Научная статья на тему 'ANTIOXIDANT PROPERTIES OF OCTOADDUCT OF FULLERENE C60 AND L-ARGININE (C60(C6H13N4O2)8H8)'

ANTIOXIDANT PROPERTIES OF OCTOADDUCT OF FULLERENE C60 AND L-ARGININE (C60(C6H13N4O2)8H8) Текст научной статьи по специальности «Химические науки»

CC BY
82
14
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ОКТОАДДУКТ ФУЛЛЕРЕНА С60 И L-АРГИНИНА / АНТИОКСИДАНТНЫЕ СВОЙСТВА / ПЕРЕКИСЬ ВОДОРОДА / ЙОД / ДИАГРАММЫ ПУРБЭ / ПЛАТИНОВЫЙ ЭЛЕКТРОД / OCTOADDUCT OF FULLERENE C60 AND L-ARGININE / ANTIOXIDANT PROPERTIES / HYDROGEN PEROXIDE / IODINE / POURBAIX DIAGRAMS / PLATINUM ELECTRODE

Аннотация научной статьи по химическим наукам, автор научной работы — Tyurin Dmitrii P., Kolmogorov Philip S., Cherepkova Irina A., Charykov Nikolay A., Semenov Konstantin N.

Anti-oxidant properties of octoadduct of fullerene C60 and l-arginine (C60(C6H13N4O2)8H8) water solutions were investigated against free radicals, generated by hydrogen peroxide and molecular I2. Methodic of anti-oxidant octoadduct of fullerene C60 and l-arginine (C60(C6H13N4O2)8H8) activity investigation is based on potentiometric titration of octoadduct of fullerene C60 and l-arginine (C60(C6H13N4O2)8H8) solutions by hydrogen peroxide and molecular I2 solutions and vice versa with compact Pt as working electrode. As comparative anti-oxidant very popular and strong anti-oxidant - ascorbic acid was used. Pourbaix Diagrams (pH-Eh) for hydrogen-oxygen and iodine forms were constructed.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим наукам , автор научной работы — Tyurin Dmitrii P., Kolmogorov Philip S., Cherepkova Irina A., Charykov Nikolay A., Semenov Konstantin N.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

АНТИОКСИДАНТНЫЕ СВОЙСТВА ОКТОАДДУКТА ФУЛЛЕРЕНА C60 И L-АРГИНИНА (C60(C6H13N4O2)8H8)

Исследованы антиоксидантные свойства октоаддукта водных растворов фуллерена C60 и l-аргинина - (C60(C6H13N4O2)8H8) по отношению к свободным радикалам, генерируемым перекисью водорода и молекулярным I2. Методика исследования антиоксидантных свойств октоаддукта фуллерена С60 и l-аргинина (C60(C6H13N4O2)8H8) основана на потенциометрическом титровании октоаддукта раствором перекиси водорода и молекулярного I2, и наоборот, с компактным Pt электродом в качестве рабочего. В качестве сравнительного антиоксиданта использовалась очень популярный и сильный антиоксидант - аскорбиновая кислота. Построены диаграммы Пурбэ для водородно-кислородной и йодной форм.

Текст научной работы на тему «ANTIOXIDANT PROPERTIES OF OCTOADDUCT OF FULLERENE C60 AND L-ARGININE (C60(C6H13N4O2)8H8)»

UDC 06.54.31

Dmitrii P. Tyurin1, Philip S. Kolmogorov2, Irina A. Cherepkova3, Nikolay A. Charykov4, Konstantin N. Semenov5, Victor A. Keskinov6, Nicolay M. Safyannikov7, Yuriy V. Pukharenko8, Dmitrii G. Letenko9, Zhasulan K. Sha-imardanov10, Batagoz K. Shaimardanova11, N.A. Kulenova12

antioxidant properties of octoadduct of fullerene c60 and l-arginine

(c60(c6h13n4o2)8h8)

St. Petersburg State Technological Institute (Technical University), Moskovsky pr., 26, Saint Petersburg, 190013, Russia

St. Petersburg State University,7/9 Universitetskaya emb., Saint Petersburg, 199034, Russia St.Petersburg State University of Architecture and Civil Engineering (SPSUACE), 2-nd Krasnoarmeiskaya St. 4, 190005 St. Petersburg, Russia

D. Serikbayev East Kazakhstan state technical university, A.K. Protozanov Street, 69, Ust-Kamenogorsk city, 070004,The Republic of Kazakhstan St. Petersburg Electrotechnical University «LETI», ul. Professora Popova 5, 197376 Saint Petersburg, Russia e- mail: turinmoto@gmail.ru

УДК 541.11/.118

Д.П. Тюрин1, С.Ф. Колмогоров2, И.А. Черепкова3, Чарыков4, К.Н. Семенов5, В.А. Кескинов6, Н.М. Сафьянников7, Ю.В. Пухаренко8, Д.Г. Летенко9, Ж.К. Шаймарданов10, Б.К.Шаймарданова11,

Н.А. Куленова 12

антиоксидантн ы е

свойства октоаддукта

фуллерена c60 и ¿-аргинина

(c60(c6hlзn4o2)8h8)

Санкт-Петербургский государственный технологический институт (технический университет), Московский пр., 26 Санкт-Петербург, 190013, Россия Санкт-Петербургский государственный университет, Университетская наб., 7/9., Санкт-Петербург, 199034, Россия

Санкт-Петербургский государственный архитектурно-строительный университет, 2-я Красноармейская ул., 4, 190005 Санкт-Петербург, Россия Восточно-Казахстанский государственный технический университет им. Д. Серикбаева, ул. А. К. Протозанова, 69, г. Усть-Каменогорск, 070004, Республика Казахстан Санкт-Петербургский электротехнический университет

1. Dmitrii P. Tyurin Graduate student, St. Petersburg State Technological Institute (Technical University), e-mail: turinmoto@gmail.com

Тюрин Дмитрий Павлович, аспирант, СПБГТИ(ТУ)

2. Philip S. Kolmogorov Master student, St. Petersburg State Technological Institute (Technical University), e-mail: kol2756@yandex.ru

Колмогоров Филипп Сергеевич, магистрант, СПБГТИ(ТУ)

3. Irina A. Cherepkova Ph.D . (Chem.), Associate Professor, St. Petersburg State Technological Institute (Technical University), e-mail: ircherepkova@mail.ru

Черепкова Ирина Андреевна, канд. хим. наук, доцент, СПбГТИ(ТУ)

4. Nikolay A. Charykov Dr Sci. (Chem.), Professor, St. Petersburg State Technological Institute (Technical University), e-mail: ncharykov@yandex

Чарыков Николай Александрович д-р хим. наук, профессор, СПбГТИ(ТУ)

5. Konstantin N. Semenov, Dr Sci. (Chem.), Professor, St. Petersburg State University, St. Petersburg State Institute of Technology (Technical University), Pavlov First St Petersburg State Medical University. e-mail: semenov1986@yandex.ru

Семенов Константин Николаевич, д-р хим. наук, профессор, СПбГУ, СПбГТИ(ТУ), ПСПбГМУ им. И.П. Павлова

6. Victor A. Keskinov, Ph.D . (Chem.), Associate Professor, St. Petersburg State Technological Institute (Technical University), e-mail: keskinov@mail.ru

Кескинов Виктор Анатольевич, канд. хим. наук, доцент, СПбГТИ(ТУ)

7. Nicolay M. Safyannikov, Ph.D (Eng.), Associate Professor, Leading Researcher, Saint-Petersburg State Electrotechnical University «LETI», e-mail: Safnm@bk.ru

Сафьянников Николай Михайлович, канд. техн. наук., доцент, вед. науч. сотр., СПбГЭТУ «ЛЭТИ»

8. Yuriy V. Pucharenko, Dr Sci. (Eng), Professor, Saint-Petersburg State University of Architecture and Civil Engineering, e-mail: tsik@spbgasu.ru

Пухаренко Юрий Владимирович, доктор технических наук, профессор, СПбГАСУ, e-mail: tsik@spbgasu.ru

9. Dmitrii G. Letenko, Candidate of Physical and Mathematical Sciences, Associate Professor, Saint-Petersburg State University of Architecture and Civil Engineering, e-mail: dletenko@mail.ru

Летенко Дмитрий Георгеевич, канд. физ.-мат. наук, доцент, СПбГАСУ, e-mail: dletenko@mail.ru

10. Zhasulan K. Shaimardanov, Dr Sci., (Biol.), Professor, D. Serikbayev East Kazakhstan state technical university Шаймарданов Жасулан Кудайбергенович, д-р биол. наук, профессор, Восточно-Казахстанский государственный технический университет им. Д. Серикбаева

11. Batagoz K. Shaimаrdanova Dr Sci., (Biol.), professor, D. Serikbayev East Kazakhstan state technical university Шаймарданова Ботагоз Касымовна д-р биол. наук, профессор, Восточно-казахстанский государственный технический университет

12. Natalie A. Kulenova, Ph.D (Chem.), D. Serikbayev East Kazakhstan state technical university, e-mail: NKulenova@ektu.kz Куленова Наталья Анатольевна, канд. хим. наук, Восточно-казахстанский государственный технический университет им.Д.Серикбаева

Дата поступления - 27 декабря 2018 года

Anti-oxidant properties of octoadduct of fuiierene C60 and l-arginine (C60(CiHI13N4O2)sH8) water solutions were investigated against free radicals, generated by hydrogen peroxide and molecular I. Methodic of anti-oxidant octoadduct of fullerene C60 and l-arginine (C60(C6H13N4O2)8H8) activity investigation is based on potentiometric titration of octoadduct of fullerene C60 and l-arginine (C60(C6H13N4O2)8H8) solutions by hydrogen peroxide and molecular I2 solutions and vice versa with compact Pt as working electrode. As comparative anti-oxidant very popular and strong anti-oxidant - ascorbic acid was used. Pour-baix Diagrams (pH-Eh) for hydrogen-oxygen and iodine forms were constructed.

Key words: octoadduct of fullerene C50 and l-arginine, antioxidant properties, hydrogen peroxide, iodine, Pourbaix Diagrams, Platinum electrode.

Introduction

This research continues the cycle of reports, concerning synthesis, identification and investigation of the properties of poly-hydroxylated derivatives (also named as fullerenols) and adduct with aminoacids of light fullerenes C60 and C70 (see, for example [1-40]).

Antioxidant properties of fullerenols were also investigated earlier [7, 9, 17, 41-49]. Several mechanisms for the antioxidant activity of fullerenol nanoparticles have been proposed [48]. The possible mechanism of the anti-oxidative activity of fullerenol C(5o(OH)24 is the radical-addition reaction of 2n(OH*) (here and further (R*) - is free radical with one free electron) radicals to the remaining olefinic double bonds of the fullerenol core to yield [C60(OH)24](OH*)2n. The other proposed mechanism is the possibility of a hydroxyl radical to abstract a hydrogen from fullerenol, including the formation of a relatively stable fullerenol radical [C60(OH)24](O*) [46]. In addition, a hydroxyl radical may abstract one electron from fullerenol yielding the radical cation [C60(OH)24]+. One more proposed mechanism is that the polyanion nanoparticles have numerous free electron pairs from oxygen, distributed around the fullerenol molecules, and have a great capacity to form coordinative bonds with prooxidant metal ions [9]. The obtained result demonstrated that fullerenol decreased the reduction of cytochrome-C for 5-40 rel. % [7]. The hypothetical mechanism of action of the polyanion fullerenol C60(OH)24 with the superoxide anion radical is presented in [49]. Some results suggest that C60(OH)32,8H2O scavenges (OH*) owing to the dehydro-genation of C60(OH)32'8H2O and is simultaneously oxidized to a stable fullerenol radical [46]. The antioxidant ability of C60(OH)32'8H2O was also confirmed in beta-carotene bleaching assay [47]. The results suggest that fullerennols possess NO-scavenging activity in vivo [7]. The scavenger activity of fullerenol with a smaller or moderate number of hydroxyl groups with (OH*) radicals can be explained by addition to sp2 carbon atoms [46, 48].

Pourbaix diagram

Pourbaix diagram (diagram of predominant forms, Eh-pH diagram) is a diagram illustrating thermody-namically stable forms of existence of elements (ions, molecules, atomic crystals and metals) in solutions at different values of hydrogen indicator - pH and red-ox elec-

"ЛЭТИ", ул. Проф. Попова, 5, 197376 Санкт-Петербург, Россия. e-mail: turinmoto@gmail.ru

Исследованы антиоксидантные свойства октоаддукта водных растворов фуллерена C60 и -аргинина -(C60(C6H 13N4O2)sHs) по отношению к свободным радикалам, генерируемым перекисью водорода и молекулярным I2. Методика исследования анти-оксидантных свойств октоаддукта фуллерена С60 и -аргинина (C60(C6H 13N4O2)sHs) основана на потенциометрическом титровании октоаддукта раствором перекиси водорода и молекулярного I2, и наоборот, с компактным Pt электродом в качестве рабочего. В качестве сравнительного антиоксиданта использовалась очень популярный и сильный антиоксидант - аскорбиновая кислота. Построены диаграммы Пурбэ для водородно-кислородной и йодной форм.

Ключевые слова: октоаддукт фуллерена С60 и l-аргинина, антиоксидантные свойства, перекись водорода, йод, диаграммы Пурбэ, платиновый электрод.

trode potential for compact Pt electrode - Eh [50, 51]. Were proposed by Marcel Pourbaix [50]. For each element, you can build your own Pourbaix diagram. Pourbaix diagrams for one element may vary depending on temperature, solvent and presence of ligands in solution. But, as a rule, are Pourbaix diagrams for aqueous solutions at the temperatures nearly 25 °C. Pourbaix diagrams are constructed on the basis of the Nernst equation and the standard redox potentials.

The Pourbaix diagram [50, 52] is one of the most powerful means of predicting the direction of chemical reactions of compounds of this element. From it is possible to determine the conditions of most acid-base and redox reactions of compounds of this element without taking into account the interaction with foreign ions. It is possible to predict the processes of disproportionation and non-proportionally different forms, whether they can contribute hydrogen and oxygen. By comparing the Pourbaix diagrams for the two elements, it is possible to predict the redox reactions between their compounds.

Octoadduct of fullerene C60 and l-arginine synthesis and identification

For the synthesis authors used fullerene C60, produced by ILIP Corporation (S-Petersburg, Russia) with the purity 99.5 mas.%. All other reactive had qualification "pure for the analysis".

Arginine hydrochloride (L-C6H14N4O2'HCl) (5 g) and sodium hydroxide (2.5 g) were dissolved in 30 ml of water and 200 ml CH3CH2OH. In the other vessel fullerene C60 (0.5 g) was dissolved in 80 ml o-C6H4(CH3)2. Then both solutions were combined, mixed and remained at room temperature for 120 hours. A deep-brown exfoliating solution was formed. The colorless organic phase was separated from the aqueous inorganic one. The aqueous phase was salted using excess methanol (CH3OH) over 24 hours. At that time, the sedimentation of the of the light fullerene C60 adduct with arginine was completed. The precipitate was filtered and washed repeatedly with a mix of CH3OH with concentrated HCl. Recrystallization of precipitate was performed 3 times. Finally, the precipitate was dried at 60 °C for 8 hours. Correspondingly, the L-arginine - light fullerene C60 adduct was formed -C60(C6H12NaN4O2)8H8 with a yield ~ 80 % [29, 30]. Identi-

fication of octoadduct of fullerene C50 and larginine was provided by: C-H-N element analysis, High performance liquid phase chromatography, IR - and Electronic spectroscopy, Mass-spectrometry [29-30].

Antioxidant properties investigation

To investigate antioxidant properties of ascorbic acid and octoadduct of fullerene C50 and l-arginine (against oxidants: hydrogen per-oxide and iodine) we determined ox-red potential Eh at fixed value of hydrogen indicator pH = 4.77, which was set by acetate buffer solution CH3COOH/CH3COONa (molar relation 1/1). We used electrochemical cells, containing two electrodes: Pt (compact) is working electrode; Hg, Hg2Cl2/KCl (1 mole/dm3) - reference normal calomel electrode with constant potential and investigated solution in acetate buffer solution. Device pH-meter "ATC pH 200" was used as a Voltmeter during potential-metric titration of anti-oxidants by oxidants and vice-versa.

Titration of comparative "standard" antioxidant - ascorbic acid by hydrogen peroxide and molecular I2 and

vice versa

Hydrogen peroxide titration. It is well known, that in the water solution of comparative "standard" antioxidant - ascorbic acid, may realize oxidation-reduction equilibrium between ascorbic acid (reduced form) and dehydroascorbic acid (oxidized form). It is only the first step of oxidation [53, 54] by hydrogen peroxide (eq.1.1):

Н О

СНОН

2

Dehydroascorbic acid

We used following electrochemical cells:

(1.1),

Fig. 1.1

Hg, Hg2Cl2/KCI (1 mole/dm3/investigated solution/Pt

(compact) (1.2), where: Pt (compact) is working electrode; Hg, Hg2Cl2/KCI (1 mole/dm3) - reference normal calomel electrode with constant potential E0 = 0.281 V [55]. Investigated solution had following composition:

ascorbic acid + dehydroascorbic acid + H2O2 + O2 + H+

(acetate buffer) (1.3) The integral and differential curves of the titration of HO by ascorbic acid and vice-versa ascorbic acid by H2O are represented in Figures 1.1 -1.2.

Fig. 1.2

Fig.1.1,1.2. Titration of 30 cm3 of ascorbic acid solution (C = 0.05mole/dm3) by the hydrogen peroxide solution (C = 0.025 mole/dm3) in 30 cm3 of acetic buffer CH3COOH/CH3COON (1/1) - integral (Fig.1.1) and differential (Fig.1.2) curves. E is potential of Pt electrode relative normal calomel electrode.

One can also see that upper plateau in two curvesE ~ 0.32 V (Fig1.1) corresponds to the following

electrode semi-reaction:

O2 + 2H+ + 2e — H1O1(Pt) (1.4) Full oxidation-reduction reaction is given by reaction (1.1). It is the difference between two semi-reactions: (1.1) and reaction (1.5):

Dehydroascorbic - acid + 2H+ +2e — ascorbic - acid

(1.5)

Differences of electromotive forces in plateaus in Fig. (1.1) are, correspondingly:

AE31 « 0.32 - 0.03 « 0.29 V, AE3 2 « 0.34 - 0.03 « 0.31 V

(2)

So, change of Gibbs potential of the oxidation ascorbic acid reaction (1.1), correspondingly in forward directions is:

AG3.1 « - 55.0 kJ/moie, AG3.2 « - 59.8 kJ/moi (3)

and equilibrium constant (Keq) of both these reactions (at normal conditions) are sufficiently large: ltf_Kqq] = 22-24 re/.un; Ke-3.1 = 3.5109, Kq-3.2 = 2.51010, and both reactions are practically irreversible. It is also proved by the form of titration curves Figs.1.1-1.2.

Titration of octoadduct of fullerene C60 and /-arginine by hydrogen peroxide and molecular I2 and

vice versa

To investigate antioxidant properties of octoadduct of fullerene C50 and /-arginine we determined ox-red potential Eh at fixed value of hydrogen indicator pH = 4.77, which was set by acetate buffer solution

Н

О

СН ОН

О + O

О + H2O2

CH3COOH/CH3COONa (molar relation 1/1). We used following electrochemical cells (see earlier): Hg, Hg2Cl2/KCI (1 mole/dm3/investigated solution/Pt (compact) (4.1),

Investigated solution in had two compositions:

/ C,o(C,Hi3N4C2)8H8+ Qo(QHi3N4C2)8H8H(OH)+

+ hkOi +02 + ht (acetate buffer) / (4.2);

ш

0,325-1

0,320

0,315

0,310

0,305

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0,300

0,295

0,290

0,285

0,280

0,275

0,270 H

0,265

Veq = 4.8 cm'

• o

10

12

Volume H,0, solution V (cm )

/ C6o( £МзМ ОШ + C6o( C6M3M O)tftf7(OH)+

+12 +I(KI) + Н+(acetate buffer) / (4.3).

The integral and differential curves of the titration of H2O by adduct of fullerene C60 and /-arginine and vice-versa adduct of fullerene C60 and /arginine by HH2O2 are represented in Figures 2.1 -2.4.

Fig.2.2.

Fig.2.1.

Fig.2.1, 2.2. Titration of 5 cm3 C60(C6H13N4O2)sHs solution (C = 0.005 mole/dm3) by the hydrogen peroxide solution (C = 0.005 mole/dm3) in 5 cm3 of acetic buffer CH3COOH/CH3COONa (1/1) - integral (Fig.2.1) and differential (Fig.2.2) curves.

E is potential of Pt electrode relative normal calomel electrode.

Fig.2.3.

Fig.2.4.

Fig.2.3, 2.4. Titration of 5 cm3 hydrogen peroxide solution (C = 0.005 mole/dm3) by C^CHNO^^solution (C = 0.005 mole/dm3) in 5 cm3 of acetic buffer CH3COOH/CH3COONa (1/1) - integral (Fig.2.3) and differential (Fig.2.4) curves. E is potential of Pt electrode relative normal calomel electrode

> ш

0,35! 0,34 0,33 0,32

и 0,31 >

Ш

0,30 0,29 0,28 0,27

0,26

0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0,18 0,20

Volume I,(KI) solution V (cm5)

о >

о £

О

ш

и

>

га >

'С о

О

S

о >

>

"О LU

ТЗ

0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0,18 0,20 Volume I,(KI) solution V (cm3)

Fig.3.1.

Fig.3.2.

Fig.3.1, 3.2. Titration of 3.3cm3 ^(^H^NO^H solution (C = 0.0005mole/dm3) byI2 (in KI) solution (C = 0.030 mole/dm3) in 3.3 cm3 of acetic buffer CH3COOH/CH3COONa (1/1) - integral (Fig.3.1) and differential (Fig.3.2) curves. E is potential of Pt electrode relative normal calomel electrode.

Fig.3.3. Fig.3.4.

Fig.3.3, 3.4. Titration of 1 cm3 of I2 (in KI) solution (C = 0.030 mole/dm3) by C6o(C6Hi3N4O2)sHs solution (C = 0.005mole/dm3) in 9 cm3 of acetic buffer CH3COOH/CH3COONa (1/1) - integral (Fig.3.3) and differential (Fig.3.4) curves. E is potential of Pt electrode

relative normal calomel electrode.

One can see nearly equivalent quantities of oc-toadduct of fullerene C50 and larginine and hydrogen peroxide and I2 (KI), according to eq.(5): Qo(GM3W4OzWO/7)+ 2H+ +2e — Qo^MsMOJsHs +

+HlO (4.4).

- Upper plateau Ei ~ 0.313 1/ (Fig.2.1) and initial part of curve (Fig.2.3) corresponds to the electrode semi-reaction (1.2): 02 + 2H+ + 2e — HOP as earlier,

- Upper plateau E1 ~ 0.33 V (Fig.3.1) and initial part of curve (Fig.3.3) corresponds to electrode semi-reaction: I2(liquid) + 2e — 2I2(Pt);

- Bottom plateau in four curves Ej ~ 0.27 V(Fig 2.1, 2.3, 3.1, 3.3) corresponds to the same electrode semi-reaction (4.4).

Full oxidation-reduction reactions in electrochemical cells are:

C5o(C5H13N402)8Hs + H2O2 = ^(QH^O^HHOH +

HO (4.5),

C5o(C5H13N402)8H8+ I2 = C5o(C5H13N402)8H8+ HI

(4.5).

Differences of electromotive forces in plateaus in Fig. (2.1 and 2.3) and (3.1 and 3.3) are, correspondingly: AE31 « o.32 - o.27 « o.o5 V, AE3 2 « o.34 - o.27 « o.o7 V

(5).

So, change of Gibbs potential of the oxidation C5o(C5Hi3N402)sHs reactions (11.1) and (11.2), correspondingly in forward directions is:

AG3.1 « -9.7 kIlmole, AG3.2 « -13.5 I mole (5),

and equilibrium constant (Keq) of both these reactions (at normal conditions) are not so large (as in the case of ascorbic acid): ln[Keq\ = 3.9 - 5.5rel.in.; Keq-31 = 5o, Keq 3.i = 25orel.in and both reactions are more or less reversible. It is also proved by the form of titration curves Figs.2.1-2.4 and 3.1-3.4.

So, we can state, that:

1. C5o(C5H13N402)8H8 is more week antioxidant in the comparison with ascorbic acid, at least, in relation to free radicals, generated by hydrogen peroxide and iodine;

2. C5o(C5H13N402)8H8, in the contrast with ascorbic acid, is capable to the reversible absorption of free radicals, other words fullerenol-d molecules are able to sorb free radical and then (after change of ox-red potential - Eh or hydrogen indicator - pH) are able to de-sorb these free radicals and recover. Such process can easily materialize at transition of modified fullerenes from the mouth to the stomach then to the intestines.

3. As a consequence C5o(C5H13N40)8H8 molecules are able to multiply reversible absorption-desorption of some free radicals.

4. Earlier such behavior of water soluble derivatives of fullerene C5o was revealed for poly-hydroxylated fullerene - fullerenol-d [4o\, which turned out to be more strong and less reversible antioxidant then our octoadduct - Qo(QH13N40)8H.

Pourbaix Diagrams hydrogen-oxygen

and iodine forms

We calculate Pourbaix Diagrams for hydrogen-oxygen and iodine forms, based on data from Tables 1, 2 [55\. Pourbaix Diagrams for hydrogen-oxygen forms and ascorbic acid are represented in Fig. 4 and for iodine forms and ascorbic acid - in Fig. 5.Green spots symbolize our experimental conditions, red curves - Pt electrode potential formation reactions in our experiment, moving along the spot occurs because oxidized and reduced forms concentrations are changed in the titration processes).

Table 1. Oxygen-hydrogen oxidation-reduction reactions (water solutions, T=298 K).

Reaction (field number of oxidized form// field number of reduced form) in Pourbaix diaqrams (Fig.4) Nernst Equation Standard Electromotive Force - E0 (V)

O :■ +2H ++ 2e ^ H2O(Pt) E = E0 + RT / 2F \п[ааан+ / aHi 0] = 2.422

I/II = E" - 0.059pH + 0.295 lg[aa / aHi0]

O + 2H+ + 2e ^ O + H2O(Pt) E = E0 + RT / 2F ln[a03aH + / a^oP^ ] = 2.070

III//IV = E0 - 0.059pH + 0.295lg[a^ /a^p ]

ОН + e ^ OH - (Pt) V//VI E = E0 + RT/ Fln[aofl. / a0fl_ ] = = E0 + 0 . 059(14 - pH) + 0.059lg aOH = = E0 + 0. 826 - 0.059pH + 0.059lg aOH 2.020

Н2O + 2H+ + 2e ^ 2H20(Pt) VII/II E = E° + RT / 2F ln[a^^aH + / a^2 o ] = = E0 - 0.059pH + 0.0295lg[a^X + /aH20] 1.776

O + H2O + 2e ^ O + 2OH - (Pt) VIII//IX E = E0 + RT / 2F ln[aoa^o / a0„- PO2 ] = = E0 + 0.059(14 - pH) + +0.0295 lg^^ / Po2 ] = = E0 + 0.826 - 0.059pH + 0.295lg[ao / aH^Po1 ] 1.240

O + 4Н+ + 4e ^ 2H2O(Pt) X/II E = E0 + RT / 4F ln[ Po2a4 + / a^ 0 ] = = E0 - 0.059pH + 0.01475lg[P„2 /a220] 1.229

O2 (g) + 2H+ (Pt) + 2e H2O2 (g ) XI//XII E = E° + RT /2F /и [p (O) * a (H+)2/ p (HO)] = E° - 0.059* pH + 0.0295/g [p(O2) /X(H202)KHA (H2O2)] 0.839

C60(C6Hi3N4O2)sH(OH)+ 2H+ +2e^C60(C6HisN4O2)sHs + H2O XIII//XIV E=Eo - 0.058*pH + 0.0295lg( aC60(C6H13N4O2)SH7(OH)/aC60(C6H13N4O2)SHS *aH2O) 0.834

O2 + 2Н+ + ie ^ h2O2 (i)(Pt) XV/XVI E = E0 + RT / 2F ln[ PoaH + / aH^ ] = = E0 - 0.059pH + 0.0295lg[Po2 /a„2o2 ] 0.682

dehydroascorbic(acid) + IH+ +Ie ^ ascorbic(acid) XVII//XVIII E = E0 - 0.059*pH + °.°295/g (adehydroascorbic(acid) / aascorbic(acid) ) 0.613

1/2O + 2Н O + 2e ^ 2OH- (Pt) XIX/VI E = E0 + RT/2Fln[P022aH20 /a0H- ] = = E0 + 0.059(14 - pH) + 0.0295 lg[P^a^] = = E0 + 0.826 - 0.059pH + 0.0295lg[ P^a^] 0.401

н+4 e ^ 1/2H2 (Pt) XX//XXI E = E0 + RT / F ln[ + / P^2] = = E0 - 0.059pH - 0.0295 lg[ P^ ] 0.000

2Н O + 2e ^ H + 2OH~ (Pt) XXII//XXIII E = E0 + RT /2Fln[/a^ a^ /] = = E0 + 0.059(14 - pH) + 0.0295 lg[/ a^ ] = = E0 + 0.826 - 0.059pH + 0.0295 lg[/a^ ] -0.828

Where:Kfl202, X(H2O2), - Henry constant and molar fraction of H2O2 in liquid phase, () and (g) - liquid and gaseous phase states of component; a, pi - activtty and partial pressure (atm.) of i-th component.

Table 2. Iodine oxidation-reduction reactions (water solutions, T = 298 K).

Reaction (field number of oxidized form// field number of reduced form) in Pourbaix diaqrams (Fiq.5) Nernst Equation Standard Electromotive Force - E0 (V)

/03" + 6H+ + 5e ^ 1/ 2/2 + 3H2O(Pt) E = E + RT / 5F ln[a * a^ + / aj/2 * a^0 ] = 1.195

I//II = E + 0.0118lg[a /ajf * a^0]-0.0708pH

C5o(C5HlзN4O2)8H7I+H+ + 2e^ C50(C5HlзNOЭ2)8H8+Г III//IV E=Eo - 0.0295*pH + 0.0295lgаc60(C6H13N4O2)SH7I/аc60(C6H13N4O2)SHS* a-] 0.834

1/2I2 (/)■+ e ^ I - (Pt) E = E0 + RT / F ln[a1/2 / a r- ] = l2 I 0.628

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

IV/V = E0 + 0.059 lg[a1/2/ a - ]

dehydroascorbic(acid ) + 2H+ +2e ^ ascorbic(acid) VI/VII E = E0 - 0.059*pH + 0.0295/g (adehydroascorbic(acid) / aascorbic(acid) ) 0.613

1/2/2 (cr) + e ^ I - (Pt) E = E" + RT / F ln[1/a - ] = 0.536

VIII/V = E0 -0.059lga--

i3 "■+ 2e ^ 3I " (Pt ) E = E" + RT / 2F ln[ar- / a\_ ] = I3 1 0.536

XI/V = E" + 0.0295lg[a / a3-] I3 1

Fig.4. Pourbaix Diagrams for hydrogen-oxygen forms and ascorbic acid - for the comparison (green spot symbolizes our experimental conditions, red curves - Pt electrode potential formation reactions in our experiment, moving along the spot occurs because oxidized and reduced forms concentrations are changed in the titration). The designations of the experimental curves are shown in Table 1.

Activities of all forms (except H ) and Partial pressures are equal to 1 1,3 ■

С

¿á о

CL С

О

о

га —

и

о£ ■

с

га -о

х О

1, 1,

S:

«i о, 73 „

о о, с

О0'

«о Шо

о,

О 0

'4M X . . tvi. . ......

-0-0".......__ VII т \ r^g _„

^...........w

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Hydrogen Indicator pH (а.и.)

Fig. 5. Pourbaix Diagrams for iodine forms and ascorbic acid - for the comparison (green spot symbolizes our experimental conditions, red curves - Pt electrode potential formation reactions in our experiment, moving along the spot occurs because oxidized and reduced forms concentrations are changed in the titration).

The designations of the experimental curves are shown in Table 2.

Conclusions

The antioxidant activity of fullerene C60 octoad-duct and l-arginine with against to free radicals generated by hydrogen peroxide and molecular I2 has been established.

It was shown that the octoadduct of fullerene C60 and l-arginine (C60(C6#13N4O)8Hs) is more week antioxidant in the comparison with ascorbic acid and even full-

erenol-d [40], but in contrast, octoadducts of fullerene C60 and l-arginine (С60(С6Н13щО)8Н) molecules are able to multiply reversible absorption-desorption of some free radicals.

Выводы

Установлена антиоксидантная активность ок-тоаддукта фуллерена С60 и l-аргинина по отношению к свободным радикалам, генерируемым перекисью водорода и молекулярным I2.

Показано, что октоаддукт фуллерена С60 и 1 аргинина оказался существенно более слабым антиок-сидантом в сравнении с аскорбиновой кислотой и даже фуллеренолом-d [40], но в отличие от них молекулы октоаддукта фуллерена с аргинином способны к многократной обратимой абсорбции-десорбции свободных радикалов.

Acknowledgements

This work was supported by Russian Foundation of Basic Researches - RFBR (Projects №16-08-01206, 18-0800143) and Russian Found of the Support of Small Business (Projects №24357).

Refernces

1. Li J., Takeuchi A., Ozawa M. et al C60 Fullerol Formation catalysed by Quaternary Ammonium Hydroxides // J. Chem. Soc. Commun. 1993. Vol. 23. P. 17841785.

2. Pinteala M, Dascalu A., Ungurenasu C. Binding fullerenol C60(0H)24 to dsDNA Int. // J. Nanomedicine. 2009. Vol. 4. P. 193-199.

3. Chiang, L.Y.; Bhonsle, J.B.; Wang, L.; Shu, S.R.; Chang, T.M.;Hwu, R.J. Efficient one-flask synthesis of water-soluble [60] fullerenols // Tetrahedron. 1996. Vol. 52. P. 4963-4672.

4. Chiang, L.Y.; Upasani, R.B.; Swirczewski, J.W. Versatile nitronium chemistry for C60 fullerene functionali-zation // J. Am. Chem. Soc. 1992. V. 114. 10154-10157.

5. Meier M.S. Kiegiel J. Preparation and characterization of thefullerene diols 1,2-C60(OH)2, 1,2-C70(OH)2, and 5,6-C70(OH)2 // Org. Lett. 2001. V. 3. P. 1717-1719.

6. Szymanska L.; Radecka H.; Radecki J.; Kkkut-Ligaj D. Fullerene modified supported lipid membrane as sensitive element of sensor for odorants // Biosens. Bioe-lectron. 2001. Vol. 16. P. 911-915.

7. Mirkov S.M., Djordjevic A.N., Andric N.L., Andric S.A., Kostic T.S., Bogdanovic G.M., Vojinovic-Miloradov M.B., Kovacevic R.Z. Nitric oxide scavenging activity of polyhydroxylated fullerenol, C60OH24 // Nitric Oxide. 2004. V. 11. P. 201-207.

8. Kokubo, K., Matsubayashi, K, Tategaki, H., Takada, H., Oshima, T Facile Synthesis of Highly Water-Soluble Fullerenes More Than Half-Covered by Hydroxyl Groups // ACS Nano 2008. V. 2. P. 327-333.

9. R. Anderson, A. R. Barron Reaction of hydroxy-fullerene with metal salts: a route to remediation and immobilization// J. Am. Chem. Soc. 2005. Vol. 127. No. 30. P. 10458-10459.

10. K. Kokubo, S. Shirakawa, N. Kobayash, H. Ao-shima, and T Oshima, Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle // Nano Research. 2011. V. 4. N. 2. P. 204215.

11. L. Yao, F Kang, Q. Peng, X. Yang An improved method for fullerol preparation based on dialysis // Chinese Journal of Chemical Engineering. 2010. V. 18. N. 5. P. 876-879.

12. H. -M. Huang, H.-C. Ou, S.-J. Hsieh, L.-Y. Chiang Blockage of amyloid beta peptide-induced cytosolic free calcium by fullerenol-1, carboxylate C60 in PC12 cells // Life Sciences. 2000. V. 66, N. 16. P.1525-1533.

13. J. E Roberts, A. R. Wielgus, W. K Boyes, U. And-ley, and C. F Chignell Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells // Toxicology and Applied Pharmacology. 2008. V. 228. N. 1. P. 49-58.

14. A. Isakovic, Z. Markovic, B. Todorovic-Marcovic et a. Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene // Toxicological Sciences. 2006. V. 91. N. 1. P. 173-183.

15. D. N. Johnson-Lyies, K Peffley, S. Lockett et a. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction // Toxicology and Applied Pharmacology. 2010. V. 248. N. 3. P. 249-258.

16. S. Wang. P. He. J.-M. Zhang. H. Jiang, and S.-Z. Zhu. Novel and efficient synthesis of water-soluble [60]fullerenol by solvent-free reaction// Synthetic Communications. 2005. V. 35. N. 13. P. 1803-1808.

17. Piotrovskij. L. B.; Kiselev. O. I. Fullerenes in biology; Rostok: Saint-Petersburg. 2006.

18. K.N.Semenov, N.A.Charykov, V.A.Keskinov. Full-erenol-70-d: Synthesis, identification, poly-thermal solubility and density of water solutions // Nanosystems: physics, chemistry, mathematics. 2012. V.3. N6. P.146-156.

19. S. Assemi, S. Tadjik, B. C. Donose, A. V. Nguyen, and J. D. Mlller Aggregation of fullerol C60(0H)24 nanoparticles as revealed using flow field-flow fractionation and atomic force microscopy // Langmuir. 2010. V. 26. N. 20. P. 16063-16070.

20. B. Vileno, P. R. Marcoux, M. Lekka, A. Sienkie-wccz, T Fehér, and L Forró. Spectroscopic and photo-physical properties of a highly derivatized C60 fullerol // Advanced Functional Materials. 2006. V. 16. N. 1. P. 120128.

21. N. S. Schneider, A. D. Darwish, H. W. Kroto, R. Taylor, and D. R. M. Walton Formation of fullerols via hy-droboration of fullerene-C60 // Journal of the Chemical Society, Chemical Communications. 1994. N. 4. P. 463464.

22. K.N.Semenov, N.A.Charykov, D.G.Letenko et a. Solubility and Some Properties of Aqueous Solutions of Fullerenol-d and Crystal Hydrates. // Rus. J. of Appl. Chem. 2011. V.84. N 1. P.44 - 49.

23. K.N.Semenov, N.A.Charykov, D.G.Letenko et a. Electrochemical Properties of Aqueous Solutions of Full-erenol-d. // Rus. J. of Appl. Chem. 2011. V.84. N 1. P.79 -83.

24. D.G.Letenko, V.A.Nikttin, K.N.Semenov, N.A.Charykov et a. Study of Aqueous Solutions of Full-erenol-d by the Dymamic Light Scattering Method. // Rus. J. of Appl. Chem. 2011. V.84. N 1. P.50 - 53.

25. V.Ioutsi, S.A.Sokolov, O.O.Semivrazskhaya et a. Synthesis and antioxidative properties of some fullerene C60 derivatives // Reports RGMU (Вестник РГМУ). Medical biological problems. 2012. N5. P.76-82.

26. J.-M. Zhang, W. Yang, P. He, and S.-Z. Zhu Efficient and convenient preparation of water-soluble fullerenol // Chinese Journal of Chemistry, 2004. V. 22. N. 9. P. 1008-1011.

27. K.N.Semenov, N.A.Charykov, V.A.Keskinov. Fullerenol Synthesis and Identification. Properties of Fullerenol Water Solutions // J. Chem. Eng. Data. 2011. V. 56. P. 230-239.

28. K.N.Semenov, N.A.Charykov, V.A.Keskinov, D.G.Letenko, V.A.Nikitin, V.I.Namazbaev. The Synthesis and Identification of Mixed Fullerenol Prepared by the Direct One-Stage Oxidation of Fullerene Black // Rus. J. Phys. Chem. 2011. V85. N6. P.1009-1015.

29. A.A.Shestopalova, K.N.Semenov, N.A.Charykov et a. Physico-chemical properties of the C60-arginine water solutions // Journal of Molecular Liquids 2015. V.211. P.301-307.

30. A.A.Shestopalova, K.N.Semenov, N.A.Charykov et al.Cryometry and excess functions of the adduct of light fullerene C60 and arginine -C60(C6Hi2NaN4O2)8H8 aqueous solutions // Nanosystems: physics, chemistry, mathematics. 2015. V.6. N5. Р.715-725.

31. Семенов К.Н. , Иванова Н.М., Чарыков Н.А. и др. Объемные свойства и рефракция водных растворов бис-аддуктов легкого фуллерена С60 и незаменимых аминокислот: лизина, треонина и оксипролина -G60(C6H13N2O2)2, <:60(C4H8NO3)2, G60(CsH9NO2)2 при 25оС // Журн.физ. Хим. 2017. Т.91. N2. C.318-325.

32. Semenov K. N., Charykov N.A., Iurev G. O. et a. Physico-chemical properties of the C60-L-lysine water solutions // Journal of Molecular Liquids. 2017. Т. 225. С. 767-777.

33. K.N.Semenov, A.A.MeshcheriakovN.A. Charykov et al.Physico-chemical and biological properties of C60 - L-hydroxyproline water solutions // RSC Advances. 2017. N7. P.15189-15200.

34. Boris A. Noskov, Kirill A. Timoshen, Alexander V. Akentiev et al. Dynamic surface properties of C60-arginine and C60-l-lysine aqueous solutions // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. V.529. P.1-6.

35. N. A. Charykov, K N. Semenov, V. V. Keskinov et al.Cryometry data and excess thermodynamic functions in the binary system: water soluble bis-adduct of light fuller-ene C70 with lysine. Assymmetrical thermodynamic model of virtual gibbs energy decomposition VD-AS // Nanosystems: physics, chemistry, mathematics. 2017. V. 8. N. 3. P. 397-405.

36. Maxim I Lelet, Konstantin N. Semenov, Elena V. Andrusenko et a. Thermodynamic and thermal properties of the C60-L-lysine derivative // J. Chem. Thermodynamics. 2017. V.115. P.7-11.

37. Semenov K.N., Charykov N.A., Meshcheriakov A.A. et a. Physico-chemical properties of the C60-L-threonine water solutions // Journal of Molecular Liquids 2017 V. 242. P. 940-950.

38. N.M. Safyannikov, N.A. Charykov, P.V. Garamova et al. Cryometry data in the binary systems bis-adduct of C60 and indispensable aminoacids - lysine, threonine, oxy-proline // Nanosystems: physics, chemistry, mathematics. 2018. V. 9 N. 1. P.46-49.

39. Dmitry G. Letenko, Konstantin N. Semenov, Niko-lay A. Charykov et a. Solubility, Thermal Analysis and

Association in Water Solutions of the Adducts of Fullerene C60 with Lysine, L-Threonine, L-Hydroxiproline // Smart Nanocomposites. 2017. Volume. 8. Issue 1.

40. D. P. Tyurin, F. S. Kolmogorovî et a. Antioxidant properties of fullerenol-d // Nanosystems: physics, chemistry, mathematics. 2018. V.9. N6, in press.

41. A.Djordjevic, B.Srdjenovic, M.Seke, B.Petrovic, R.Injac, J.Mrdjanovic. Review of Synthesis and Antioxidant Potential of Fullerenol Nanoparticles // Journal of Nano-materials. Volume 2015, Article ID 567073, 15 p.

42. F. Lao, L. Chen, W. Li et al. Fullerene nanoparticles selectively enter oxidation-damaged cerebral mi-crovessel endothelial cells and inhibit JNK-related apopto-sis // ACS Nano. 2009 V. 3. N. 11. P. 3358-3368.

43. J.-J. Yin, F Lao, P. P. Fu et alThe scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials // Biomaterials. 2009. V. 30, N. 4, P. 611-621.

44. F. Caputo, M. De Nicola, and L. Ghibelli Pharmacological potential of bioactive engineered nanomaterials // Biochemical Pharmacology. 2014. V. 92. N. 1. P. 112130.

45. A. Djordjevic, J. M. Canadanovic-Brunet, M. Voji-novic-MHoradov, and G. Bogdanovic Antioxidant properties and hypothetic radical mechanism of fullerenol C60(OH)24 // Oxidation Communications. 2004. V. 27. N. 4. P. 806812.

46. K. Kokubo Water-Soluble Single-Nano Carbon Particles: Fullerenol and Its Derivatives // InTech, 2012.

47. S. Kato, H. Aoshima, Y. Sattoh, and N. Miwa Highly hydroxylated or Y-cyclodextrin-bicapped water-soluble derivative of fullerene: the antioxidant ability as-

sessed by electron spin resonance method and p-carotene bleaching assay // Bioorganic and Medicinal Chemistry Letters. 2009. V. 19. N. 18. P. 5293-5296.

48. H. Ueno, S. Yamakura, R. S. Arastoo, T. Oshima, and K Kokubo Systematic evaluation and mechanistic investigation of antioxidant activity of fullerenols using carotene bleaching assay-carotene bleaching assay //Journal of Nanomaterials. 2014. V. 2014. Article ID 802596. 7 pages.

49. A. Dordevic and G. Bogdanovic Fullerenol: a new nanopharmaceutic? // Archive of Oncology. 2008. V. 16. N. 3-4. P. 42-45.

50. Pourbaix M. Thermodynamics and corrosion // Corrosion Science. 1990. V. 3(1), N. 10, P. 963—988

51. G.Remi. Course of Inorganic Chemistry. 1955. V.2. Rus. Moscow: Mir. PP.232, 246, 309.

52. B. Zhao, Y.-Y. He, C. F. Chignell, J.-J. Yin, U. Andley, and J. E. Roberts Difference in phototoxicity of cyclodextrin complexed fullerene [(Y-CyD)2/C60] and its aggregated derivatives toward human lens epithelial cells // Chemical Research in Toxicology. 2009. V. 22. N. 4. P. 660-667.

53. E.G.Bali. Studies on oxidation reduction. XXIII. Ascorbic acid. // J.Biol.Chem. 1939. V.118. P.219-239.

54. Borsook H, Davenport H.W., Cecll E.P., Warner J,, Warner R. The Oxidation of Ascorbic Acid and Its in Vitro and in Vivo. // J. Biol. Chem. 1937. V. 117. N 1. P. 237-279.

55. Brief reference book of physical and chemical quantities. Ed.: A.A.Ravdel', A.M.Ponomareva. Rus. Moscow: OOO TID Az-book. 2009. 237 p.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.