Научная статья на тему 'TOXICITY OF WATER SOLUBLE OCTO-ADDUCT OF FULLERENE C60 AND ARGININE C60(C6H12NAN4O2)8H8'

TOXICITY OF WATER SOLUBLE OCTO-ADDUCT OF FULLERENE C60 AND ARGININE C60(C6H12NAN4O2)8H8 Текст научной статьи по специальности «Химические науки»

CC BY
29
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
FULLERENE C60 / ARGININE / OCTO-ADDUCT / BIOTESTING / PARAMECIUM CAUDATUM / INFUSORIA / CHEMOTAXIS REACTION / DEVICE "BIOTESTER-2" / ФУЛЛЕРЕН С60 / АРГИНИН / ОКТО- АДДУКТ / БИОТЕСТИРОВАНИЕ / ИНФУЗОРИИ / ХЕМОТАКСИС / "BIOTESTER-2"

Аннотация научной статьи по химическим наукам, автор научной работы — Shevchenko Dmitriy S., Rakhimova Olga V., Podolsky Nikita E., Charykov Nikolay A., Semenov Konstantin N.

Toxicity of water soluble octo-adduct of light fullerene C60 with L-arginine is reported. The aim of this work was to study the biological activity of aqueous solutions of the adduct against Paramecium Caudatum (infusorians). Biotest method for determining the toxicity of water extracts was used. The parameters of the behavioral test based on the chemotaxis reaction of infusorians was recorded with the help of the device "Biotester-2".

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим наукам , автор научной работы — Shevchenko Dmitriy S., Rakhimova Olga V., Podolsky Nikita E., Charykov Nikolay A., Semenov Konstantin N.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ТОКСИЧНОСТЬ ВОДОРАСТВОРИМОГО ОКТО-АДДУКТА ФУЛЛЕРЕНА C60 И АРГИНИНА C60(C6H12NAN4O2)8H8

Сообщается о токсичности водорастворимого окто-аддукта легкого фуллерена С60 с L-аргинином. Целью данной работы было изучение биологической активности водных растворов аддукта по отношению к Paramecium Caudatum (инфузориям). Использован метод биотестирования для определения токсичности водных экстрактов. Параметры тестирования, основанные на реакции хемотаксиса инфузорий, фиксировались с помощью прибора "Biotester-2".

Текст научной работы на тему «TOXICITY OF WATER SOLUBLE OCTO-ADDUCT OF FULLERENE C60 AND ARGININE C60(C6H12NAN4O2)8H8»

PACS 61.48.+C

Dmitriy S. Shevchenko1, Olga V. Rakhimova2, Nikita E. Podolsky3, Nikolay A. Charykov4, Konstantin N. Semenov5, Victor A. Keskinov6, Zhasulan K. Shaimardanov7, Batagoz K. Shaimardanova8, Natalie A. Kulenova9, Zhanar S. Onalbaeva10

TOXICITY OF WATER SOLUBLE OCTO-ADDUCT OF FULLERENE C60 AND

ARGININE 60 C60(C6H12NaN4O2)8H8

St. Petersburg Electrotechnical University «LETI», ul. Professora Popova 5, 197376, St. Petersburg, Russia St. Petersburg State Institute of Technology (Technical University), Moskovsky pr., 26 Saint-Petersburg, 190013, Russia

St Petersburg State University,7/9 Universitetskaya emb., Saint-Petersburg, 199034, Russia D. Serikbayev East Kazakhstan state technical university, A.K. Protozanov Street, 69, Ust-Kamenogorsk city, 070004, Republic of Kazakhstan. e-mail: keskinov@mail.ru Pavlov First St Petrsburg State Medical University, L.Tolstoy st. 6-8, St. Petersburg, 195176, Russia

Toxicity of water soluble octo-adduct of light fullerene Ceo with L-arginine is reported. The aim of this work was to study the biological activity of aqueous solutions of the adduct against Paramecium Caudatum (infusorians). Biotest method for determining the toxicity of water extracts was used. The parameters of the behavioral test based on

УДК 541.11/.118

Д.С. Шевченко1, О.В. Рахимова2, Н.Е.Подольский3, Н.А. Чарыков4, К.Н. Семенов5, В.А. Кескинов6, Ж.К. Шаймарданов7, Б.К.Шаймарданова8, Н.А. Куленова9, Ж.С. Оналбаева 10

ТОКСИЧНОСТЬ ВОДОРАСТВОРИМОГО ОКТО-АДДУКТА ФУЛЛЕРЕНА C60 И

АРГИНИНА 60

C60(C6H12NaN4O2)8H8

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ», ул. Профессора Попова, 5, Санкт-Петербург, 197376, Россия Санкт-Петербургский государственный технологический институт (технический университет), Московский пр. 26, Санкт-Петербург, 190013, Россия Санкт-Петербургский государственный университет, Университетская наб., 7/9, Санкт-Петербург, 199034, Россия

Восточно-Казахстанский государственный технический университет им. Д Серикбаева, ул. Протозанова, 69, г. Усть-Каменогорск, 070004, Республика Казахстан e-mail: keskinov@mail.ru

Первый Санкт Петербургский медицинский университет им. И.П.Павлова. ул. Л. Толстого, 6-8, Санкт-Петербург, 195176, Россия

Сообщается о токсичности водорастворимого окто-аддукта легкого фуллерена С60 с L-аргинином. Целью данной работы было изучение биологической активности водных растворов аддукта по отношению к Paramecium Caudatum (инфузориям). Использован метод биотестирования для определения токсичности

1. Dmitriy S. Shevchenko, student of group 3508 Saint Petersburg Electrotechnical University "LETI", e-mail: skarp.ru@yandex.ru Шевченко Дмитрий Сергеевич, студент гр. 3508, СПбГЭТУ «ЛЭТИ»,

2. Olga V. Rakhimova Ph.D (Chem.), Associate Professor St. Petersburg State Electrotechnical University "LETI", e-mail:olga-18061963@yandex.ru

Рахимова Ольга Викторовна, канд. хим. наук, доцент, СПбГЭТУ «ЛЭТИ»

3. Nikita E. Podolsky, post-graduate Chemical Institute of S-Petersburg State University

Подольский Никита Евгеньевич аспирант Химический институт Санкт-Петербургского государственного университета

4. Чарыков Николай Александрович д-р хим. наук, профессор, СПбГТИ(ТУ) e-mail: ncharykov@yandex.ru Nikolay A. Charykov Dr Sci. (Chem.), Professor, St. Petersburg State Institute of Technology (Technical University)

5. Семенов Константин Николаевич, д-р хим. наук, профессор, СПбГУ, СПбГТИ(ТУ), ПСПбГМУ им. И.П. Павлова e-mail: semenov1986@yandex.ru

Konstantin N. Semenov,. Dr Sci. (Chem.), Professor, St. Petersburg State University: St. Petersburg State Institute of Technology (Technical University), Pavlov First St Petersburg State Medical University

6. Кескинов Виктор Анатольевич, канд. хим. наук, доцент, СПбГТИ(ТУ), e-mail: keskinov@mail.ru

Victor A. Keskinov, Ph.D (Chem.), Associate Professor, St. Petersburg State Institute of Technology (Technical University)

7. Шаймарданов Жасулан Кудайбергенович, д-р биол. наук, профессор, ректор Восточно-Казахстанского государственного технического университета им. Д. Серикбаева

Zhasulan K. Shaimardanov, Dr Sci., (Biol.), Professor, Rector, D. Serikbayev East Kazakhstan state technical university

8. Batagoz K. Shaimаrdanova Dr Sci., (Biol.), professor, D. Serikbayev East Kazakhstan state technical university Шаймарданова Ботагоз Касымовна д-р биол. наук, профессор, Восточно-казахстанский государственный технический университет

9. Куленова Наталья Анатольевна, канд. хим. наук, зав.кафедрой ХМиО, Восточно-Казахстанский государственный технический университет им. Д. Серикбаева, e-mail: NKulenova@ektu.kz

Natalie A. Kulenova, Ph.D (Chem.), Head of the Department of ChMiO, D. Serikbayev East Kazakhstan state technical university

10. Оналбаева Жанар Сагидолдиновна, канд. хим. наук, доцент, Восточно-Казахстанский государственный технический университет им. Д. Серикбаева

Zhanar S. Onalbaeva, Ph.D (Chem.), Associate Professor, D. Serikbayev East Kazakhstan state technical university Дата поступления - 16 января 2019 года

the chemotaxis reaction of infusorians was recorded with the help of the device "Biotester-2".

Key words: fullerene C60, arginine, octo-adduct, bio-testing, Paramecium Caudatum, infusoria, chemotaxis reaction, device "Biotester-2".

Introduction

This article continue the cycle of publications, concerning the synthesis, identification and properties investigation of the adducts of light fullerenes and amino-acids [1-23], herewith some publications [1-3] were devoted to the investigation of octo-adduct of light fullerene C60 with L-arginine, namely.

Toxicity of fullerenes and their derivatives were investigated and discussed widely. In one of the last works [24] a detailed and complete overview is given. Bibliography on the theme of fullerene toxicity [25-52] covers quite extensive number of works in 20 last years. The main conclusions are the following:

-Numerous further studies have also not shown any adverse or toxic effects of fullerene on organism. According to the Toxicological classification of substances exhibiting toxicity at doses above 1 g/kg, belong to the class of non-toxic substances. A long experiment was conducted in rats the diet which added fullerene in the form of solution in olive oil ( - Olive oil) [28]. The experiment lasted 5.5 years, as a control diet with the addition of just olive oil and water. Fullerene almost doubled the life expectancy of rats. Different diets did not affect the dynamics of animal weight, which also indicates the absence of toxic effects in .

- It is shown in [25] that fullerene in the form of water colloidal dispersion also does not show toxic properties, but only shows the properties of antioxidant. This conclusion is based on more than ten years of biological tests of fullerene dispersion in various experiments in vitro and in vitro. It did not reveal any toxic effects (at concentrations from 10-9 to 10-4 mol/l and at total doses up to 25 mg/kg).

- The toxicology of water-soluble derivatives of fullerene has been the subject of many discussions, but the vast majority of works have shown their low toxicity. So, water-soluble fullerene derivatives do not exhibit acute toxicity in vivo, even at sufficiently high doses. For example, the value for fullerenol in intraperitoneal mice is 1.2 g/kg [50].

is semi-lethal dose or the average dose of the substance, causing the death of half of the members of the test group. Parenteral administration of the amino acid derivative to mice at a dose of 80 mg/kg had no effect on the behavior and viability of mice for 6 months [28].

Materials

Authors used the following reagents and preparations:

- octo-adduct of light fullerene C60 with L-arginine C60(C6H13N4O2)8H8, which was synthesized by the method, described in [1, 3]. Adduct was purified by triple recrystal-lization (precipitation by methanol and solution in water) with subsequent washing on Soxhlet extractor by methanol. Adduct was identified by the methods of high performance liquid phase chromatography, Infrared and electronic spectroscopy, element C-H-N-O analysis, thermal

водных экстрактов. Параметры тестирования, основанные на реакции хемотаксиса инфузорий, фиксировались с помощью прибора "Biotester-2".

Ключевые слова: фуллерен С60, аргинин, окто-аддукт, биотестирование, Paramecium Caudatum, инфузории, хемотаксис , "Biotester-2".

complex analysis [1-3]. We appreciate the purity of octo-adduct Сю(СбН13Л4С2)8Л8 is equal to 97.5+0.7 mass.%.

- Lozina-Lozinsky mineral environment (composition is represented in Table 1):

Table 1. Composion of Lozin Lozinsky mineral environment for laboratory-pure cultures of Paramecium caudatum infusorium __production [56].

Salt concentration (g/dm3) (reagent brand "pure for the analysis") pH, a.u. Temperature, oC

NaCl KCl CaCl2 MgCl2 NaHCÜ3

0.10 0.01 0.01 0.01 0.01 6.8 - 7.2 22-26

- Solution for sharp mobility reduction of Paramecium caudatum - 10 mass. % NaCl in distilled water.

- Si-Mo HPA heteropolyanions as thickener.

- Baking yeast for Paramecium caudatum cultivation.

- Test odject Paramecium caudatum (infusorians). In Toxicological studies as test-objects using Paramecia (Paramecium caudatum Ehrenberg) is a common free-living ciliated infusoria, prefer alpha-mesosaprobic conditions. The temperature optimum lies in the range 24 to 28 °C, prefers a pH close to neutral (6.5 to 7.5). The main recorded indicators are survival and reproduction rate. The choice of Paramecium as a test object is determined by the following criteria. Through a combination of in Para-mecium characteristics of the cell and of the organism it is possible to study both cellular and organismic forms of reaction to the toxic effects. The possibility of cultivation in a wide range of temperatures allows them to be used for experimental work at any time of the year. The short life cycle, the speed of reproduction allow us to trace the reaction to intoxication in a relatively short time in a long series of generations. Using the principle of cloning, it is possible to obtain a large amount of genetically homogeneous material. The typical linear dimensions of Parame-cium caudatum is 0.1-0.3 mm (see Fig.1).

Fig.1. Appearance of Paramecium caudatum (permission 1 *102, optical stereoscopic microscope MBS-12).

Experimental method

Principe of the method. The method of determining toxicity is based on the ability of test objects, in this case Paramecium caudatum, to react to the presence in aqueous extracts of substances that are dangerous to their life, and directed to move along the gradient of concentrations of these substances (towards concentration

reduction), avoiding their harmful effects - as it is named "chemotaxis reaction". Such a gradient is created by layering in a vertical cuvette on a suspension of the infusoria, located in the thickener, the tested liquid. In this case, a stable interface boundary is formed in the measuring cuvette, which remains during the whole time of biotesting. This boundary does not prevent the free movement of the infusoria in their preferred direction and thus prevents the mixing of liquids from the lower and upper zones. After the creation of two zones in the cell within 30 min there is a redistribution of infusoria by zones. An important feature of the behavioral response of the infusoria is the mass movement of organisms into the upper layers of the liquid. If the analyzed sample does not contain toxic substances, the concentration of cells of infusoria in the upper zone will be observed in the cuvette. The presence of toxic substances in the analyzed sample leads to a different character of redistribution of infusoria in the cuvette, namely: the higher the toxicity of the sample, the smaller the proportion of infusoria moves to the upper zone (analyzed sample).

The criterion of toxic effect is a significant difference in the number of cells of infusoria observed in the upper zone of the cell in the idle solution (control sample) based on the Lozina-Lozinsky mineral medium, compared with this indicator observed in the analyzed sample. The quantitative assessment of the test reaction parameter characterizing the toxic effect is made by calculating the ratio of the number of cells of infusoria observed in the control and analyzed samples, and is expressed in the form of a dimensionless value — the toxicity index (T), the calculation formula of which is presented below:

T (cont ^sam)/^cont (1),

where: Icon, Isam - the instrument Biotest-2 reading, that is directly proportional to the infusoria concentrations in control sample and analyzed samples, correspondingly.

According to the value of the index T, the analyzed samples are classified according to their toxicity into 3 groups:

- the acceptable degree of toxicity (T < 0.40);

- moderate toxicity (0.40 < T< 0.70);

- high toxicity (T > 0.70).

In the case of very toxic samples, where the value Ttakes a value of 1 (i.e., when in the upper area of the cuvette with the analyzed sample motile ciliates are not detected), the toxicity index may not clearly describe the true level of toxicity of the sample. The sample should be diluted to such an extent that the toxicity index value does not reach one [53].

Concentration determination with the help of Biotester-2. Measurement and indication of the average values of Icon, Isam was determined from five counts, each measurement lasts 34 seconds. All serial measurements were repeated triply. All our probes sufficiently transparent (not turbid) for our measurements. Physical principle of Icont, Isam values calculation is based on the determination of optical densities in infusoria-containing dispersions (nephelometry). Infusoria concentrations in Biotester-2 investigations are expressed conditional-arbitrary units (a.u.).

Methodics of experiment consists of the following stages:

1. Preparation of infusoria culture with the working concentration of C = 1000 ± 500 cells/ml at the beginning of the stationary growth phase;

2. Preparation of the analyzed basic aqueous solution (with concentration 0.5 g octo-adduct/dm3);

4. Preparation with the help of consequent dilution the series of analyzed samples with the dilution: 1/1, 1/10, 1/1000, 1/1000, 1/10000;

5. Introducing 2 ml of suspension of infusoria in the vertical cuvette types 2T3.993.065 (13x13x45 mm) or 2TZ.993.066 (12.5x12.5x45 mm);

6. Creation of a time-stable gradient of chemical concentrations in the cell by alternately layering 1.6 ml of aqueous solutions of Si-Mo HPA (heteropolyanion) with different concentrations;

7. The exposure of the cell under standard laboratory conditions for 30 min for the occurrence of chemotactic response of infusoria;

8. Registration of the infusoria, released in the upper part of the cuvette, using a specialized pulse spectrophotometer series " Biotester-2" (5 experiments for each sample);

9. Determination of toxicity index-quantitative assessment of the test reaction parameter characterizing the toxic effect of the analyzed substances on the infusoria;

10. Statistical evaluation of the obtained data;

11. Classification according to the degree of toxicity;

12. Analysis of the results.

Results and discussion

Toxicity data for water soluble octo-adduct of light fullerene Ce0 with L-arginine Ce0(CeH13N4O2)8H8 are represented in Table 2 and in Fig.2

Table 2. Toxicity data for water soluble octo-adduct of light fullerene C with L-arginine

qoCQMsMQOsH

Dilution of initial solution (0.5 g/dm3)

Average device reading I (a.u.)

Average toxicity index T (a.u.)

Boardes of toxicity index*

T-T /T-T (a.u0

(a.u.)

Convergence

T - T„

T-T^ (a.u)

Toxicity level

Control 1/0

56.92

absence

1/1

32.33

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0.43

0.03/0.04

0.19

satisfactory

moderate

1/10

47.56

0.16

0.01/0.01

0.07

satisfactory

acceptable

1/100

50.11

0.12

0.01/0.01

0.05

satisfactory

acceptable

1/1000

53.17

0.07

0.07/0.06

0.05

satisfactory

acceptable

1/10000

50.22

0.06

0.08/0.06

0.05

satisfactory

acceptable

*Tmax Tmin - maximal and minimal T values in series of measurements for the same sample, correspondingly.

**Operational control standard for convergence r = 0.43 T.

Fig.2. Toxicity index against -ig of the dilution of basic C60(C6H13N4O2)8H8 with the concentration 0.5 g/dm3.

One can see, that all water solutions of octo-adduct Q0(GHi3N4C2)8H8 are characterized by acceptable (other words low) toxicity and the only one most concentrated solution (with concentration (0.25 g/dm3) can be characterized by moderate toxicity (at the cower limit). But if one will determine the mass of infusoria in 1 dm3 of the solution he will get the value several orders of magnitude less than mass of octo-adduct in the same volume of the solution. So, these values of toxicity index (T = 0.43), also characterize practically non-toxicity.

Conclusions

One can see, that all water solutions of octo-adduct are characterized by acceptable (other words low) toxicity and the only one most concentrated solution (with concentration (0.25 g/dm3) can be characterized by moderate toxicity (at the cower limit). But if one will determine the mass of infusoria in 1 dm3 of the solution he will get the value several orders of magnitude less than mass of octo-adduct in the same volume of the solution. So, these values of toxicity index (T=0.43), also characterize practically non-toxicity.

Заключение

Можно видеть, что все водные растворы окто-аддукта С60(С6И13М402)8Н8характеризуются приемлемой (другими словами низкой) токсичностью и только один наиболее концентрированный раствор (с концентрацией (0.25 г/дм3) может характеризоваться умеренной токсичностью (на нижней границе умеренной токсичности). Однако, если определить массу инфузорий в 1 дм3 раствора, то получится величина на несколько порядков меньшая, чем масса окто-аддукта в том же объеме. Таким образом, эти значения индекса токсичности (T = 0.43), также характеризуют практическую нетоксичность раствора.

Acknowledgements

This work was supported by Russian Foundation for Basic Research (RFBR) (Projects № 18-08-00143 A, 19-015-00469A, and 19-016-00003A).

References

1. Shestopalova A.A., Semenov K.N., Charykov N.A., Postnov V.N, Ivanova N.M, Sharoyko V. V., Keskinov V.A, Letenko D.G, Nikitin V.A, Klepikov V.V, Murin I.V. Physico-chemical properties of the C60-arginine water solutions // J. of Molecular Liquids. 2015. V.211. P.301-307.

2. Matuzenko M.Yu, Shestopalova A.A., Semenov K.N, Charykov N.A, Keskinov V.A. Cryometry and excess functions of the adduct of light fullerene C60 and arginine -C60(C6H13N4O2)8H8 aqueous solutions // Nanosystems: Physics, Chemistry, Mathematics. 2015. V. 6. N 5. P. 715725.

3. Shevchenko D.S., Rakhimova O.V., Charykov N.A., Semenov K.N., Keskinov V.A., Vorobiev A.L. Kuleno-va N.A. Onabaeva Zh.S. Synthesis, identification and bi-otesting of water soluble octo-adduct of fullerene C60 and argenine C60(C6H12NaN4O2)8H8 // Nanosystems: Physics, Chemistry, Mathematics. 2018. V. 9. In press.

4. Сидоров Л.Н., Юровская М.А. и др. Фуллере-ны: учеб. пособие. М.: Экзамен, 2005. 688 с.

5. Cataldo F., Ros T.Da. Carbon Materials: Chemistry and Physics: Medicinal Chemistryand Pharmacological Potential of Fullerenes and Carbon Nanotubes. Springer, 2008. 372 р.

6. Пиотровский Л.В., Киселев О.И. Фуллерены в биологии, Росток, СПб., 2006. 336 с.

7. Djordjevcc G. Bogdanovcc, S. Dobric Fullerenes in biomedicine // J. B.U.ON. 2006. 11. C391-404.Bianco C., Da Ros A., Prato T., Toniolo M., Fullerene-based amino acids and peptides // J. Pept. Sci. 2001.V. 7. P. 346-347.

8. Jiang G., Yin F., Duan J.,. Li G. Synthesis and properties of novel water-soluble fullerene-glycine derivatives as new materials for cancer therapy // J. Mater. Sci. Mater. Med. 2015. P. 26.

9. Grigoriev V.V., Petrova L.N., Ivanova T.A., Ko-tel'nikova R.A., Bogdanov G.N., Kotel'nikova R.A., Faingol'dI.I, Poletaeva D.A., Mishchenko D. V, Romanova VS., Shtolko V.N, Bogdanov G.N, Rybkin A.Y, Frog E.S, Smolina A. V., Kushch A.A., Fedorova N.E, Kotel'nikov A.I. Antioxidant properties of water soluble amino acid derivatives of fullerenes and their role in the inhibition of herpes virus infection // Russ. Chem. Bull. Int. 2011. Ed. 60. P. 1172-1176

10. Liang Bing GAN, Chu Ping LUO. Water-soluble fullerene derivatives, synthesis and characterization of ß-alanine C60 adducts. // Chinese Chemical letters. 1994. Vol. 5. No.4. P. 275-278.

11. Safyannikov N.M., Charykov N.A., Garamova P.V., Semenov K.N., Keskinov V.A, Kurilenko A. V, Cherepcova I.A., Tyurin D.P., Klepikov V. V, Matuzenko M. Yu, Kuleno-va, Zolotarev A.A. Cryometry data in the binary systems bis-adduct of C60 and indispensable N.A. aminoacids // Lysine, threonine, oxyproline. Nanosustems: Physics, Chemistry, Mathematics. 2018. V. 9 N 1. P.46-49.

12. Serebryakov E.B, Semenov K.N., Stepanyuk I. V, Charykov N.A,.MescheryakovA.N, ZhukovA.N., Chaplygin A. V, Murin, I. V. Physico-chemical properties of the C70-L-lysine aqueous solutions. // J. of Molecule Liquids. 2018. Vol. 256. P. 507-518.

13. Semenov K.N., Charykov N.A, Ivanova N.M .et aI. Volume and refraction properties of water solutions of bis-adducts of light fullerene C60 and indispensable aminoacids: lysine, threonine, oxyproline - Q50(C6Hi3N2O2)2, С6o(C4H8NOз)2, С6o(C5H9NO2)2 at 25°C. // Rus. J. Phys. Chem. 2017. V. 91. N 2. P. 318-325.

14. SemenovK.N., Iurev G.O, Ivanova N.M., Postnov V.N, Sharoyko V. V, Prikhodko I. V, Mirin I. V, Charykov N.A.,.Keskinov V.A, Letenko D.G., Kulenova N.A. Physico-Chemical properties of the C60-L-lysine water solutions // Journal of Molecular Liquids. 2017. V. 225. P. 767-777.

15. Semenov K.N, Meshcheriakov A.A., Charykov N.A., Keskinov V.A, Murin I.V., Panova G.G., Sharoyko V. V., Kanach E V., Khomyakov Yu. V. Physico-chemical and

biological properties of C60 - L-hydroxyproline water solutions. // RSC Advances. 2017. N 7. P. 15189-15200.

16. Noskov B.A., Timoshen K.A., Akentiev A.V., Charykov N.A., Loglio G., Miller R., Semenov K.N. Dynamic surface properties of C60-arginine and C60-l-lysine aqueous solutions // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. V. 529. P. 1-6.

17. Charykov N.A., Semenov K.N, Keskinov V.A., Garamova P.V., Tyurin D.P., Semenyuk I.V., Petrenko V.V., Kurilenko V.V., Matuzenko M.Yu., Kulenova N.A, Zolotarev A.A., Letenko D.G. Cryometry data and excess thermodynamic functions in the binary system: water soluble bis-adduct of light fullerene C70 with lysine. Assym-metrical thermodynamic model of virtual Gibbs energy decomposition VD-AS // Nanosustems: Physics, Chemistry, Mathematics. 2017, V.8. N3, P.397-405.

18. Lelet M.I., Semenov K.N., Andrusenko E.V., Charykov N.A., Murin I.V.. Thermodynamic and thermal properties of the C60-L-lysine derivative // J. Chem. Thermodynamics. 2017. V.115. P. 7-11.

19. Semenov K.N., Charykov N.A., Meshcheriakov A.A., Lahderantac E, Chaplygind A. V,, AnufHcov Yu. A., Murin I.V. Physico-chemical properties of the C60-L-threonine water solutions // Journal of Molecular Liquids 2017. V .242, P. 940-950.

20. Semenov K.N., Andrusenko E V,, Charykov N.A., Litasova E.V., Panova G.G., Penkova A.V., Murin I.V., Pi-otrovskiy L.B.. Carboxylated fullerenes: Physico-chemical properties and potential applications // Progress in Solid State Chemistry 2017. V. 47-48. P. 1-36.

21. Panova G.G., SemenovK.N., Shi/ova O.A., Khom-yakov Yu.V, Anikina L.M, Charykov N.A,.Artem'eva A.M, Kanash E V,, Khamova T V., Udalova O.R. Water soluble fullerene derivatives and silica nano-compositions as perspective nanomaterials in plant growing // Agro-physics. 2015. N 4. P. 37-48.

22. Panova G.G., Kanash E.V., Semenov K.N., Charykov N.A.,.Khomyakov Yu.V, Anikina L.M., Artem'eva A.M., Kornyukhin D.L., Vertebny V.E., Sinyavina N.G., Udalova O.R, Kulenova N.A., Blokhina S.Yu. Fullerene derivatives stimulate production process, growth and stability to oxidation stress for wheat and barley plants // Agricultural Biology. 2018. V. 53. N 1. P. 38-49.

23. Baraboshkina E.N. Production and experimental investigation of water soluble fullerene and it's derivatives, suppressing allergic inflammation: dis. ... Ph.D. Biology (Immunology). M:. Institute of Immunology, 2016. 134 p.

24. Andrievsky G, Klochkov V,, Derevyanchenko L. Is the C60 fullerene molecule toxic?! // Fullerenes, Nano-tubes, and Carbon Nanostructures. 2005. V. 13. N. 4. P. 363-376.

25. Aschberger K, Johnston H. J, Stone V. et a! Review of fullerene toxicity and exposure - appraisal of a human health risk assessment, based on open literature // Regulatory Toxicology and Pharmacology. 2010. V. 58. N. 3. P. 455-473.

26. Andreev S.M., Babakhin A.A., Petrukhina A.O., Romanova V.S., Parnes Z.N, Petrov R. V. Immuno henic and allergenic properties of conjugates of fullerenes with amino-acids // Rep. Rus. Acad. of Sciences. 2000. V. 370. N 2.

27. Baati T, Bourasset F, Gharbi N. et a, The prolongation of the lifespan of rats by repeated oral administration of [60] fullerene // Biomaterials. 2012. V. 33. N. 19. P. 4936-4946.

28. Baker G.L, Gupta A., Clark M.L. et a. Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparti-

cles and microparticles // Toxicological sciences. 2008. V. 101. N. 1. P. 122-131.

29. Costa C.L.A., Chaves I.S, Ventura -Lima J. et a. In vitro evaluation of coexposure of arsenicum and an organic nanomaterial (Fullerene C60) in zebrafish hepato-cytes // Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2012. V. 155. N. 2. P. 206212.

30. Jia G. et al Cytotoxicity of carbon nanomaterials: singl -wall nanotube, multi-wall nanotube, and fullerene // Environmental science & technology. 2005. V. 39. No. 5. P. 1378-1383.

31. Jung H, Wang C U, Jang W Nano-C60 and hy-droxylated C60: Their impacts on the environment //Toxicology and vironmental Health Sciences. 2009. V. 1. N. 2. P. 132-139.

32. Gao J, Wang H.L, Shreve A., Iyer R. Fullerene derivatives induce premature senescence: A new toxicity paradigm or novel biomedical applications // Toxicology and applied pharmacology. 2010. V. 244. N. 2.-P. 130143.

33. Horie M., Nishio K., Kato H. et al. In vitro evaluation of cellular responses induced by stable fullerene C60 medium dispersion // Journal of biochemistry. 2010. V. 148. No. 3. P. 289-298.

34. Hendrickson O. D, Zherdev A. V, I. V. Gmoshinski, and B. B. Dzantiev. Fullerenes: in vivo studies of biodistribution, toxicity, and biological action // Nan-otechnologies in Russia. 2014. V. 9. N. 11-12. P. 601-617.

35. Hendrickson O. D, Morozova O. V, Zherdev A.V.et al. Study of distribution and biological effects of fullerene C60 after single and multiple intragastrical administrations to rats // Fullerenes, Nanotubes and Carbon Nanostructures. 2015. V. 23. No. 7. P. 658-668.

36. Kolosnjaj J, Szwarc H, Moussa F Toxicity studies of fullerenes and derivatives/ Bio-Applications of na-noparticles. Springer New York. 2007. P. 168-180.

37. Kyzyma E. A. et al. Structure and toxicity of aqueous fullerene C60 solutions // Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2015. V. 9. N 1. P. 1-5.

38. Moussa F, Chretien P., Dubois et a, The influence of C60 powders on cultured human leukocytes // Full. Sci. Technol. 1995. V. 3. P. 333-342.

39. Moussa F, Trivin F., Ceolin R. et al Early effects of C60 Administration in Swiss Mice: A Preliminary Account for In Vivo C60 Toxicity // Fullerene Science & Technology. 1996. V. 4. N 1. P. 21-29.

40. Or/ova M.A, Trofimova T.P, OrlovA.P.et al Full-erene derivatives as modulators of cell proliferation and apoptosis.- New directions in medicine science. // Onco-hematology. 2012. N 4. P. 7-10.

41. Prylutska S. V, Matyshevska O. P, Golub A. at aI. Study of C60 fulllerenes and C60 - containing composites cytotoxicity in vitro // Materials Science and Engineering:

C. 2007. V. 7. N 5. P. 1121-1124.

42. Piotrovskiy L.B.. Fullerenes in the design of medicinal substancies // Russian Nanotechnologies. 2007. V. 2. N. 7-8. P. 6-18.

43. Rajagopalan P, Wudl F, Schinazi R.F., Boudinot F.D. Pharmacokinetics of a water-soluble fullerene in rats // Antimicrobial agents and chemotherapy. 1996. V. 40. N 10. P. 2262-2265.

44. Sayes C.M, Marchione A.A., Reed K.L., Warheit

D.B. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene

toxicity in vivo in contrast to in vitro profiles // Nano letters. 2007. V. 7. N 8. P. 2399-2406.

45. Trpkovic A., Todorovic, Markovic B, Kleut D. et a. Oxidative stress-mediated hemolytic activity of solvent exchange -prepared fullerene (C60) nanoparticles // Nano-technology. 2010. V. 21. N 37. P. 37510.

46. Trpkovic A., Todorovic, Markovic B, Trajkovic V. Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress // Archives of toxicology. 2012. V. 86. N. 12. P. 1809-1827.

47. Yamago S., Tokuyama H., Nakamura E.et al. In vivo biological behavior of a water-miscible fullerene: 14 C labeling, absorption, distribution, excretion and acute toxicity // Chemistry & biology. 1995. V. 2. N. 6. P. 385-389.

48. Ueng, T.H., Kang, J.J., Wang, H.W. et al. Suppression of microsomal cytochrome P450-dependent monooxygenases and mitochondrial oxidative phosphorylation by fullerenol, a polyhydroxylated fullerene C 60 // Toxicology letters. 1997. V. 93. N. 1. P. 29-37.

49. Shipeiin V.A., Arianova E.A., Trushina E.N.et al. Hygienic characteristic of fullerene C60 while it's introducing into b gastrointestinal tract of rats // Hygiene and sanitation 2012. N 2. P. 90-94.

50. Shipeiin V.A., Avreneva L.I, Guseva G.V.et al. Characteristic of oral toxicity of fullerene C60 for rats in 92-days experiment.// Nutrition issues. 2012. V. 81. N 5. P. 20-27.

51. Vengerovich N.G., Tyunin M.A., Antonenkova E.V.etal. Biological activity of nano-bio-composites fullerene C60. // Immunology. 2012. N 12. P. 161-177.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

52. Environmental Regulatory Document of the Russian Federation 14.1:2:3:4.2-98 (ed. 2015) Toxicological method of control. Method of the determination of toxicity of natural, drinking, domestic waste, cleaned waste, sewage, snowmelt, process water. Rapid method with the use of the device of series "Biotester". 2015. Rus. Moscow. URL:https://standartgost.m/g/$P_1.39.2015.19244

i Надоели баннеры? Вы всегда можете отключить рекламу.