Научная статья на тему 'Synthesis and structure of tetraphenylphosphonium arenesulfonates'

Synthesis and structure of tetraphenylphosphonium arenesulfonates Текст научной статьи по специальности «Химические науки»

CC BY
79
16
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
PENTAPHENYLPHOSPHORUS / ARENESULFONIC ACIDS / TETRAPHENYLPHOSPHONIUM ARENESULFONATES / X-RAY ANALYSIS / ПЕНТАФЕНИЛФОСФОР / АРЕНСУЛЬФОНОВЫЕ КИСЛОТЫ / АРЕНСУЛЬФОНАТЫ ТЕТРАФЕНИЛФОСФОНИЯ / РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ

Аннотация научной статьи по химическим наукам, автор научной работы — Sharutin Vladimir V., Sharutina Olga K., Gubanova Yuliya O.

Interaction between pentaphenylphosphorus and arenesulfonic acids (mole ratio 1:1) in the benzene solution of tetraphenylphosphonium arenesulfonates has led to [Ph4P]+[O3SAr]-, Ar = Ph (I), C6H4Me-4 (II), C6H3(Me2-2,5) (III) (hydrate with 1.5 molecules of water). According to X-ray analysis, which was performed in the automatic four-circle Bruker D8 Quest diffractometer (Mo Kα-radiation, λ = 0.71073 Å, graphite monochromator), crystals I (C30H25O3PS, M 496.53 g/mol, crystal system moloclinic, space group P21/n, crystal size 0.25 × 0.2 × 0.15 mm), II(C31H27O3PS, M 510.56 g/mol, crystal system rhombic, space group Pna21, crystal size 0.48 × 0.18 × 0.12 mm) and III (C32H32O4.5PS, M 1097.16 g/mol, crystal system moloclinic, space group P2/c, crystal size 0.43 × 0.34 × 0.22 mm) include the tetrahedral cations (bond length equal 1.797(2)-1.799(2), 1.652(2)-1.999(3), 1.785(8)-1.815(7) Å; angles СРС equal 109.29(9)°-110.86(9)°, 104.04(13)°-115.14(12)°, 107.1(4)°-113.3(4)° in I, II and III respectively) and arenesulfonate anions (bond length equal S-O 1.4355(18)-1.4446(17), 1.313(3)-1.597(3), 1.431(6)-1.457(7) Å; angles ОSO 113.07(11)°-113.30(11)°, 107.5(2)°-117.2(2)°, 112.3(4)°-114.2(4)° in I, II and III respectively). In hydrate III the water molecules associate the cations and anions into the spatial grid through the intermolecular hydrogen bonds. The solvate [Ph4P]Br∙РhH (IV) has been obtained by the interaction of pentaphenylphosphorus with the hydrogen bromide. In IV the P-C bonds (1.7941(19)-1.803(2) Å) and angles СРС (107.93(9)°-112.96(9)°) are close to the similar values in the tetraphenylphosphonium arenesulfonates.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Cинтез и строение аренсульфонатов тетрафенилфосфония

Взаимодействием пентафенилфосфора (Ph5P) с аренсульфоновыми кислотами в растворе бензола синтезированы аренсульфонаты тетрафенилфосфония с общей формулой [Ph4P]+[O3SAr]- ( Ar = Ph (I), C6H4Me-4 (II), C6H3(Me2-2,5) (III) (кристаллогидрат на 1,5 молекулы воды) c выходами 92, 93 и 95 % соответственно. По данным РСА, проведенном при 293 К на автоматическом четырехкружном дифрактометре D8 Quest Bruker (двухкоординатный CCD - детектор, Мо Кα-излучение, λ = 0,71073 Å, графитовый монохроматор) кристаллы I (C30H25O3PS, M 496,53 г/моль, сингония моноклинная, группа симметрии P21/n, размер кристалла 0,25 × 0,2 × 0,15 мм), II(C31H27O3PS, M 510,56 г/моль, сингония ромбическая, группа симметрии Pna21, размер кристалла 0,48 × 0,18 × 0,12 мм), III (C32H32O4.5PS, M 1097,16 г/моль, сингония моноклинная, группа симметрии P2/c, размер кристалла 0,43 × 0,34 × 0,22 мм) включают тетраэдрические катионы (связи P-C 1,797(2)-1,799(2), 1,652(2)-1,999(3), 1,785(8)-1,815(7) Å; углы СРС 109,29(9)°-110,86(9)°, 104,04(13)°-115,14(12)°, 107,1(4)°-113,3(4)° в I, II, III соответствено) и аренсульфонатные анионы (связи S-O 1,4355(18)-1,4446(17), 1,313(3)-1,597(3), 1,431(6)-1,457(7) Å; углы ОSO 113,07(11)°-113,30(11)°, 107,5(2)°-117,2(2)°, 112,3(4)°-114,2(4)° в I, II, III соответствено). Молекулы воды в кристаллогидрате III посредством межмолекулярных водородных связей O···H связывают катионы и анионы в пространственную сетку. В сольвате [Ph4P]Br∙РhH (IV) (C30H26BrP, M 497,39 г/моль, сингония триклинная, группа симметрии P1, размер кристалла 0,45 × 0,28 × 0,26 мм), полученном взаимодействием пентафенилфосфора с бромоводородной кислотой с выходом 97 %, связи P-C (1,7941(19)-1,803(2) Å) и углы СРС (107,93(9)°-112,96(9)°) близки к аналогичным значениям в аренсульфонатах тетрафенилфосфония.

Текст научной работы на тему «Synthesis and structure of tetraphenylphosphonium arenesulfonates»

Т 62 (2)

ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. Серия «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ»

2G19

IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII V 62 (2) KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 2019

RUSSIAN JOURNAL OF CHEMISTRY AND CHEMICAL TECHNOLOGY

DOI: 10.6060/ivkkt.20196202.5823 УДК: 546.185+547-305.2+547.53.024+548.312.2 ОТНТЕЗ И СТРОЕНИЕ АРЕНСУЛЬФОНАТОВ ТЕТРАФЕНИЛФОСФОНИЯ В.В. Шарутин, О.К. Шарутина, Ю.О. Губанова

Владимир Викторович Шарутин, Oльга Kонстантиновна Шарутина, Юлия Oлеговна Губанова *

Кафедра теоретической и прикладной химии, Химический факультет, Южно-Уральский государственный университет, просп. Ленина, 76, Челябинск, Российская Федерация, 454080 E-mail: vvsharutin@rambler.ru, sharutinao@mail.ru, ulchik_7757@mail.ru *

Взаимодействием пентафенилфосфора (PhP) с аренсульфоновыми кислотами в растворе бензола синтезированы аренсульфонаты тетрафенилфосфония с общей формулой [PhPJ+[O3SArr (Ar = Ph (I), CHMe-4 (II), CH3(Me2-2,5) (III) (кристаллогидрат на 1,5 молекулы воды) c выходами 92, 93 и 95 % соответственно. По данным РСА, проведенного при 293 К на автоматическом четырехкружном дифрактометре D8 Quest Bruker (двух-координатный CCD - детектор, Мо Ка-излучение, X = 0,71073 Á, графитовый монохрома-тор) кристаллы I (C3H25OPS, M496,53 г/моль, сингония моноклинная, группа симметрии P21/n, размер кристалла 0,25 х 0,2 х 0,15 мм), II(C3iH27OsPS, M 510,56 г/моль, сингония ромбическая, группа симметрии Pna21, размер кристалла 0,48 х 0,18 х 0,12 мм), III (C32H32O4.PS, M 1097,16 г/моль, сингония моноклинная, группа симметрии P2/c, размер кристалла 0,43 х 0,34 х 0,22мм) включают тетраэдрические катионы (связиP-C 1,797(2)-1,799(2), 1,652(2)-1,999(3), 1,785(8)-1,815(7) Á; углы СРС 109,29(9)°-110,86(9)°, 104,04(13)°-115,14(12)°, 107,1(4)°-113,3(4)° в I, II, III соответствено) и аренсульфонатные анионы (связи S-O 1,4355(18)-1,4446(17), 1,313(3)-1,597(3), 1,431(6)-1,457(7)Á;углы OSO 113,07(11)°-113,30(11)°, 107,5(2)°-117,2(2)°, 112,3(4)°-114,2(4)° в I, II, III соответствено). Молекулы воды в кристаллогидрате III посредством межмолекулярных водородных связей O"H связывают катионы и анионы в пространственную сетку. В сольвате [PhP]BrPhH (IV) (C3H26BP, M497,39 г/моль, сингония триклинная, группа симметрии P1, размер кристалла 0,45 х 0,28 х 0,26 мм), полученном взаимодействием пентафенилфосфора с бромоводородной кислотой с выходом 97 %, связи P-C (1,7941(19)-1,803(2) Á) и углы СРС (107,93(9)°-112,96(9)°) близки к аналогичным значениям в аренсульфонатах тетрафенилфосфония.

Ключевые слова: пентафенилфосфор, аренсульфоновые кислоты, аренсульфонаты тетрафенилфосфония, рентгеноструктурный анализ

SYNTHESIS AND STRUCTURE OF TETRAPHENYLPHOSPHONIUM ARENESULFONATES

V.V. Sharutin, O.K. Sharutina, Yu.O. Gubanova

Vladimir V. Sharutin, Olga K. Sharutina, Yuliya O. Gubanova *

Department of Theoretical and Applied Chemistry, Chemical Department, South Ural State University, Lenin ave., 76, Chelyabinsk, 454080, Russia

E-mail: vvsharutin@rambler.ru, sharutinao@mail.ru, ulchik_7757@mail.ru *

Interaction between pentaphenylphosphorus and arenesulfonic acids (mole ratio 1:1) in the benzene solution of tetraphenylphosphonium arenesulfonates has led to [PhPfOSArf, Ar = Ph (I), CHéMe-4 (II), CH3(Me2-2,5) (III) (hydrate with 1.5 molecules of water). According to X-ray analysis, which was performed in the automatic four-circle Bruker D8 Quest diffractometer (Mo Ka-radiation, X = 0.71073 Á, graphite monochromator), crystals I (C30H25O3PS, M 496.53 g/mol, crystal system moloclinic, space group P21/n, crystal size 0.25 x 0.2 x 0.15 mm), II(C3iH27OsPS, M 510.56 g/mol, crystal system rhombic, space group Pna21, crystal size 0.48 x 0.18 x 0.12 mm) and III (C32H32O4.5PS, M 1097.16 g/mol, crystal system moloclinic, space group P2/c, crystal size 0.43 x 0.34 x 0.22 mm) include the tetrahedral cations (bond length equal 1.797(2)-1.799(2), 1.652(2)-1.999(3), 1.785(8)-1.815(7) Á; angles СРС equal 109.29(9)°-110.86(9)°, 104.04(13)°-115.14(12)°, 107.1(4)°-113.3(4)° in I, II andIIIrespectively) and arenesulfonate anions (bond length equal S-O 1.4355(18)-1.4446(17), 1.313(3)-1.597(3), 1.431(6)-1.457(7) Á; angles OSO 113.07(11)°-113.30(11)°, 107.5(2)°-117.2(2)°, 112.3(4)°-114.2(4)° in I, II and III respectively). In hydrate III the water molecules associate the cations and anions into the spatial grid through the intermolecular hydrogen bonds. The solvate [PhP]BrPhH (IV) has been obtained by the interaction of pentaphenylphosphorus with the hydrogen bromide. In IV the P-C bonds (1.7941(19)-1.803(2) Á) and angles СРС (107.93(9)°-112.96(9)°) are close to the similar values in the tetraphenylphosphonium arenesulfonates.

Key words: pentaphenylphosphorus, arenesulfonic acids, tetraphenylphosphonium arenesulfonates, X-ray analysis

Для цитирования:

Шарутин В.В., Шарутина О.К., Губанова Ю.О. ^нтез и строение аренсульфонатов тетрафенилфосфония. Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 2. С. 4-10 For citation:

Sharutin V.V., Sharutina O.K., Gubanova Yu.O. Synthesis and structure of tetraphenylphosphonium arenesulfonates. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2019. V. 62. N 2. P. 4-10

INTRODUCTION

The methods of obtaining and structural features of pentavalent phosphorus organic compounds are described in a literature [1-10]. The reaction ability of the such compounds is much less studied. For example, the reactions between pentaphenylphosphorus and alcohols, non-metallic oxides and acids lead to elimination of the phenyl ligands from the phosphorus atom [10-12].

Interaction between pentaphenylphosphorus and arenesulfonic acids has been described in the present work, the structure of the products of the reaction has been determined.

EXPERIMENTAL

Synthesis of tetraphenylphosphonium ben-zenesulfonate (I) 100 mg of pentaphenylphosphonium in 20 ml of benzene was added to 38 mg of benzene-sulfonic acid hydrate in 20 ml of benzene. Then the mixture was heated at 80 °С for a 10 min. The solution was concentrated to a volume of 1 ml. A 110 mg of colourless cryslals were obtained, m.p. 205 IR-

spectrum (v, cm"1): 3472, 3063, 1482, 1436, 1238, 1215, 1196, 1141, 1107, 997, 760, 723, 689, 610, 527.

Found, %: С 72.29; Н 5.08.

For C30H25O3PS

Calculated, %: С 72.58; Н 5.04.

Complex II-IV was obtained in the same way of I

II: The yield of the colourless crystals 93 %, m.p = 240 °C IR-spectrum (v, cm1): 3474, 2924, 1585, 1483, 1441, 1248, 150, 1141, 1107, 1055, 997, 829, 758, 723, 692, 528.

Found, %: С 72.68; Н 5.36.

For C31H27O3PS

Calculated, %: С 72.94; Н 5.29.

III: The yield of the colourless crystals 95 %, m.p = 170 °C IR-spectrum (v, cm1): 3479, 1484, 1437, 1259, 1227, 1188, 1107, 1020, 995, 823,776,721, 691, 627, 528.

Found %: С 69.69; Н 6.06.

For C32H32O4.5PS

Calculated, %: С 69.66; Н 5.86.

IV: The yield of the colourless crystals 97 %, m.p = 178 °C IR-spectrum (v, cm"1): 3502, 3473, 3427,

3277, 3082, 3061, 2692, 2206, 1984, 1913, 1836, 1788, 1653,1598,1585,1571, 1527, 1483, 1436, 1365, 1350, 1315, 1255, 1184, 1166, 1107, 1074, 1028, 997, 954, 937, 858, 819, 781, 759, 723, 692, 646, 615, 582, 528, 455, 412.

Found, %: C 72.35; H 7.54.

For C30H26BrP

Calculated, %: C 72.43; H 7.22.

IR spectra were recorded in KBr pellets on the IR-spectrometer Shimadzu IRAffinity-1S in the area of 4000-400 cm-1.

The X-ray diffraction analyses of crystal I was performed on the Bruker D8 Quest diffractometer (Mo Ka-radiation, X = 0.71073 A, graphite monochroma-tor). The data collection and editing as well as the refinement of unit cell parameters and the absorption accounting were carried out using SMART and SAINT

Plus program packages [13]. All calculations for the structure determination and refinement were carried out using the SHELXTL/PC [14] and OLEX2 [15] programs packages. The structures were determined by the direct method and refined by least-squares method calculations in anisotropic approximation for non-hydrogen atoms. Selected crystallographic data and structure refinement results for compounds I and II are given in Table 1, and selected bond lengths and bond angles are listed in Table 2.

The full tables of atomic coordinates, bond lengths, and bond angles were deposited with the Cambridge Crystallographic Data Centre (N 1822534 (I), N 1822533 (II), № 1822532 (III), N 1812206 (IV)); deposit@ccdc.cam .ac .uk;http: //www.ccdc.cam .ac .uk).

Table 1

Crystallographic data, the experimental parameters and structure refinement parameters for compound I-IV

Параметр Value

I II III IV

М 496.53 510.56 1097.16 497.39

Crystal system Monoclinic Rhombic Monoclinic Triclinic

Space group P2i/n Pna21 P2/c Pi

a, A 10.917(9) 13.078(7) 13.556(9) 10.074(7)

b, A 14.001(10) 13.672(8) 22.109(14) 10.375(7)

c, A 16.843(12) 14.805(9) 18.763(12) 13.077(8)

a, deg. 90.00 90.00 90.00 72.02(3)

в, deg. 107.17(3) 90.00 99.31(4) 74.09(3)

Y, deg. 90.00 90.00 90.00 86.56(4)

V, A3 2460(3) 2647(3) 5550(6) 1249.9(14)

Z 4 4 4 2

P(calc.), g/cm3 1.341 1.281 1.313 1.322

f, mm-1 0.228 0.213 0.213 1.724

F(000) 1040.0 1072.0 2304.0 512.0

Crystal size, mm 0.25 x 0.2 x 0.15 0.48 x 0.18 x 0.12 0.43 x 0.34 x 0.22 0.45 x 0.28 x 0.26

28 Range of data collection, deg 6 - 45.02 5.5 - 53.44 5.74 - 47.24 6.08 - 62.04

Range of refraction indices -11 < h < 11, -15 < k < 15, -18 < l < 18 -16 < h < 16, -15 < k < 15, -14 < l < 14 -15 < h < 15, -24 < k < 24, -21 < l < 20 -14 < h < 14, -15 < k < 15, -18 < l < 18

Measured reflections 22329 28048 58452 77260

Independent reflections 3197 (flint = 0.0236) 4083 (Rint = 0.0334) 8257 (Rint = 0.1016) 7937 (Rint = 0.0295)

Refinement variables 316 326 712 290

GOOF 1.068 1.089 0.987 1.045

R factors for F2 > 2c(F2) R1 = 0.0320, wR2 = 0.0805 R1 = 0.0392, wR2 = 0.0996 R1 = 0.0507, wR2 = 0.1374 R1 = 0.0359, wR2 = 0.0986

R factors for all reflections R1 = 0.0373, wR2 = 0.0846 R1 = 0.0427, wR2 = 0.1025 R1 = 0.1357, wR2 = 0.1941 R1 = 0.0558, wR2 = 0.1083

Residual electron density (min/max), e/A3 0.17/-0.32 0.26/-0.36 0.46/-0.42 0.59/-0.52

Table 2

Main bond lengths (d) and valency angles in the structure of compounds I-IV Таблица 2. Основные длины связей (d) и валентные углы в структурах 1—IV

Bond d,  Angle œ, °

I

S(1)-O(1) 1.4355(19) O(1)S(1)O(2) 113.30(11)

S(1)-O(2) 1.4446(17) O(1)S(1)O(3) 113.17(11)

S(1)-O(3) 1.4441(18) O(1)S(1)C(41) 106.27(11)

S(1)-C(41) 1.785(2) O(2)S(1)C(41) 104.60(11)

P(1)-C(1) 1.797(2) O(3)S(1)O(2) 113.07(11)

P(1)-C(11) 1.801(2) O(3)S(1)C(41) 105.47(11)

P(1)-C(21) 1.797(2) C(21)P(1)C31 108.29(9)

P(1)-C(31) 1.799(2) C(1)P(1)C31 110.86(9)

II

P(1)-C(11) 1.999(3) C(21)P(1)C(1) 104.04(13)

P(1)-C(1) 1.844(3) C(21)P(1)C(11) 115.14(12)

P(1)-C(31) 1.652(2) O(1)S(1)C(41) 105.72(14)

P(1)-C(21) 1.710(3) O(1)S(1)O(3) 117.2(2)

S(1)-O(1) 1.411(3) O(2)S(1)O(1) 107.5(2)

S(1)-O(2) 1.313(3) O(2)S(1)C(41) 98.71(18)

S(1)-C(41) 1.785(3) O(2)S(1)O(3) 116.0(2)

S(1)-O(3) 1.597(3) O(3)S(1)C(41) 109.70(15)

III

S(1)-O(1) 1.457(7) O(1)S(1)C(81) 105.6(4)

S(1)-O(2) 1.443(6) O(2)S(1)O(1) 111.8(4)

S(1)-O(3) 1.443(6) O(2)S(1)C(81) 105.0(4)

S(1)-C(81) 1.785(9) O(3)S(1)O(1) 112.8(4)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

S(2)-O(4) 1.441(6) O(3)S(1)O(2) 114.2(4)

S(2)-O(5) 1.431(6) O(3)S(1)C(81) 106.6(4)

S(2)-O(6) 1.447(6) O(4)S(2)O(6) 113.3(4)

S(2)-C(91) 1.802(8) O(4)S(2)C(91) 105.7(3)

P(1)-C(21) 1.802(8) O(5)S(2)O(4) 113.0(4)

P(1)-C(1) 1.806(7) O(5)S(2)O(6) 112.3(4)

P(1)-C(31) 1.809(7) O(5)S(2)C(91) 106.0(4)

P(1)-C(11) 1.791(8) O(6)S(2)C(91) 105.8(4)

P(2)-C(61) 1.815(7) C(21)P(1)C(1) 113.3(4)

P(2)-C(51) 1.789(7) C(21)P(1)C(11) 107.1(4)

P(2)-C(41) 1.800(8) C(51)P(2)C(41) 112.2(4)

P(2)-C(71) 1.785(8) C(41)P(2)C(61) 107.3(4)

IV

P(1)-C(1) 1.7984(18) C(1)P(1)C(11) 108.88(9)

P(1)-C(31) 1.7994(19) C(31)P(1)C(11) 112.96(9)

P(1)-C(21) 1.7941(19) C(21)P(1)C(31) 107.93(9)

P(1)-C(11) 1.803(2) C(21)P(1)C(11) 108.34(9)

RESULTS AND DISCUSSION

It had been found that the reaction of dephenyl-ation between pentaphenylphosphorus and arenesulfonic acids (mole ratio 1:1, benzene) leads to quantitative formation of tetraphenylposphonium arenesulfonates. These compounds are colourless crystals, well soluble in aromatic hydrocarbons, tetrahydrofurane, dioxane and ethanol.

PhsP + HOSO2Ar ^ [Ph4P]+ [OsSAr]- + PhH Ar = Ph (I), C6HMe-4 (II), C6Hs(Me2-2,5) (III).

Interaction of hydrogen bromide with penta-phenylphosphorus leads to similar results, at that tetra-phenylphosphonium bromide benzene solvate is crystallized from the reaction mixture.

PhH

Ph5P + HBr ^ [Ph4P]+Br- • PhH + PhH IV

According to X-ray analysis, tetraphenylphospho-nium arenesulfonates (I-III) and tetraphenylphospho-nium bromide (IV) are ionic compounds. Tetra-phenylphosphonium cations have a slightly distorted tetrahedral coordination (Fig. 1-4).

The valence angles in the cations of complexes I-III vary in the ranges 109.29(9)°-110.86(9)° (I), 104.04(13)°-115.14(12)° (II), 107.1(4)°-113.3(4)° (III). The P-C distances equal 1.797(2)-1.799(2), 1.652(2)-1.999(3), 1.785(8)-1.815(7) À respectively. Their average values practically don't differ from the similar values in cation IV.

Two types of crystallographically independent molecules are present in hydrate III. The hydrate water molecules take part on the formation of the structure, forming weak hydrogen bonds with the arenesulfates anions, which have short contacts O-Hph with the cations.

It is known that the IR-spectra of sulfonic acids include the typical absorption band: 1260-1150 cm-1 (strong intensity band) and 1080-1010 cm-1 (middle intencity band) which are attributed to the asymmetric

and symmetric stretching vibrations of sulfonate groups [16, 17].

It has been noted that the first band is splitted, but the position of the band in the range 1080-1010 cm-1 depends on the structure of the acid, but little. IR-spec-tra of tetraphenylphosphonium arenesulfates also include the typical absorption bands of sulfonic groups: 1227-1238 cm-1, 1141-1188 cm-1 h -1000 cm-1. It is obviously that the displacement of the last band toward the lower vibrations involves the lengthening of the S=O bonds and alignment of the three bonds in the SO3 group unlike SO4 anion containing only one band [18]. In the arenesulfonate anions the bond length S-O equal 1.436(2), 1.444(2), 1.445(2) A (I); 1.313(3), 1.411(3), 1.597(3) A (II); 1.431(6)-1.457(7) A (III)). It should be noted that the same distribution of the electron density is observed in tetraphenylantimony and tetra-phenylbismuth 2,5-dimethylsulfonates, the S-O bond lengths equal 1.383(14), 1.440(11), 1.450(2) h 1.439(3), 1.443(3), 1.457(3) A respectively [19, 20].

Fig.1. The structure of complex I Рис. 1. Строение комплекса I

Fig. 2. The structure of complex II Рис. 2. Строение комплекса II

Fig. 3. The structure of hydrate of complex III Рис. 3. Строение гидрата комплекса III

The reaction between tetraphenylphospho-nium arenesulfonates with potassium iodide indicates the ionic nature of the bond. The interaction leads to the instant formation of tetraphenylphosphonium iodide, which is precipitated from the solution in the loose precipitate form.

[Ph4P][Ü3SAr'] + KI ^ Ph4PI + KO3SA1-'

CONCLUSION

It has been found that the dephenylation reaction between pentaphenylphosphorus and arenesulfonic acids can be considered as an effective on-stage method of obtaining tetraphenylphosphorus arenesulfonates.

REFERENCES

1. Wheatley P.J. The crystal and molecular structure of penta-phenylphosphorus J. Chem. Soc. 1964. P. 2206. DOI: 10.103 9/JR9640002206.

2. Chen W.-C., Shih W.-C., Jurca T., Zhao L., Andrada

D.M., Peng C.-J., Chang C.-C., Liu S., Wang Y.-P, Wen Y.-S., Glenn P.A., Hsu C.-P., Frenking G., Ong T.-G. Car-bodicarbenes: unexpected n accepting ability during reactivity with small molecules. J. Am. Chem. Soc. 2017. V. 139 (36). P. 12830. DOI: 10.1021/jacs.7b08031.

3. Sharutin V.V., Egorova I.V., Ivanenko T.K., Ettenko

E.N. New synthesis of tetraphenylphosphonium halides. Zhurn Org. Khim. 2001. V. 37. N 12. P. 1794 (in Russian). DOI: 10.1023/A:1013907514659.

4. Barnes N.A., Godfrey S.M., Halton R.T.A., Law S., Pritchard R.G. Formation of a dicyanotriorganophospho-rane from the reaction of triphenylphosphane with phenylse-lenocyanate. Angew. Chem. Int. Ed. 2006. V. 45. P. 1272. DOI: 10.1002/anie.200503335.

5. Monkowius U., Mitzel N.W., Schier A., Schmidbaur H. 5-Organyl-5-phosphaspiro[4.4]nonanes: A contribution to the structural chemistry of spirocyclic tetraalkylphosphonium salts and pentaalkylphosphoranes. J. Am. Chem. Soc. 2002. V. 124. P. 6126. DOI: 10.1021/ja012041g.

6. Ruiz J., Marquínez F., Riera V., Vivanco M., García-Granda S., Díaz R. Diphosphanylketenimines: new reagents for the synthesis of unique phosphorus heterocycles. Chem.-Eur. J. 2002. V. 8. P. 3872. DOI: 10.1002/1521-3765(20020902)8:17.

Fig 4. The solvate structure of complex IV with benzene Рис. 4. Строение сольвата комплекса IV с бензолом

ЛИТЕРАТУРА

1. Wheatley P.J. The Crystal and Molecular Structure of Pen-taphenylphosphorus. J. Chem. Soc. 1964. P. 2206. DOI: 10.1039/JR9640002206.

2. Chen W.-C., Shih W.-C., Jurca T., Zhao L., Andrada DM., Peng C.-J., Chang C.-C., Liu S., Wang Y.-P, Wen Y.-S., Glenn P.A., Hsu C.-P., Frenking G., Ong T.-G. Car-bodicarbenes: Unexpected n Accepting Ability during Reactivity with Small Molecules. J. Am. Chem. Soc. 2017. V. 139 (36). P. 12830. DOI: 10.1021/jacs.7b08031.

3. Шарутин В.В., Егорова И.В., Иваненко Т.К., Эттенко Е.Н. Новый метод синтеза галогенидов тетрафенилфос-фора. Журн. орг. химии. 2001. Т. 37. № 12. С. 1794. DOI: 10.1023/A:1013907514659.

4. Barnes N.A., Godfrey S.M., Halton R.T.A., Law S., Pritchard R.G. Formation of a Dicyanotriorganophosphorane from the Reaction of Triphenylphosphane with Phenylselenocyanate. Angew. Chem. Int. Ed. 2006. V. 45. P. 1272. DOI: 10.1002/anie.200503335.

5. Monkowius U., Mitzel N.W., Schier A., Schmidbaur H. 5-Organyl-5-phosphaspiro[4.4]nonanes: A Contribution to the Structural Chemistry of Spirocyclic Tetraalkylphosphonium Salts and Pentaalkylphosphoranes. J. Am. Chem. Soc. 2002. V. 124. P. 6126. DOI: 10.1021/ja012041g.

6. Ruiz J., Marquínez F., Riera V., Vivanco M., García-Granda S., Díaz R. Diphosphanylketenimines: new reagents for the synthesis of unique phosphorus heterocycles. Chem.-Eur. J. 2002. V. 8. P. 3872. DOI: 10.1002/1521-3765(20020902)8:17.

7. Muller G., Bildmann U.J. Crystal and Molecular Structure of P(C6H5)5 ■ 0.5 THF. Z. Naturforsch. B. Chem. Sci. 2004. Bd. 59. N 11-12. P. 1411. DOI: 10.1515/znb-2004-11-1207.

8. Yang G.-D., Dai J.-C., Wu W.-S., Lib H.-P., Liub G.-X Tetra-phenylphosphonium 2,4,5 Tricarboxybenzoate. Acta Crystallogr. Sect. E: Struct. Rep. Onlin. 2007. V. E63. P. o1010-o1011. DOI: 10.1107/S1600536807004163.

9. Dean P.A.W., Craig D.C., Scudder ML., Dance I.G. Tetraphenylphosphonium Hydrogen Oxalate. Acta Crystallogr., Sect. E: Struct. Rep. Online. 2008. V. 64. P. o243. DOI: 10.1107/S160053680706463X.

10. Хисиятуллина H.P., Вазыхова A.M., Воронина Ю.К, Миронов В.Ф. Реакции 1,4-бензохинонов с P-H-фосфониевыми солями. Журн. общ. химии. 2017. Т. 87. № 9. С. 1934-1940. DOI: 10.1134/S1070363217090079.

11. Bawa S., Cole M.L., Dubois P., Lalancette R.A., Thompson H.W. 2-Hydroxyisophthalic Acid: Hydrogen-Bonding Patterns in the Monohydrate and the Tetraphenylphospho-nium salt. An Instance of Dramatic Acidity Enhancement by Symmetric, Internally Hydrogen-Bonded Anion Stabilization. Acta Crystallogr., Sect. B: Struct. Sci. 2004. V. 60. P. 438-446. DOI: 10.1107/S0108768104012686.

12. Шарутин В.В., Сенчурин В.С, Шарутина О.К., Бояр-кина Е.А. Синтез и строение карбоксилатов и сульфона-тов тетрафенилфосфония. Журн. общ. химии. 2009. Т. 79. № 1. С. 80. DOI: 10.1134/S1070363209010125.

13. Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.

14. Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.

15. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J. A. K., Puschmann H. Olex2: a complete structure solution, renement and analysis program. J. Appl. Cryst. 2009. V. 42. P. 339.

16. Преч Э., Бюльман Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных. М.: Мир. М.: БИНОМ. Лаборатория знаний. 2013. 440 с.

17. Тарасевич Б.Н. ИК-спектры основных классов огранических соединений. Справочные материала:. М МГУ. 2012. 54 с.

18. Бутина Ю.В., Данилова Е.А., Дмитриев М.В., Соломонов А.В. Кристаллическая структура бис[(диамино-метил-1- ен)аминотиометиламмоний] сульфата. Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 1. С. 45-49. DOI: 10.6060/tcct.2017601.5483.

19. Шарутин В.В., Шарутина О.К., Панова Л.П., Бель-ский В.К. Сульфонаты три- и тетраарилсурьмы. Журн. общ. химии. 1997. Т. 67. № 9. С. 1531.

20. Шарутин В.В., Шарутина О.К., Егорова И.В., Сенчурин В.С., Захарова А.Н. Бельский В.К. Синтез и строение аренсульфонатов тетрафенилвисмута. Журн. общ. химии. 1999. Т. 69. № 9. С. 1470.

7. Muller G., Bildmann U.J. Crystal and molecular structure of P(C6H5)5 ■ 0.5 THF. Z. Naturforsch. B. Chem. Sci. 2004. Bd. 59. N 11-12. P. 1411. DOI: 10.1515/znb-2004-11-1207.

8. Yang G.-D., Dai J.-C., Wu W.-S., Lib H.-P., Liub G.-X. Tetraphenylphosphonium 2,4,5 tricarboxybenzoate. Acta Crystallogr. Sect. E: Struct. Rep. Onlin. 2007. V. E63. P. o1010-o1011. DOI: 10.1107/S1600536807004163.

9. Dean P.A.W., Craig D.C., Scudder ML., Dance I.G. Tetraphenylphosphonium hydrogen oxalate. Acta Crystallogr., Sect. E: Struct. Rep. Online. 2008. V. 64. P. o243. DOI: 10.1107/S160053680706463X.

10. Khasiyatullina N.R., Vazykhova A.M., Voronina Yu.K., Mironov V.F. Reaction of 1,4 benzoquinones with Ph-phospho-nium salts. Zhurn. Obshch. Khim. 2017. V. 87. N 9. P. 1934-1940 (in Russian). DOI: 10.1134/S1070363217090079.

11. Bawa S., Cole M.L., Dubois P., Lalancette R.A., Thompson H.W. 2-Hydroxyisophthalic acid: hydrogen-bonding patterns in the monohydrate and the tetraphenylphosphonium salt. An instance of dramatic acidity enhancement by symmetric, internally hydrogen-bonded anion stabilization. Acta Crystallogr., Sect. B: Struct. Sci. 2004. V. 60. P. 438-446. DOI: 10.1107/S0108768104012686.

12. Sharutin V.V., Senchurin V.S, Sharutina O.K., Boyarkina E.A. Tetraphenylphosphonium carboxylates and sulfonates. Synthesis and structure. Zhurn. Obshch. Khim. 2009. V. 79. N 1. P. 80 (in Russian). DOI: 10.1134/S1070363209010125.

13. Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.

14. Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.

15. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. Olex2: a complete structure solution, renement and analysis program. J. Appl. Cryst. 2009. V. 42. P. 339.

16. Prech E., Byul'man F., Affol'ter K. Identification of organic compound structure. The tables of spectrum data: translation from Eng. M.: Mir. M: BINOM. laboratoriya znanij. 2013. 440 p. (in Russian).

17. Tarasevich B.N. IR spectra of the main classes of organic compounds. Reference materials. M.: MSU. 2012. 54 p. (in Russian).

18. Butina Yu.V., Danilova E.A., Dmitriev M.V., Solomonov AV. Crystal structure of bis[1-(diaminomethylene)-thiou-ron-1- ium] sulfate. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 1. P. 45-49 (in Russian). DOI: 10.6060/tcct.2017601.5483.

19. Sharutin V.V., Sharutina O.K., Panova L.P., Bel'skij V.K Tri- and tetraphenylantimony arenesulfonates. Zhurn Obshch. Khim. 1997. V. 67. N 9. P. 1531 (in Russian).

20. Sharutin V.V., Sharutina O.K., Egorova I.V., Senchurin V.S., Zaharova A.N., Bel'skij V.K. Tetraphenylbismuth arenesulfonates. Synthesis and structure. Zhurn. Obshch. Khim. 1999. V. 69. N 9. P. 1470 (in Russian).

Поступила в редакцию 07.05.2018 Принята к опубликованию 10.12.2018

Received 07.05.2018 Accepted 10.12.2018

i Надоели баннеры? Вы всегда можете отключить рекламу.