I. ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ Неорганическая и физическая химия
УДК 541.11/.118
Глушнев Г.А.1,Канбар Аят1, Федченко М.Г.1, Кескинов В.А.1, Чарыков Н.А.1,2, Семенов К.Н.14,6, Шаймарданов Ж.К.3, Шаймарданова Б.К.3, Куленова Н.А.3, Летенко Д.Г.5, Закиров Б.С.7
РАСТВОРИМОСТЬ В
тройной системе с
УЧАСТИЕМ ОКТО-АДДУКТА ЛЕГКОГО ФУЛЛЕРЕНА С АРГИНИНОМ И СОЛИ ЛЮТЕЦИЯ:
LuCl3-C60(C6H14N4O2)8(H)8-H2O
при 25 °C
1Санкт-Петербургский государственный технологический институт (технический университет), Московский пр., 26 Санкт-Петербург, 190013, Россия 2Санкт-Петербургский электротехнический университет "ЛЭТИ", ул. Проф. Попова, 5, 197376 Санкт-Петербург, Россия
3Восточно-Казахстанский государственный технический университет им. Д. Серикбаева, ул. А. К. Протозанова, 69, г. Усть-Каменогорск, 070004, Республика Казахстан 4Институт химии. Санкт-Петербургский государственный университет, Университетский пр., 26., Санкт-Петербург, Петергоф 198504, Россия 5Санкт-Петербургский государственный архитектурно-строительный университет, 2-я Красноармейская ул., 4, 190005 Санкт-Петербург, Россия 6Первый Санкт-Петербургский государственный медицинский университет им. И.П. Павлова, ул. Льва Толстого, 6-8, Санкт-Петербург, 195176, Россия 7Институт общей и неорганической химии АН Узбекистана, ул. Мирзо Улугбека, 77а, Ташкент, 100170, Республика Узбекистан. e-mail: keskinov@mail.ru
В работе нами использовался LuCl3, синтезированный из оксида Lu2O3 марки ЛУОЕ обработкой"ч.д.а." HCl с последующей вакуумной сушкой. Окто-аддукт фуллере-на - C60(C6H14N4O2)s(H)s синтезировали гетерогенно-каталитическим синтезом C60, растворенного в о-ксилоле с аминокислотой аргинином - C6H14N4O2, растворенным в воде, в присутствии межфазного катализатора [n-(C4H9)4N]OH с последующим осаждением и очисткой продукта. Диаграмму растворимости исследовали методом насыщения в ампулах при 25±0,020 °С в течение 4 часов. Концентрацию LuCl3 определяли ком-плексометрическим титрованием, концентрацию C60(C6H14N4O2)s(H)s определяли с помощью абсорбционной электронной спектроскопии, по оптической плотности на длине волны/ А = 330 нм, плотность растворов определяли с помощью кварцевых пикнометров с рабочим объемом V ~ 5 см. Диаграмма растворимости в тройной системе LuCl3-C60(С6H14N4O2)s(H)s-H2O при 25 °C оказалась простой эвтонической, состоящей из двух ветвей, отвечающих кристаллизации кристаллогидратов: LuCl36H2O и C^^H^NO^^HS "15H2O. Диаграмма
Georgy A.Glushnev1, Ayat Kanbar1, Maxim G. Fedchenko1, Victor A. Keskinov1, Nikolay A. Charykov1,2, Konstantin N. Semenov1,4,6, Zhasulan K. Shaimardanov 3, Botagoz K. Shaimardanova 3, Natalie A. Kulenova3, Dmitrii.G. Letenko5, Bakhtiyar S. Zakirov7
SOLUBILITY PHASE EQUILIBRIUM IN TERNARY SYSTEMS WITH OCTO-ADDUCT OF LIGHT FULLERENE WITH ARGININE AND LUTETIUM SALT:
LuCl3-C60(C6H14N4O2)8(H)8-H2O
at 25 °C
1St Petersburg State Institute of Technology (Technical University), 26, Moskovsky Pr., St Petersburg, 190013, Russia
2S-Petersburg Electrotechnical University «LETI», St. Petersburg, 197376, ul. Professora Popova, 5 3D. Serikbayev East Kazakhstan state technical university, Ust-Kamenogorsk city, 070004, A.K. Protozanov Street, 69, The Republic of Kazakhstan
4St. Petersburg State University,7/9 Universitetskaya emb., Saint Petersburg, 199034, Russia 5St.Petersburg State University of Architecture and Civil Engineering (SPSUACE), 2-nd Krasnoarmeiskaya St. 4, 190005 St. Petersburg, Russia
6Pavlov First St.Petrsburg State Medical University,. L. Tolstoy st. 6-8, St Petersburg, 195176, Russia 7Institute of General and Inorganic Chemistry Academy of Science Uzbekistan Republic, Mirzo Ulugbek st., 77 a, Tashkent, 100170, Uzbekistan Republic e-mail: keskinov@mail.ru
In the presented study, we used LuCl3 chloride synthesized from LUOEgrade Lu2O3 oxide by treatment with HCl "purely for analysis" followed by vacuum drying.Octo-adduct of fullerene Ceo - Ceo(CeH14N4O2)s(H)s was synthesized by heterogeneous - catalyst synthesis of Ceo dissolved in o-xylene amino-acid arginine - CeH14N4O2, dissolved in water, with interphase catalyst [n-(C4H9)4N]OH with subsequent precipitation and purification of the product. Solubility diagram was investigated by the method of saturation in ampules at 25±0.02 °C for 4 hours. The concentration of LuCl3 was determined by complexometric titration, the concentration of Ceo(CeH14N4O2)(H)s was determined with the help of absorption electronic spectroscopy, according to optical density at wavelength A = 330 nm, density of the solutions were determined with the help of quartz picnometers with operating volume V ~ 5 cm3. Diagram of solubility in ternary system LuCl3-Ceo(CeH14N4O2)s(H)s-H2O at 25 °C occures to be simple eutonics, consist of two branches, corresponds to crystallization of crystal-hydrates: LuCl36H2O and Ceo(CeH14N4O2)8(H)s-15H2O. Diagram contains one non-variant point each - eutonics, which
содержит одну нонвариантную точку - эвтонику, которая соответствует насыщению парой кристаллогидратов одновременно. Диаграмма также содержит очень короткую ветвь кристаллизации ШС136Н2О и длинную ветвь С60(С6Н14М4О2)е(Н)8,15Н2О, где отчетливо наблюдается эффект высаливания окто-аддукта
Ключевые слова: фуллерен С60, окто-аддукт, хлорид лютеция, диаграмма растворимости, тройная система, простая эвтоника.
corresponds to saturation with pair of crystal-hydrates simultaneously. Diagram also contains very short branch of LuCl3-6H2O crystallization, and long branch of C60(C6H14N4O2)8(H)815H2O, where the effect of octo-adduct salt-out is observed distinctly
Key words: fullerene C50, arginine, octo-adduct, lutetium chloride, solubility diagram, ternary system, simple euton-ic.
DOI 10.36807/1998-9849-2020-53-79-3-8
Дата поступления - 27 декабря 2019 года
Introduction
This article continue the cycle of publications, concerning the synthesis, identification and physical-chemical, physical, bio-chemical, biological properties investigation of the adducts of light fullerenes and amino-acids [1-31], herewith some publications [1-7] were devoted to the investigation of octo-adduct of light fullerene C50 with L-arginine, namely. This article is devoted to the investigation of the diagram of solubility in the systems, containing simultaneously water soluble fullerene nano-cluster, inorganic salt, including rare earth metals and actinoids, and water, as a solvent [32-39]. In all last articles it was shown, that water soluble fullerene nano-clusters (adducts with amino-acids, poly-hydroxylated forms - fullerenols, complex eithers with carbon acids) have a very strong salting-out effect at addition of inorganic salts or it's crystal-hydrates, and the salting-out effect is most strongly manifested for salts of 4-f and 5-f elements, somewhat weaker for the salts of d-elements, and even weaker for the salts of p- and s-elements. So, such 4-f elements salts (as LuCl3) may be effectively used for the sedimentation (by salting-out effect) fullerene nano-clusters (as C50(C5Hi4N4O2)8(H)8) and maybe it's separation from the matrix solution and purification virtually without losses of nanoclusters. Now separation from the matrix solution and purification of fullerenes nanoclusters is carried out, as a rule, by multistage (often triple) methanol (or methyl-acetate, or ethanol)-water recrystalli-zation, which leads to the following:
-considerable losses of nanoclusters, because solubility of last ones in methanole with water impurities solutions is more or less considerable;
-nanoclusters for the same reasons contain a significant amount of impurities;
-recrystallization process itself is laborious. So, the main practical goal of the presented investigation is elaboration of a convenient and economical method of allocation of water soluble fullerene derivatives from water solutions without losses by salt-out effect with the help of rare earth metals salts (in our case LuCl3). Theoretical basis of such salt-out process is namely solubility diagrams in our ternary system.
Reagents
In presented investigation we used rare earth chloride LuCl3, synthesized from the "chemical pure" oxide Lu2O3 by treatment of "pure for the analysis" HCl with following vacuum drying. Octo-adduct C50(C5Hi4N4O2)8(H)8 was synthesized by heterogeneous - catalyst reaction of C50, with amino-acid arginine - C5Hi4N4O2, with interphase catalyst [n-(C4H9)4N]OH [1,5,5]. So, LuCl3 and
C50(C5Hi4N4O2)8(H)8 with purity ~ 99.0 and 97.3 mas. %, correspondingly, were synthesized.
Experimental method
Solubility diagrams were investigated by the method of saturation in ampules at 25±0.02 °C for 4 hours in the conditions of shaker-thermostate with shaking friequence ~ 2 Hz. For the prevention of Lu3+ in the form Lu(OH)3 sedimentation some drops oh HCl was added to the heterogeneous systems, to approximate fixation of pH ~ 2 a.u.
The concentration of LuCl3 were determined by complexometric titration with trilon-B (disodium salt of ethylene-diamine-tetraacetic acid - EDTA), titration conditions were the following: acetic buffer, indicator - 2-3 drops of 1-% Xylenol orange solution, color transition from violet to lemon-yellow [40-43].
Concentration of C50(C5H14N4O2)8(H)8 was determined with the help of absorption electronic spectroscopy according to optical density at wavelength A = 330 nm - D330 (Ultraviolet-Visible Electronic Specto-photometer Shimadzu, wavelength 200 nm < A < 900 nm). Typical spectrum for C50(C5H14N4O2)8(H)8 water solution is represented in Fig.1.
Fig.1. Electronic spectrum of C60(C6H14N4O2)s(H)s water solution (concentration of C60(C6H14N4O2)s(H)s C = 0.34 g/dm3).
One can see, that, althought spectrum has no any expressed absorption peaks, we can calculate C50(C5Hi4N4O2)8(H)8 concentration in g/dm3, from optical density at wavelength A = 330 nm, according to Booger-Lambert-Behr law by the formule:
C(g/dm3) = 0.609'D330 (at l = 1cm)
(1)
Density of the solutions were determined with the help of quartz picnometers with operating volume
V~ 5 cm3. Errors in the deteremination of LuCl3 concentration was 5 ~ 3 relative %, Cec(CeHi4N4O2)8(H)8 5 ~ 5 relative % , density 5 ~ 0.1 relative %.
Experimental data discussion
Solubility diagram in the ternary system LuCh-q^QHnN.AHHy^O at 25 °C is represented in the Fig.2 and Table. Diagram is represented in bilogarithm form, because concentration of both components in the long branch of crystallization changes very quiskly and very strongly. In Fig. 3. the dependence of the densities of saturated solutions in ternary system
LuCl3 - C60(C6HmN4O2)8(H)8 represented. P
H2O at 25 °C is
Lg|Concentration octo-adduct] IgC^^^y^ (gdm )
Fig. 2. Solubility in ternary system LuC/з - C6o(С6HмN4O2)s(H)s - H2O at 25 °C
Fig.3. Density of saturated solutions in ternary system LuCh - QoCQHNOOzMHJs - H2O at 25C
Table. Solubility in ternary system LuCh - C60(C6HmNO2)s(H)s - H2O at 25 °C
Num Density Optical density Concentration Concentration Solid Phase
P (g/cm3) D (a.u.) C60(C6H14N402)s(H)s (g/dm3) LuCIs (g/dm3)
1. 1.013 27.73399 16.9 0.00 C60(C6H14N402)s(H)s'15H20
2. 1.018 2.348112 1.43 1.08 C60(C6H14N402)s(H)s'15H20
3. 1.032 2.298851 1.40 1.91 C60(C6H14N402)s(H)s'15H20
4. 1.053 1.674877 1.02 2.64 C60(C6H14N402)s(H)s'15H20
5. 1.075 1.543514 0.69 4.78 C60(C6H14N402)s(H)s'15H20
6. 1.189 0.279146 0.17 33.3 C60(C6H14N402)s(H)s'15H20
7. 1.290 0.116585 0.071 137 C60(C6H14N402)s(H)s'15H20
8. 1.508 0.060755 0.037 379 C60(C6H14N402)s(H)s'15H20
9. 1.837 0.034483 0.021 941 C60(C6H 14N402)s(H)s '15H20+LuCl3 -6H20
10. 1.851 - 0.000 944 LuCl3'6H20
Diagram of solubility in ternary system LuCh-q^QHMNiO^HyH^D at 25 °C occures to be simple eutonics [44-46], consist of two branches corresponds to crystallization of crystal-hydrates: LuCl3'6H2O and q^QHnN.AHHy^HA Diagrams contains one non-variant point - eutonics [7, s], which corresponds to saturation the pair of crystal-hydrates simultaneously. Diagram contains very short branch of LuCl3-6H2O and long branche of Q^QHHN.tO^Hy^^O crystallization, where effect of octo-adduct salt-out is observed distinctly.
Conclusions
So, diagram of solubility in ternary system LuCh-q^QHnN.AKHy^O at 25CC occures to be simple eutonics, with non-variant point, laying very close to figurative point of LuCl3 (in eutonics relation between LuCl3 and Q^QsHh^O^H^ concentrations is nearly 1/3CCCC). This fact determines high perspectivity of LuCl3 use for C^QsHh^O^H^ precipitation from the solutions, practically wuthout any losses and impurities.
Acknowledgements
This work was supported by Russian Foundation for Basic Research (RFBR) (Projects Nos. 18-08-00143 A, 19-015-00469A, and 19-016-00003A).
References
1. Shevchenko Dmitriy S, Rakhimova Olga V,, Charykov Nikolay A., Semenov Konstantin N., Keskinov Victor A., Vorobiev Alexander L, Kulenova Natalie A., Onabaeva Zhanar S. Synthesis, identification and biotest-ing of water soluble octo-adduct of fullerene C60 and C60(C6Hi2NaN4O2)8H8 // Izvestia SPSIT(TU). 2018. №45(71). P. 77-80.
2. Shevchenko Dmitriy S., Rakhimova Olga V,, Podolsky Nikita E, Charykov Nikolay A., Semenov Konstantin N., Keskinov Victor A., Shaimardanov Zhassulan K, Shaimardanova Botagoz K, Kulenova Natalie A., Onabaeva Zhanar S. Toxity of water soluble octo-adduct of fullerene C60 and C60(C6H12NaN4O2)8H8 // Izvestia SPSIT(TU). 2019. №49(75). P. 96-101.
3. Tyurin Dmttrii P., Kolmogorov Philip S, Cherepkova Irina A., Charykov Nikolay A., Semenov Konstantin N, Keskinov Victor A., Safyannikov Nicolay M, Pukharenko Yuriy V., Letenko Dmitrii G, Shaimardanov
Zhassulan K, Shaimardanova Botagoz K, Kulenova Natalie A. Antioxidant Properties of Octoadduct of Fullerene Сб0 and L-Arginine ^^H^INA^^) // Izvestia SPSIT(TU). №49(75) 2019. Р. 70-78.
4. Shestopalova A.A., Semenov K.N., Charykov N.A., Postnov V.N., Ivanova N.M., Sharoyko V. V., Keskinov V.A., Letenko D.G., Nikttin V.A., Klepikov V.V., Murin I.V. Physico-chemical properties of the C60- arginine water solutions // J. of Molecular Liquids. 2015. V. 211. P. 301307.
5. Semenov K.N., Charykov N.A., Keskinov V.A. Cryometry and excess functions of the adduct of light fullerene C60 and arginine -C60(C6Hi3N4O2)8H8 aqueous solutions // Nanosystems: Physics, Chemistry, Mathematics. 2015. V. 6. N 5. P. 715-725.
6. Yur'ev G.O., Lelet M.I, Pochkayeva E.A., Pe-trov A. V,, Semenov K.N., Charykov N.A., Podolskiy N.E, Dulneva L.L., Sharoyko V. V,, Murin I. V. Thermodynamic and thermal properties of the C60-L-Arg derivative // J. Chem. Thermodynamics. 2018. V. 127. P. 39-44. doi: https://doi.org/10.1016/jjct.2018.07.007.
7. Почкаева Е.И., Ануфриков Ю.А., Фаенкова В.П., Шаройко В.В., Чарыков Н.А, Мурин И.В. Изометрические калориметрическое титрование человеческого сывороточного альбумина аддуктом С60^-аргинин // Журн. йбщ. химии. 2019. Том 89. № 8. С. 1309-1312. (Pochkaeva E.I, Anufrikov Y.A., Sharoyko V. V, Murin I. V, Faenkova V.P, Charykov N.A. Isothermal Calorimetric Titration of Human Serum Albumin with the Fullerene C60-L-Arginine Adduct Russian Journal of General Chemistry. 2019. Т. 89. № 8. С. 1731-1733.)
8. Panova Gayane G, _Serebryakov Evgeny B, _Semenov Konstantin N, Charykov Nikolay A, _Shemchuk Olga S., _Andrusenko Elena V, Kanash Elena V, _Khomyakov Yuriy V, _Shpanev Alexander M, _Dulneva Larisa L, _Podolsky Nikita E, and _Sharoyko Vladimir V. Bioactivity Study of the C60-L-Threonine Derivative for Potential Application in Agriculture. // Journal of Nanomaterials. Vol. 2019. Article ID 2306518, 1-13 https://doi.org/10.1155/2019/2306518.
sc hub.se/10.1155/2019/2306518.
9. Serebryakov Evgeny B, Zakusilo Dmttry N, Semenov Konstantin N., Charykov Nikolay A, Akentiev Aleksandr V, Noskov Boris A., Petrov Andrey V., Podolsky Niktta E, Mazur Anton S, Dul'neva Larisa V., Murin Igor V. Physico-chemical properties of C70-l-threonine bisadduct (C70(C4H9NO2)2) aqueous solutions j/_Journal of Molecular Liquids ( IF 4.513 ).2019. V. 279. P. 687-699. , DOI: 10.1016/j.molliq.2019.02.013 .
10. K. N. Semenov, A. V. Kurilenko, N. A. Charykov, V. A. Keskrav, A. L. Vorob'ev, Zh. K. Sha-imardanov, N. A. Kulenova, Zh. S. Onalbaeva, and D. G. Letenko. Solubility, Thermal Analysis, and Association of the bis-Adducts of Light C60 Fullerene and Amino Acids Lysine, Threonine, and Hydroxyproline in Aqueous Solutions. ISSN 0036-0244, Russian Journal of Physical Chemistry A, 2019, Vol. 93, No. 7, pp. 1258-1265. © Pleiades Publishing, Ltd., 2019. Russian Text © The Author(s), 2019, published in Zhurnal Fizicheskoi Khimii, 2019, Vol. 93, No. 7, pp. 1015-1022. DOI:10.1134/S0036024419070240. sci-hub.se/10.1134/S0036024419070240
11. Petrenko V.V., Charykov N.A, Semenov K.N, Keskinov V.A., Kurilenko A. V, Semenyuk V.A., Safannikov N.M. Synthesis, Identification and Physical-Chemical Properties of Bis-Adduct of C60 with Histidine. Nanotechnology Science and Technology. Iss: Applied Aspects of Nano-
physics and Nano-engineering. Ed: K Levin, A. Syrkov. NY: Nova Sci.Publish. 2019. ISBN 978-1-53614-709-4. P.1-6.
12. Semenyuk V.A., Semenov K.N., Charykov N.A, Keskinov V.A., Petrenko V.V., Kurilenko A.V., Saf'annikov N.M. Tris-Adduct of light Fullerene C70 with Indespensible Aminoacide Lysine // Nanotechnology Science and Technology. Iss: Applied Aspects Of Nanophys-ics and Nano-engineering. Ed: K. Levin, A. Syrkov. NY: Nova Sci.Publish. 2019. ISBN 978-1-53614-709-4. P. 7-12.
13. Сидоров Л.Н., Юровская М.А. и др. Фулле-рены: учеб. пособие. М.: Экзамен, 2005. 688 с. (Sidorov L.N., Yurovskaya M.A. i dr. Fullereny": ucheb. posobie. M.: E"kzamen, 2005. 688 s.)
14. Cataldo F, Ros T.Da. Carbon Materials: Chemistry and Physics: Medicinal Chemistryand Pharmacological Potential of Fullerenes and Carbon Nanotubes. Springer, 2008. 372 р.
15. Пиотровский Л. Б, Киселев О. И. Фуллере-ны в биологии, Росток, СПб., 2006. 336 с. (Piotrovskij L.B, Kiselev O.I. Fullereny" v biologii, Rostok, SPb., 2006. 336 s.)
16. Djordjevic G. Bogdanovic, S. Dobric Fullerenes in biomedicine // J. B.U.ON. 2006. 11. С.391- 404. Bianco C, Da Ros A, Prato T, Toniolo M, Fullerene-based amino acids and peptides // J. Pept. Sci. 2001.V. 7. P. 346-347.
17. Jiang G, Yin F., Duan J, Li G. Synthesis and properties of novel water-soluble fullerene-glycine derivatives as new materials for cancer therapy // J Mater Sci Mater Med. 2015 Jan;26(1):5348. doi: 10.1007/s10856-014-5348-4. Epub 2015 Jan 13.
18. Grigoriev V.V., Petrova L.N., Ivanova T.A, Kotel'nkkova R.A., Bogdanov G.N, Kotel'nikova R.A., Faingol'd I.I, Poletaeva D.A., Mishchenko D. V, Romanova V.S., Shtolko V.N, Bogdanov G.N, Rybkin A.Y, Frog ES, Smolina A. V., Kushch A.A., Fedorova N.E, Kotel'nikov A.I. Antioxidant properties of water soluble amino acid derivatives of fullerenes and their role in the inhibition of herpes virus infection // Russ. Chem. Bull. Int. 2011. Ed. 60. P. 1172-1176 (Котельникова Р.А, Файнгольд И.И, Полетаева Д. А, Мищенко Д. В, Романова В. С, Штолько В.
H, Богданов Г. Н, Рыбкин А. Ю, Фрог ЕС, Смолина А.В, Кущ А. А, Федорова Н.Е, Котельников А.И. Анти-оксидантные свойства водорастворимых аминокислотных производных фуллеренов и их роль в ингибирова-нии герпесвирусной инфекции // Известия Академии Наук Сер. хим. 2011. №6 С. 1146-1150 )
19. Liang Bing GAN, Chu Ping LUO. Water-soluble fullerene derivatives, synthesis and characteriza-tion of ß-alanine C60 adducts. // Chinese Chemical letters. 1994. Vol. 5. No.4. P. 275-278.
20. Safyannikov N.M., Charykov N.A, Gara-mova P.V, Semenov K.N., Keskinov V.A., Kurilenko A.V., Cherepcova I.A., Tyurin D.P, Klepikov V.V., Matuzenko M. Yu, Kulenova, Zolotarev A.A. Cryometry data in the binary systems bis-adduct of C60 and indispensable N.A. aminoacids // Lysine, threonine, oxyproline. Nanosustems: Physics, Chemistry, Mathematics. 2018. V. 9 N 1. P.46-49.
21. Serebryakov E.B, Semenov K.N, Stepa-nyuk
I.V., Charykov N.A,.Mescheryakov A.N, Zhukov A.N., Chaplygin A. V., Murin, I. V. Physico-chemical properties of the C70-L-lysine aqueous solutions. // J. of Molecule Liquids. 2018. Vol. 256. P. 507-518.
22. Semenov K.N., Charykov N.A., Ivanova N.M .et a. Volume and refraction properties of water solu-tions of bis-adducts of light fullerene C60 and indispensable
amino-acids: lysine, threonine, oxyproline -ŒG^H^Ofeb С6о(С4И8МОз)2, С6о(С5Н91Ю2)2 at 250C. // Rus. J. Phys. Chem. 2017. V. 91. N 2. P. 318-325.
23. Semenov K.N., Iurev G.O., Ivanova N.M., Postnov V.N., Sharoyko V V, Prikhodko I. V, Mirin I. V, Charykov N.A.,.Keskinov VA, Letenko D.G., Kulenova N.A. Physico-Chemical properties of the C60-L-lysine water solutions // Journal of Molecular Liquids. 2017. V. 225. P. 767777.
24. Semenov K.N., MeshcheriakovA.A., Charykov N.A., Keskinov V.A., Murin I.V., Panova G.G., Sharoyko V. V., Kanach E V., Khomyakov Yu. V. Physico-chemical and biological properties of C60 - L-hydroxyproline water solutions. // RSC Advances. 2017. N 7. P. 15189-15200.
25. Noskov B.A., Timoshen K.A., Akentiev A.V., Charykov N.A., Loglio G, Miller R, Semenov K.N. Dynamic surface properties of C60-arginine and C60-l-lysine aqueous solutions // Colloids and Surfaces A: Physi-cochemical and Engineering Aspects. 2017. V. 529. P. 1-6.
26. Charykov N.A, Semenov K.N., Keskinov V.A., Garamova P.V., Tyurin D.P., Semenyuk I.V., Petren-ko V.V., Kurilenko V.V., Matuzenko M.Yu., Kulenova N.A, Zolotarev A.A., Letenko D.G. Cryometry data and excess thermodynamic functions in the binary system: water soluble bis-adduct of light fullerene C70 with lysine. Assym-metrical thermodynamic model of virtual Gibbs energy decomposition VD-AS // Nanosustems: Physics, Chemistry, Mathematics. 2017. V. 8. N 3. P. 397-405.
27. Lelet M.I, Semenov K.N, Andrusenko E V, Charykov N.A, Murin I.V. Thermodynamic and thermal properties of the C60-L-lysine derivative // J. Chem. Thermodynamics. 2017. V.115. P. 7-11.
28. Semenov K.N., Andrusenko E.V., Charykov N.A., Lttasova E V., Panova G.G., Penkova A. V, Murin I. V, Piotrovskiy L.B.. Carboxylated fullerenes: Phys-ico-chemical properties and potential applications // Pro-gress in Solid State Chemistry 2017. V. 47-48. P. 1-36.
29. Panova G.G., Semenov K.N, Shilova O.A., Khomyakov Yu.V, Anikina L.M, CharykovN.A,.Artem'eva A.M, Kanash E.V., Khamova TV, Udalova O.R. Water soluble fullerene derivatives and silica nano-compositions as perspective nanomaterials in plant grow-ing // Agro-physics. 2015. N 4. P. 37-48.
30. Panova G.G., Kanash E.V., Semenov K.N, Charykov N.A,.Khomyakov Yu.V, Anikina L.M, Artem'eva A.M., Kornyukhin D.L, Vertebny V.E, Sinyavina N.G., Udalova O.R, Kulenova N.A, Blokhina S.Yu. Fullerene derivatives stimulate production process, growth and stability to oxidation stress for wheat and barley plants // Agricultural Biology. 2018. V. 53. N 1. P. 38-49.
31. Baraboshkina E.N. Production and experimental investigation of water soluble fullerene and it's derivatives, suppressing allergic inflammation: dis. ... Ph.D. Biology (Immunology). M:. Institute of Immunology, 2016. 134 p. (Барабошкина Е.Н. Производство и экспериментальное исследование водорастворимого фулле-рена и его производных, подавляющих аллергическое воспаление: дис. ... канд. наук. Биология (Иммунология). М :. Институт иммунологии, 2016. 134 с.)
32. Keskinov V. A, Semenov K. N, Go'cov T. S., Charykov N. A, Podol'skii N. E, Kurilenko A. V, Shaimardanov Zh. K, Shaimardanova B. K, and Kulenova N.
A. /Phase Diagrams of Fullerenol-d-LaCl3-H2O and Full-erenol-d-GdCl3-H2O Systems at 25°CRussian Journal of Physical Chemistry A, 2019, Vol. 93, No. 12, pp. 25552558. DOI: 10.1134/S0044453719120124. (Кескинов
B.А, Семенов К.И, Гольцов Т.С, Чарыков Н.А, По-
дольский Н. Е, Куриленко А. В., Шаймарданов Ж. К., Шаймарданова Б. К, Куленова Н. А. Фазовые диаграммы систем фуллеренол-d-LaCh-^O И фуллеренол-d-GdCl3-H2O при 25°С // Журн. физ. химии. 2019. Том 93. № 7. С. 1015-1022.
33. Petrov A. A, Keskinov V. A., Semenov K. N, Charykov N. A, Letenko D. G. and Nikttin V. A. Formation of a New Adduct Based on Fullerene Tris-Malonate Samarium Salt С60-[C60(=C(COO)2)3]Sm2 // Russian Journal of Physical Chemistry A. 2017. Vol. 91. No. 3. P. 549-554. (Петров А.А., Кескинов В.А. , Семенов К.Н, Чарыков Н.А, Летенко Д.Г, Никитин В.А. Образование нового аддукта на основе самариевой соли рис-малоната фуллерена С60-[C60(=C(COO)2)3]Sm2 // Журн. физ. химии. 2017. Том 91. № 3. С. 507-512.
34. Юрьев Г.О, Кескинов В.А, Семенов К.Н, Чары/ков Н.А. Фазовые равновесия в тройной системе фуллеренол^(С60(0Н)22-24)^1Т1а3Ч-120 при 25°C // Журн. физ. химии. 2017. Том 91. № 5. С. 751-753.
35. Семенов К.Н, Чарыков Н.А., Постнов В.Н, Мурин И.В. Фазовые равновесия в системах, содержащих фуллерены, как основы получения углеродных наноматериалов // Успехи химии. 2016. Т. 85. N 1. C. 38-59.
36. Pestov I.A., Keskinov V.A., Semenov K.N, Charykov N.A, Letenko D.G, Nikitin V.A. Solubility of [C6o(=C(COOH)2)3] in the [C6o(=C(COOH)2)3]-SmCl3-H2oO Ternary System at 25°C // Russian Journal of Physical Chemistry A. 2015 Vol. 89 No. 6 Р. 998-1000. (Пестов И.А, Кескинов В.А, Семенов К.Н, Чарыков Н.А, Летенко Д.Г., Никитин В.А. Растворимость [C60(=C(C00H)2)3] в тройной системе [C60(=C(COOH)2)3]-SMCL34-l2O ПРИ 25C // Журн. физ. химии. 2015. Т. 89. № 6. С. 957-959.)
37. Семенов КН., Кантерман И.Г., Чарыков Н.А, Кескинов В.А, Куленова Н.А. Растворимость в тройной системе фуллеренол-d - сульфат уранила -вода при 25оС // Радиохимия. 2014. Т. 56. N. 5. C. 421422.
38. Semenov K.N., Charykov N A. Solubility Diagram of a Fullerenol-d-NaCl-H2O System at 25 °C // Rus. J. Phys .Chem. 2012. V. 86. N 10. P. 1636-1639. (Семенов К.Н, Чарыков Н.А. Диаграмма растворимости системы фуллеренол-d - NACl - H20 при 25°С // Журн. физ. химии. 2012. Т. 86. № 10. С. 1754.)
39. Semenov K.N., Keskinov V.A, Charykov N.A, Kritchenkov A.S, Murin I. V. The fullerenol-d solubility in the fullerenol-d-inorganic salt-water ternary systems at 250C // Industrial and engineering chemical research. 2013. V. 52. P. 16095-16100.
40. Рябчиков Д.И, Рябухин В.А. Аналитическая химия редкоземельных элементов и иттрия. М.: Наука, 1966. С. 164-168.
41. Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1967. С. 230.
42. Gschneidner K, Eying L Handbook on physics and chemistry of rare earths. Amsterdam, New York, Oxford: North-Holland Publishing Company, 1978. https://www.elsevier.com/books/handbook-on-the-physics-and-chemistry-of-rare-earths/gschneidner/978-0-444-82178-2
43. Коровин С. С, Зимина Г. В., Резник А.М. и др. Редкие и рассеянные элементы. Химия и технология. В 3-х книгах. Книга 1:Учебн. для вузов / Под ред. С.С. Коровина М.: МИСИС, 1996. 376 с.
44. Charykov Nikolay A., Charykova Marina V,, Semenov Konstantin N, Keskinov Victor A., Kurilenko Alexey V,, Shaimardanov Zhassulan K, Shaimardanova Botagoz K. Multiphase Open Phase Processes Differential Equations // Processes. 2019. V. 7. N. 3. P. 148-167. doi :10.3390/pr7030148.
45. Чарыкова М.В, Чарыков Н.А. Термодинамическое моделирование процессов эвапоритовой седиментации. СПб: Наука, 2003. 262 с.
46. Charykov N.A., Charykova M.V, Semenov K.N., Keskinov V.A., Voronkov M.E., Shaimordanov Z.K., Shaimordanova B.K. Extreme state parameters in the conditions of two-state and multi-state equilibrium. Review // Известия СПбГТИ(ТУ) №50(76) 2019. P.16-26.
Сведения об авторах:
Глушнев Георгий Александрович, студент; Georgiy A. Glushnev, student
Канбар Аят аспирант; Ayat Kanbar, Graduate student
Федченко Максим Георгиевич магистр; Maxim G. Fedchenko, Master student
Кескинов Виктор Анатольевич, канд хим. наук, доцент; Victor A. Keskinov, Ph.D (Chem.), Associate Professor Чарыков ННиколай Александрович, д-р хим. наук, профессор; Nikolay A. Charykov Dr Sc, (Chem.), Professor, e-mail: ncharykov@yandex.ru
Семенов Константин Николаевич, д-р хим. наук, профессор, Konstantin N. Semenov, Dr Sc, (Chem.), Professor, e-mail: semenov1986@yandex.ru
Шаймарданов Жасулан Кудайбергенович, д-р биол. наук, профессор; Zhasulan K Shaimardanov, Dr Sc,, (Biol.),
Professor
Шаймарданова Ботагоз Каы/мовна д-р биол. наук, профессор, Bоtagoz K Shaimаrdanova, Dr Sc,, (Biol.), professor Куленова Наталья Анатольевна, канд. хим. наук; Natalie A. Kulenova, e-mail: NKulenova@ektu.kz
Летенко: Дмитрий Георгиевич, канд. физ.-мат. наук, доцент, Dmitrii G. Letenko Ph.D (Phys.-Math.), Associate Professor, e-mail: dletenko@mail.ru
Закиров Бахтияр Сабиржанович д-р хим. наук, проф., директор института; Bakhtiyar S. Zakirov, Dr Sci (Chem.), Professor, Director of the Institute