УДК: 546.593+547.491+546.162'14+546.185+547.53.024+548.312.2
СИНТЕЗ И СТРОЕНИЕ ДИЦИАНОДИБРОМОАУРАТА МЕТИЛТРИФЕНИЛФОСФОНИЯ
[РЬэРСНэ] [Au(CN)2Br2]
А.Н. Ефремов, В.В. Шарутин, О.К. Шарутина, П.В. Андреев, О.С. Ельцов
Андрей Николаевич Ефремов*, Владимир Викторович Шарутин, Ольга Константиновна Шарутина Кафедра теоретической и прикладной химии, Южно-Уральский государственный университет (национальный исследовательский университет), пр. Ленина, 76, Челябинск, Российская Федерация, 454080 E-mail: [email protected], [email protected], [email protected]
Павел Валерьевич Андреев
Кафедра кристаллографии и экспериментальной физики, Нижегородский государственный университет им. Н.И. Лобачевского, пр. Гагарина, 23, Нижний Новгород, Российская Федерация, 603950 E-mail: [email protected]
Олег Станиславович Ельцов
Кафедра технологии органического синтеза, Уральский Федеральный университет им. первого Президента России Б.Н. Ельцина, ул. Мира, 19, Екатеринбург, Российская Федерация, 620002 E-mail: [email protected]
По реакции дицианодибромоаурата калия с бромидом метилтрифенилфосфония в водном растворе синтезирован и структурно охарактеризован дицианодибромоаурат метилтрифенилфосфония (1) [PhPMe]+[Au(CN)Br2r. Комплекс представляет собой устойчивое на воздухе кристаллическое вещество желтого цвета с четкой температурой плавления. Строение соединения было подтверждено методами ИК спектроскопии, спектроскопии ЯМР и рентгеноструктурного анализа. В ИК-спектре соединения при 2220 см-1 обнаружена интенсивная полоса поглощения, соответствующая валентным колебаниям циано-групп. Полоса поглощения деформационных колебаний связей P-Crh в ИК спектре находится при 1438 см-1. В записанных спектрах 1Н, 13С и 31РЯМР наблюдаются сигналы по количеству, значению химических сдвигов и интегральной интенсивности непротиворечащие предложенной структуре комплекса. РСА кристалла 1 проведен на дифрактометре D8 QUEST фирмы Bruker (MoKa-излучение, X = 0,71073 А, графитовый монохроматор). [C2H1AuBr2NP, M = 686,13, сингония триклинная, пространственная группа P-1, a = 8,802(5), b = 8,989(5), c = 15,233(11) А, V = 1143,8(13) А3, Z = 2, ц = 10,002 мм1, F(000) = 644, размер кристалла 0,41^0,30^0,22 мм]. По данным РСА в кристалле соединения 1 присутствуют два типа цен-тросимметричных кристаллографически независимых мономерных дицианодибромоаурат-ных анионов и катионы метилтрифенилфосфония. Катионы имеют искаженную тетраэд-рическую конфигурацию: углы CPC 108,8(2)°-110,0(2)°,расстоянияP-С 1,791(5)-1,800(5) А. В анионах [Au(CN)2Br2f все транс-углы CAuC и BrAuBr равны 180,0°. Расстояния Au-C в анионах отличаются друг от друга и составляют 2,040(7), 2,024(1), 1,991(2) А. Данные значения близки к сумме ковалентныхрадиусов атомов (2,03 А). Длины связей Au-Br в дицианодибро-моауратных анионах равны 2,4162(14), 2,4591, 2,474(5) А. Формирование кристаллической структуры происходит за счет образования слабых водородных связей N"H-Cмежду катионами и анионами (2,68, 2,59, 2,38 А) и Вг"Н-С (3,03, 3,02 А). Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных.
Ключевые слова: дицианодибромоаурат калия, бромид метилтрифенилфосфония, дицианодибромоаурат метилтрифенилфосфония, рентгеноструктурный анализ
SYNTHESIS AND STRUCTURE OF METHYLTRIPHENYLPHOSPHONIUM DICYANODIBROMOAURATE [Ph3PCH3] [Au(CNbBn]
A.N. Efremov, V.V. Sharutin, O.K. Sharutina, P.V. Andreev, O.S. Eltsov
Andrey N. Efremov*, Vladimir V. Sharutin, Olga K. Sharutina
Department of Theoretical and Applied Chemistry, South Ural State University (National Research University), Lenin ave., 76, Chelyabinsk, 454080, Russia
E-mail: [email protected], [email protected], [email protected] Pavel V. Andreev
Department of Crystallography and Experimental Physics, Lobachevsky State University of Nizhny Novgorod, Gagarin ave., 23, Nizhny Novgorod, 603950, Russia E-mail: [email protected]
Oleg S. Eltsov
Department of Technology for Organic Synthesis, Ural Federal University named after the first President of Russia B.N. Yeltsin, Mir st., 19, Yekaterinburg, 620002, Russia E-mail: [email protected]
Methyltriphenylphosphonium dicyanodibromoaurate (1) [PhPMe]+[Au(CN)2Br2f was synthesized by the reaction of potassium dicyanodibromoaurate with methyltriphenylphosphonium bromide in an aqueous solution and was structurally characterized. The complex is a yellow-colored, air-resistant crystalline substance with a clear melting point. The structure of the compound was established by IR spectroscopy, NMR spectroscopy and X-ray diffraction analysis. An intense absorption band was observed in the IR spectrum of compound at 2220 cm-1, corresponding to the stretching vibrations of cyano groups. The absorption band of the deformation vibrations of the P - Cph bonds in the IR spectrum is at 1438 cm-1. In the recorded 1Н, 13С, and 31Р NMR spectra, signals are observed for the number, value of chemical shifts and integral intensity that do not contradict the proposed complex structure. The X-ray diffraction analysis of crystal 1 was carried out on a Bruker D8 QUESTdiffractometer (MoKa radiation, X = 0.71073 A, graphite monochrom-ator). [C21H1AuBrNP, M=686.13, crystal system triclinic, space group P-1, a = 8.802(5), b = 8.989(5), c = 15.233(11) A, V = 1143.8(13) A3, Z = 2, f = 10.002 mm-1, F(000) = 644, crystal size 0.41*0.30*0.22 mm]. According to the X-ray diffraction analysis (XRDA) data there are two types of centrosymmetric crystallographically independent monomeric dicyanodibromoaurate anions and methyltriphenylphosphonium cations in the crystal of compound MFDDA. The cations have a distorted tetrahedral configuration: the CPC angles equal 108.8(2)°-110.0(2)°, the Р-С distances are 1.791(5)-1.800(5) A. All CAuC andBrAuBr trans-angles are 180.0° in the[Au(CN)Br2T anions. The Au-C distances in anions differ from each other and equal 2.040(7), 2.024(1), 1.991(2) A. These values are close to the sum of the covalent radii of atoms (2.03 A). The Au-Br bond lengths are equal to 2.4162(14), 2.4591, 2.474(5) A in dicyanodibromoaurate anions. Formation of the crystal structure occurs due to formation of weak N"H-C hydrogen bonds between cations and anions (2.68, 2.59, 2.38 A) andBr- Н-С (3.03, 3.02 A). Complete tables of coordinates of atoms, bond lengths and valence angles are deposited at the Cambridge Crystallographic Data Centre.
Key words: potassium dicyanodibromoaurate, methyltriphenylphosphonium bromide, methyltri-phenylphosphonium dicyanodibromoaurate, X-ray diffraction analysis
Для цитирования:
Ефремов А.Н., Шарутин В.В., Шарутина О.К., Андреев П.В., Ельцов О.С. Синтез и строение дицианодибромоаурата метилтрифенилфосфония [Ph3PCH3] [Au(CN)2Br2]. Изв. вузов. Химия и хим. технология. 2020. Т. 63. Вып. 3. С. 10-15
For citation:
Efremov A.N., Sharutin V.V., Sharutina O.K., Andreev P.V., Eltsov O.S. Synthesis and structure of methyltriphenylphosphonium dicyanodibromoaurate [PhsPCHs] [Au(CN)2Br2]. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [Russ. J. Chem & Chem Tech.]. 2020. V. 63. N 3. P. 10-15
INTRODUCTION
To date, the ionic complexes of gold in the form of tetrahalogenoaurate and dicyanoaurate anions have been studied well [1-7]. The most interesting are the last ones due to their use in the preparation of semiconductor, magnetic and optically active materials [8-14]. In addition, dicyanoaurate complexes are active metabolites of several drugs [15]. It has been shown that [Au(CN)2]" anions can form oligomers with luminescent properties [11, 16-19]. Currently, several cyanide complexes of monovalent gold [20, 21] and cyanohal-ide complexes of trivalent gold are known [22-24]. It should be noted that the [Kat]+[Au(CN)2Hal2]- complexes with organometallic cations have not been studied.
EXPERIMENTAL PART
The IR spectrum of complexes methyltri-phenylphosphonium dicyanodibromoaurate (1) was recorded on a Shimadzu IR Affinity-1S IR-Fourier spectrometer in the region of 4000-400 cm-1 using the KBr pellet.
The >H (600 MHz), 13C (151 MHz), 31P (243 MHz) NMR spectra were recorded for DMSO-Je solutions of compounds on a Bruker AVANCE NEO NMR-spec-trometer. Solvent signals were used as the internal standard for the :H and 13C NMR spectra, and the external standard H3PO4 was used for the 31P NMR spectra.
X-ray diffraction study of single crystal 1 was accomplished on a Bruker D8 QUEST diffractometer (Mo-Ka radiation, X = 0.71073 A, graphite mono-chromator) at 293 K. Collection, editing of data and refinement of the unit cell parameters, as well as accounting for absorption, were carried out using the SMART and SAINT-Plus programs [25]. All calculations were performed using the SHELXTL/PC [26], OLEX2 [27] software. The structure was solved by the direct method and refined by the method of least squares in the anisotropic approximation for non-hydrogen atoms. Selected crystallographic data and refinement results for the structure of complex 1 are given in Table 1, and selected bond lengths and bond angles are listed in Table 2.
Complete tables of coordinates of atoms, bond lengths and valence angles are deposited at the Cambridge Crystallographic Data Centre (No. 1896043 (1); [email protected]; http://www.ccdc.cam.ac.uk).
Synthesis of methyltriphenylphosphonium dicy-anodibromoaurate [Ph3PCH3]+[Au(CN)2Br2]- (1). To a solution of 80 mg (0.223 mmol) of methyltri-phenylphosphonium bromide in 10 ml of water a solution of 100 mg (0.223 mmol) of potassium dicyanodi-bromoaurate in 4 ml of water was added, stirred and kept at 20 °C for 14 h. Water was removed, the residue was washed with acetonitrile (2^4 ml). Upon slow
evaporation of the solvent, formation of yellow crystals was observed. 145 mg (95%) of the 1 complex with mp 150 °C was obtained.
Table 1
Crystallographic data, parameters of X-ray diffraction experiment, and refinement details for the structure of
complex 1
Таблица 1. Кристаллографические данные и резуль-_таты уточнения структуры 1_
Parameter Value
Formula weight 686.13
Crystal system Triclinic
Space group Pi
a, À 8.802(5)
b, À 8.989(5)
c, À 15.233(11)
a, ° 102.61(2)
P, ° 90.46(4)
7, ° 103.023(19)
V, À3 1143.8(13)
Z 2
Acaic.), g/cm3 1.992
/, mm-1 10.002
F(000) 644
Crystal size, mm 0.41x0.30x0.22
29 range, ° 6.02-52.72
Index ranges -10 < h < 10, -11 < k < 11, -19 < l < 19
Measured reflections 42008
Independent reflections 4653 (Rn = 0.0423)
Reflections with I> 2ct(I) 3562
Refinement variables 276
GOOF 1.057
Final R indexes F2> 2ct(F2) R1 = 0.0276, wR2 = 0.0618
Final R indexes [all date] R1 = 0.0424, wR2 = 0.0675
Largest diff. peak/hole, e/A3 0.428/-0.828
IR spectrum (v, cm1): 3061, 2991, 2916, 2360, 2220, 2167, 1587, 1487, 1438, 1419, 1398, 1340, 1325, 1311, 1193, 1163, 1116, 1028, 997, 979, 935, 898, 837, 786, 752, 740, 719, 686, 507, 472, 449, 430.
!H NMR (DMSO-d6, 600 MHz): 5 3.16 (d, 3H, Jc-p = 14,5 Hz, -CH3), 7,77 (m, 12H, arom. pH), 7.90 (m, 3H, arom. o- and m-H).
13C NMR (DMSO-J6,151 MHz): 5 7.26 (d, C-7, J = 55.5 Hz), 109.46 (CN), 119.85 (d, Ci, J = 88.3 Hz), 130.09 (d, Co, J = 12.64 Hz), 133.23 (d, Cm, J = 10.76 Hz), 134.82 (Cp).
31P NMR (DMSO-de, 243 MHz): 5 22.65.
For C21H18AuN2PBr2, anal. calcd. (%): C, 36.63, H, 2.71.
Found (%): C, 36.76: H, 2.65.
Table 2
Selected bond lengths (d) and bond angles (ю) in the
structure of complex 1 Таблица 2. Основные длины связей и валентные
Bond d, À Angle ю, deg
Au(1)-C(8) 2.040(7) C(8)Au(1)C(8) 180
Au(1)-Br(1) 2.4162(14) C(8)Au(1)Br(1) 89.96(16)
Au(2A)-C(9A) 2.024(13) C(8)Au(1)Br(1) 90.04(16)
Au(2A)-Br(2A) 2.4591(13) Br(1)Au(1)Br(1) 180
Au(2B)-C(9B) 1.991(16) C(9A)Au(2A)C(9A) 180
Au(2B)-Br(2B) 2.474(5) C(9A)Au(2A)Br(2A) 92.4(6)
P(1)-C(7) 1.791(5) C(9A)Au(2A)Br(2A) 87.6(6)
P(1)-C(21) 1.801(4) C(7)P(1)C(1) 109.6(2)
P(1)-C(11) 1.800(4) C(7)P(1)C(11) 109.5(2)
P(1)-C(1) 1.798(4) C(1)P(1)C(11) 109.21(19)
C(8)-N(1) 1.013(6) C(7)P(1)C(21) 109.7(2)
C(9A)-N(2A) 1.077(15) C(1)P(1)C(21) 108.8(2)
C(9B)-N(2B) 1.038(17) C(11)P(1)C(21) 110.0(2)
phosphorus atom with SSCC 14.5 Hz. In the 13C NMR spectrum all signals except the signals of carbon at 109.46 (carbon of the cyano group) and 134.82 ppm (carbon Cp of the aromatic ring) are observed in the form of doublets with the corresponding constants due to the spin-spin interaction with the phosphorus atom. Due to the influence of the phosphorus atom, an insignificant upfield shift of carbon signals is also observed, and the signals of the methyl group and the ipso-carbon of the phenyl ring are directly related to it. A single signal of a phosphorus atom is recorded in the 31P NMR spectrum.
According to the XRDA data, there are two types of centrosymmetric crystallographically independent monomeric dicyanodibromoaurate anions and methyltriphenylphosphonium cations in crystal 1 (Figure).
RESULTS AND DISCUSSION
In this work, for the first time methyltri-phenylphosphonium dicyanodibromoaurate [Ph3PMe]+[Au(CN)2Br2]- (1) was synthesized and structurally characterized.
1 complex has been synthesized from potassium dicyanodibromoaurate and methyltriphenylphospho-nium bromide in an aqueous solution:
K[Au(CN)2Br2] + [Ph3PMe]Br ^ ^ [Ph3PMe][Au(CN)2Br2] + KBr Yellow, air-resistant crystals were obtained after evaporation of water, drying of the solid residue and recrystallization of it from acetonitrile.
The absorption region of cyano groups in the IR spectra of organic and inorganic compounds is in a rather narrow range of values: 2200-2000 cm-1. This circumstance indicates that there is no strong influence of the environment on vibrations of these bonds [28]. Therefore, cyanides are easily identified by absorption in the specified area. Indeed, an intense absorption band at 2220 cm-1 was detected in the IR spectrum of compound 1. The absorption band of the deformation vibrations of the P-CPh bonds in the spectrum of compound 1 is at 1438 cm-1, which corresponds to the absorption region of 1450-1435 cm-1, given in [28]. In the 1H NMR spectrum, p-proton multiplets characteristic of the phenyl ring are observed at 7.90 ppm, m- and o-protons at 7.77 ppm and at 3.16 ppm a doublet of the methyl group with a characteristic splitting on the
Fig. Structure of complex 1 Рис. Строение комплекса 1
The tetrahedral coordination of the phosphorus atom in the methyltriphenylphosphonium cation is slightly distorted: the CPC angles are close to the theoretical value and are 108.8(2)°, 109.2(2)°, 109.5(2)°, 109.6(2)°, 109.7(2)°, 110.0(2)°; P-С bond lengths (1.791 (5), 1.800 (5), 1.800 (4), 1.798 (5) À) are close to each other and do not depend on the nature of the substituent. The square [Au(CN)2Br2]- anions do not deviate from the flat configuration, the CAuC angles are equal to 180°. One of the anions is statistically disordered in two positions. The central Au atom in it coincides in positions that are rotated in relation to each other by 95°. The refined ratio of the position contributions to the disordered fragment is 0.68/0.32. The Au(1)-C(8), Au(2A)-C(9A), Au(2B)-C(9B) distances in anions are different from each other and are: 2.040(7), 2.024(1), 1.991(2) À. These values are close to the sum of covalent radii of the atoms (2.03 À [29]). The Au-Br bond lengths in dicyanodibromoaurate anions are equal to 2.4162(14), 2.4591, 2.474(5) À.
The structural organization of crystals is due to N---H-C weak hydrogen bonds between cations and anions (2.68, 2.59, 2.38 À) and Br-Н-С (3.03, 3.02 À).
CONCLUSION
Thus, the gold complex obtained from methyl-triphenylphosphonium bromide and potassium dicy-anodibromoaurate in water is crystallized in the ionic
ЛИТЕРАТУРА
1. Ovens J.S., Leznoff D.B. Raman detected sensing of volatile organic compounds by vapochromic Cu[AuX2(CN)2]2 (X = Cl, Br) coordination polymer materials. Chem. Mater. 2015. V. 27. P. 1465-1478. DOI: 10.1021/cm502998w.
2. Gatto C.C., Lima I.J., Chagas M.A.S. Supramolecular architectures and crystal structures of gold(III) compounds with semi-carbazones. Supramol. Chem. 2017. V. 29. P. 296-307. DOI: 10.1080/10610278.2016.1227440.
3. Niedzielska D., Pazderski L., Wojtczak A., Kurzawa M., Sci-anowski J., Szlyk E. Structural and spectroscopic studies of Au(IH) chloride compounds with 7,8-benzoquinoline. Polyhedron. 2018. V. 139. P. 155-171. DOI: 10.1016/j.poly.2017.09.044.
4. Sharutin V.V., Sharutina O.K., Senchurin V.S. Gold complexes [Ph3PCH2CH=CHCH2PPh3] 2+[AuCU]2- and [Ph3PCH2CH2COOH]+[AuCl4]-: synthesis and structure. Russ. J. Inorg. Chem. 2015. V. 60. P. 942-946. DOI: 10.1134/S0036023615080173.
5. Sharutin V.V., Senchurin V.S., Fastovets O.A., Pakusina A.P., Sharutina O.K. Tetraphenylantimony(V) hexachloroplatinate, tetrachloroaurate, and hexachlorostannate [Ph4Sb]2+[PtCl6]2-, [Ph4Sb]+[AuCl4]-, and [Ph4Sb]2+[SnCl6]2-: synthesis and crystal structures. Russ. J. Coord. Chem. 2008. V. 34. P. 367-373. DOI: 10.1134/S1070328408050096.
6. Шарутин В.В., Шарутина О.К., Сенчурин В.С. Синтез и структура комплексов золота [p-Tol4Sb][p-TolAuCb] и [p-Tol4Sb][AuCl4]. Вестн. ЮУрГУ. Сер. Хим. 2015. Т. 7. № 4. С. 98-103. DOI: 10.14529/chem150413.
7. Шарутин В.В., Сенчурин В.С., Шарутина О.К. Синтез и строение комплексов палладия, платины и золота: [Ph3PCH2CH2PPh3]2+ [PdCbdmso]-2, [Ph3PCH2C№PPh3]2+ [PtCl6]2--4 dmso, [Ph3PCH2CH2PPh3]2+ [AuCl4]-2 и [Ph3PCH2CH2PPh3]2+ [AuCk]-2. Вестн. ЮУрГУ. Сер. Хим. 2011. Вып. 6. № 33. С. 37-46.
8. Xiaobo L., Patterson H. A review of luminescent anionic nano system: d10 metallocyanide excimers and exciplexes in alkali halide hosts. Materials. 2013. V. 6. P. 2595-2611. DOI: 10.3390/ma6072595.
9. Dechambenoit P., Ferlay S., Kyritsakas N., Hosseini M.W. Molecular tectonics: control of packing of luminescent networks formed upon combining bisamidinium tectons with dicyanometal-lates. Cryst. Eng. Comm. 2011. V. 13. P. 1922-1930. DOI: 10.1039/C0CE00607F.
10. Hill J.A., Thompson A.L., Goodwin A.L. Dicyanometal-lates as model extended frameworks. J. Am. Chem. Soc. 2018. V. 138. P. 5886-5896. DOI: 10.1021/jacs.5b13446.
11. Assefaa Z., Haireb R.G., Sykorac R.E. Hydrothermal syntheses, structural, Raman, and luminescence studies of Cm[M(CN)2]3 ■ 3H2O and Pr[M(CN>]3 ■ 3H2O (M = Ag, Au). J. Solid State Chem. 2008. V. 181. P. 382-391. DOI: 10.1016/j.jssc.2007.11.036.
12. Brown M.L., Ovens J.S., Leznoff D.B. Dicyanoaurate-based heterobimetallic uranyl coordination polymers. Dalton Trans. 2017. V. 46. P. 7169-7180. DOI: 10.1039/C7DT00942A.
13. Chorazy S., Wyczesany M., Sieklucka B. Lanthanide photoluminescence in heterometallic polycyanidometallate-based coordination networks. Molecules. 2017. V. 22. P. 1902-1932. DOI: 10.3390/molecules22111902.
structure with monomeric dicyanodibromoaurate anions.
South Ural State University is grateful for
the financial support of the Ministry of Education
and Science of the Russian Federation (grant No. 4.6151.2017/8.9).
REFERENCES
1. Ovens J.S., Leznoff D.B. Raman detected sensing of volatile organic compounds by vapochromic Cu[AuX2(CN)2]2 (X = Cl, Br) coordination polymer materials. Chem. Mater. 2015. V. 27. P. 1465-1478. DOI: 10.1021/cm502998w.
2. Gatto C.C., Lima I.J., Chagas M.A.S. Supramolecular architectures and crystal structures of gold(IH) compounds with semi-carbazones. Supramol. Chem. 2017. V. 29. P. 296-307. DOI: 10.1080/10610278.2016.1227440.
3. Niedzielska D., Pazderski L., Wojtczak A., Kurzawa M., Sci-anowski J., Szlyk E. Structural and spectroscopic studies of Au(III) chloride compounds with 7,8-benzoquinoline. Polyhedron. 2018. V. 139. P. 155-171. DOI: 10.1016/j.poly .2017.09.044.
4. Sharutin V.V., Sharutina O.K., Senchurin V.S. Gold complexes [Ph3PCH2CH=CHCH2PPh3]2+[AuCLi]2- and [Ph3PCH2CH2COOH]+[AuCl4]-: synthesis and structure. Russ. J. Inorg. Chem. 2015. V. 60. P. 942-946. DOI: 10.1134/S0036023615080173.
5. Sharutin V.V., Senchurin V.S., Fastovets O.A., Pakusina A.P., Sharutina O.K. Tetraphenylantimony(V) hexachloroplatinate, tetrachloroaurate, and hexachlorostannate [Ph4Sb]2+[PtClô]2-, [Ph4Sb]+[AuCl4]-, and [Ph4Sb]2+[SnClô]2-: synthesis and crystal structures. Russ. J. Coord. Chem. 2008. V. 34. P. 367-373. DOI: 10.1134/S1070328408050096.
6. Sharutin V.V., Sharutina O.K., Senchurin V.S. Synthesis and structure of gold complexes [p-ToUSb][p-TolAuCl3] and [p-Tol4Sb][AuCl4]. Vestn. YuUrGU. Ser. Khim. 2015. V. 7. N 4. P. 98-103 (in Russian). DOI: 10.14529/chem150413.
7. Sharutin V.V., Senchurin V.S., Sharutina O.K. Synthesis and structure of palladium, platinum and gold complexes: [Ph3PCH2CH2PPh3]2+ [PdCbdmso]-2, [Ph3PCH2C№PPh3]2+ [PtCl6]2-4 dmso, [Ph3PCH2CH2PPh3]2+ [AuCL]-2 and [Ph3PCH2CH2PPh3]2+ [AuCl2]-2. Vestn. YuUrGU. Ser. Khim. 2011. V. 6. N 33. P. 37-46 (in Russian).
8. Xiaobo L., Patterson H. A review of luminescent anionic nano system: d10 metallocyanide excimers and exciplexes in alkali halide hosts. Materials. 2013. V. 6. P. 2595-2611. DOI: 10.3390/ma6072595.
9. Dechambenoit P., Ferlay S., Kyritsakas N., Hosseini M.W. Molecular tectonics: control of packing of luminescent networks formed upon combining bisamidinium tectons with dicyano-metallates. Cryst. Eng. Comm. 2011. V. 13. P. 1922-1930. DOI: 10.1039/C0CE00607F.
10. Hill J.A., Thompson A.L., Goodwin A.L. Dicyanometal-lates as model extended frameworks. J. Am. Chem. Soc. 2018. V. 138. P. 5886-5896. DOI: 10.1021/jacs.5b13446.
11. Assefaa Z., Haireb R.G., Sykorac R.E. Hydrothermal syntheses, structural, Raman, and luminescence studies of Cm[M(CN)2]3 ■ 3H2O and Pr[M(CN>]3 ■ 3H2O (M = Ag, Au). J. Solid State Chem. 2008. V. 181. P. 382-391. DOI: 10.1016/j.jssc.2007.11.036.
12. Brown M.L., Ovens J.S., Leznoff D.B. Dicyanoaurate-based heterobimetallic uranyl coordination polymers. Dalton Trans. 2017. V. 46. P. 7169-7180. DOI: 10.1039/C7DT00942A.
13. Chorazy S., Wyczesany M., Sieklucka B. Lanthanide photoluminescence in heterometallic polycyanidometallate-based coordination networks. Molecules. 2017. V. 22. P. 1902-1932. DOI: 10.3390/molecules22111902.
14. Shaw C.F. Gold-based therapeutic agents. Chem. Rev. 1999. V. 99. P. 2589-2600. DOI: 10.1021/cr980431o.
15. Rawashdeh-Omary M.A., Omary M.A., Patterson H.H. Oli-gomerization of Au(CN)2- and Ag(CN)2- ions in solution via ground-state aurophilic and argentophilic bonding. J. Am. Chem. Soc. 2000. V. 122. P. 10371-10380. DOI: 10.1021/ja001545w.
16. Rawashdeh-Omary M.A, Omary M.A., Shankle G.E., Patterson H.H. Luminescence thermochromism in dicyanoargentate (I) ions doped in alkali halide crystals. J. Phys. Chem. B. 2000. V. 104. P. 6143-6151. DOI: 10.1021/jp000563x.
17. Colis J.C.F., Larochelle Ch., Fernandez E.J., Lopez-de-Luzuriaga J.M., Monge M., Laguna A., Tripp C., Patterson H.H, Tunable photoluminescence of closed-shell hetero-bimetallic Au-Ag dicyanide layered systems. J. Phys. Chem. B. 2005. V. 109. P. 4317-4323. DOI: 10.1021/jp045868g.
18. Assefa Z., Kalachnikova K., Haire R.G., Sykora R.E. Hydrothermal synthesis, structural, Raman, and luminescence studies of Am[M(CN)2]3 3H2O and Nd[M(CN)2]3 3H2O (M=Ag, Au): Bimetallic coordination polymers containing both trans-plutonium and transition metal elements. J. Solid State Chem. 2007. V. 180. P. 3121-3129. DOI: 10.1016/j.jssc.2007.08.032.
19. Roberts R.J., Le D., Leznoff D.B. Color-tunable and white-light luminescence in lanthanide-dicyanoaurate coordination polymers. Inorg. Chem. 2017. V. 56. P. 7948-7959. DOI: 10.1021 /acs.inorgchem. 7b0073 5.
20. Cambridge Crystallographic Data Center. 2018. ([email protected]; http://www.ccdc.cam.ac.uk).
21. Шарутин В.В., Попкова М.А., Тарасова Т.Н. Синтез и строение комплексов золота: [[Ph4P][Au(CN)2] и [(4-MeC6H4)4Sb][Au(CN)2]-H20. Вестн. ЮУрГУ. Сер. Хим. 2018. Т. 10. № 1. С. 55-61. DOI: 10.14529/chem180107.
22. Ovens J.S., Geisheimer A.R., Bokov A.A., Ye Z.-G., Leznoff D.B. The use of polarizable [AuX2(CN>]- (X = Br, I) building blocks toward the formation of birefringent coordination polymers. Inorg. Chem. 2010. V. 49. P. 9609-9616. DOI: 10.1021/ic101357y.
23. Pitteri B., Bortoluzzi M., Bertolasi V. Chelate polypyridine lig-and rearrangement in Au(III) complexes. Transition Met. Chem. 2008. V. 33. P. 649-654. DOI: 10.1007/s11243-008-9092-9.
24. Ovens J.S., Truong K.N., Leznoff D.B. Targeting [AuCk(CN)2]- units as halophilic building blocks in coordination polymers. Inorg. Chem. Acta. 2013. V. 403. P. 127-135. DOI: 10.1016/j.ica.2013.02.011.
25. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc. Madison, Wisconsin, USA. 1998.
26. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc. Madison, Wisconsin, USA. 1998.
27. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009. V. 42. P. 339-341. DOI: 10.1107/S0021889808042726.
28. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. М.: Мир. 2006. 440 с.
29. Бацанов С.С. Атомные радиусы элементов. Журн. неорган. химии. 1991. Т. 36. № 12. C. 3015-3037.
14. Shaw C.F. Gold-based therapeutic agents. Chem. Rev. 1999. V. 99. P. 2589-2600. DOI: 10.1021/cr980431o.
15. Rawashdeh-Omary M.A., Omary M.A., Patterson H.H. Oli-gomerization of Au(CN)2- and Ag(CN)2- ions in solution via ground-state aurophilic and argentophilic bonding. J. Am. Chem. Soc. 2000. V. 122. P. 10371-10380. DOI: 10.1021/ja001545w.
16. Rawashdeh-Omary M.A, Omary M.A., Shankle G.E., Patterson H.H. Luminescence thermochromism in dicyanoargentate (I) ions doped in alkali halide crystals. J. Phys. Chem. B. 2000. V. 104. P. 6143-6151. DOI: 10.1021/jp000563x.
17. Colis J.C.F., Larochelle Ch., Ferna ndez E.J., Lopez-de-Luzuriaga J.M., Monge M., Laguna A., Tripp C., Patterson H.H. Tunable photoluminescence of closed-shell hetero-bimetallic Au-Ag dicyanide layered systems. J. Phys. Chem. B. 2005. V. 109. P. 4317-4323. DOI: 10.1021/jp045868g.
18. Assefa Z., Kalachnikova K., Haire R.G., Sykora R.E. Hydrothermal synthesis, structural, Raman, and luminescence studies of Am[M(CN)2] 3 ■ 3H2O and Nd[M(CN)2]3'3№O (M=Ag, Au): Bimetallic coordination polymers containing both trans-plutonium and transition metal elements. J. Solid State Chem. 2007. V. 180. P. 3121-3129. DOI: 10.1016/j.jssc.2007.08.032.
19. Roberts R.J., Le D., Leznoff D.B. Color-tunable and white-light luminescence in lanthanide-dicyanoaurate coordination polymers. Inorg. Chem. 2017. V. 56. P. 7948-7959. DOI: 10.1021/acs.inorgchem.7b00735.
20. Cambridge Crystallographic Data Center. 2018. ([email protected]; http://www.ccdc.cam.ac.uk).
21. Sharutin V.V., Popkova M.A., Tarasova T.N. Synthesis and structure of gold complexes: [[Ph4P][Au(CN)2] and [(4-MeCeH4)4Sb][Au(CN)2]-H20. Vestn. YuUrGU. Ser. Khim. 2018. V. 10. N 1. P. 55-61 (in Russian). DOI: 10.14529/chem180107.
22. Ovens J.S., Geisheimer A.R., Bokov A.A., Ye Z.-G., Leznoff D.B. The use of polarizable [AuX2(CN>]- (X = Br, I) building blocks toward the formation of birefringent coordination polymers. Inorg. Chem. 2010. V. 49. P. 9609-9616. DOI: 10.1021/ic101357y.
23. Pitteri B., Bortoluzzi M., Bertolasi V. Chelate polypyridine lig-and rearrangement in Au(III) complexes. Transition Met. Chem. 2008. V. 33. P. 649-654. DOI: 10.1007/s11243-008-9092-9.
24. Ovens J.S., Truong K.N., Leznoff D.B. Targeting [AuCk(CN)2]- units as halophilic building blocks in coordination polymers. Inorg. Chem. Acta. 2013. V. 403. P. 127-135. DOI: 10.1016/j.ica.2013.02.011.
25. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc. Madison, Wisconsin, USA. 1998.
26. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc. Madison, Wisconsin, USA. 1998.
27. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009. V. 42. P. 339-341. DOI: 10.1107/S0021889808042726.
28. Prech E., Byulmann F., Affolter K. Determination of the structure of organic compounds. М.: Mir. 2006. 440 p. (in Russian).
29. Batsanov S.S. Atomic radiuses of the elements. Zhurn. Ne-org. Khim. 1991. V. 36. N 12. P. 3015-3037 (in Russian).
Поступила в редакцию (Received) 03.07.2019 Принята к опубликованию (Accepted) 13.01.2020