Dicyanoaurate-based het-erobimetallic uranyl coordination polymers. Dalton Trans. 2017. V. 46. N 22. P.7169-718G.DOI: 10.1039/c7dt00942a.
6. Chorazy S., Wyczesany M., Sieklucka B. Lanthanide photoluminescence in heterometallic polycyanidometallate-based coordination networks. Molecules. 2017. V. 22. N 11. P. 1902. DOI: 10.3390/molecules22111902.
7. Muñoz M.C., Gaspar A.B., Galet, A., Real J.A. Spin-crossover behavior in cyanide-biidged iron(ii)-silver(i) bimetallic 2d hof-mann-like metal-organic frameworks. Inorg. Chem. 2007. V. 46. N 20. P. 8182-8192. DOI: 10.1021/ic700607x.
8. Dobbs W., Suisse J.-M., Douce L., Welter R. Electrodeposition of silver particles and gold nanoparticles from ionic liquid-crystal precursors. Angew. Chem. Int. Ed. 2006. V. 45. N 25. P. 4179-4182. DOI: 10.1002/anie.200600929.
9. Al Abbas A., Heinrich B., L'Her M., Couzigne E., Welter R., Douce L. Bolaamphiphilic liquid crystals based on bis-imidazo-lium cations. New J. Chem. 2017. V. 41. N 7. P. 2604-2613. D01:10.1039/c6nj03590f.
10. Ahern J.C., Shilabin A., Henline K.M, Pikec R.D., Patterson H.H. Photophysical properties of {[Ag(CNXT}2complexes trapped in a supramolecular electron-acceptor organic framework. Dalton Trans. 2014. V. 43. N 31. P. 12044. DOI: 10.1039/c4dt01110d.
11. Mallah E, Abu-Salem Q., Sweidan K., Kuhnd N., Maichle-Mößmerd C., Steimannd M., Ströbele M., Walker M. Imidaz-olium dicyanoargentates. Z. Naturforsch. 2011. V. 66b. N 5. P. 545-548. DOI: 10.1515/znb-2011-0517.
12. Tsujimoto K., Ogasawara R., Kishi Y., Fujiwara H. TTF-fluo-rene dyads and their M(CN)2-(M = Ag, Au) salts designed for pho-toresponsive conducting materials. New J. Chem. 2014. V. 38. N 1. P. 406-418. DOI: 10.1039/c3nj00979c.
13. Urban V., Pretsch T., Hartl H From AgCN chains to a fivefold helix and a fishnet-shaped framework structure. Angew. Chem., Int. Ed. 2005. V. 44. N 18. P. 2794-2797. DOI: 10.1002/anie.200462793.
14. Liu X, Guo G.-C., Fu M.-L., Liu X.-H., Wang M.-S., Huang J.-S. Three novel silver complexes with ligand-unsupported argento-philic interactions and their luminescent properties. Inorg. Chem. 2006. V. 45. N 9. P. 3679-3685. DOI: 10.1021/ic0601539.
15. Hill J.A., Thompson A.L., Goodwin A.L. Dicyanometallates as model extended frameworks. J. Am. Chem. Soc. 2016. V. 138. N 18. P. 5886-5896.DOI: 10.1021/jacs.5b13446.
16. Korkmaz N., Aydin A., Karadag A., Yanar Y., Maa^oglu Y., Sahin E., Tekin S. New bimetallic dicyanidoargentate(I)-based coordination compounds: synthesis, characterization, biological activities and DNA-BSA binding affinities. Spectrochim. Acta, Part A. 2017. V. 173. P. 1007-1022. DOI: 10.1016/j.saa.2016.10.035.
17. Yoshida Y., Muroi K., Otsuka A., Saito G., Takahashi M., Yoko T. 1 -ethyl-3-methylimidazolium based ionic liquids containing cyano groups: synthesis, characterization, and crystal structure. Inorg. Chem. 2004. V. 43. N 4. P. 1458-1462. DOI: 10.1021/ic035045q.
18. Jiang Z.-Y., Dong H.-Z., Zhang G., Cheng L. [2,2'-(p-Phe-nylene)bis(1,4,5,6-tetrahydropyrimidinium) bis[dicyanidoar-gentate(I)]]. Acta Cryst. 2008. V. E64. P. 858. DOI: 10.1107/S1600536808015791.
19. Jaafar M., Liu X., Dielmann F., Hahn F.E., Al-Farhan K., Al-salme A., Reedijk J. Synthesis, structure and spectroscopic properties of bis(triphenylphosphane)iminium (chlorido)(cyanido)ar-gentates(I). Inorg. Chim. Acta. 2016. V. 45. N 50. P. 443. DOI: 10.1016j.ica.2015.12.018.
20. Klapötke T.M., Krumm B., Mayer P., Piotrowski H., Schwab I., Vogt M. Synthesis and structures of triorganotelluroniumpseudohal-ides. Eur. J. Inorg. Chem. 2002. V. 10. P. 2701-2709. DOI: 10.1002/1099-0682(200210)2002:10<2701::aidejic2701>3.0.co;2-g.
21. Pretsch E.P., Bühlmann C. Affolterstructure determination of organic compounds. M.: Mir. 2006. 440 p. (in Russian).
22. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc. Madison, Wisconsin, USA. 1998.
23. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc. Madison, Wisconsin, USA. 1998.
24. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009. V. 42. N 2. P. 339-341. DOI: 10.1107/s0021889808042726.
Поступила в редакцию (Received) 12.09.2019 Принята к опубликованию (Accepted) 12.12.2019