Научная статья на тему 'Применение моделей мелкой воды в задачах о взаимодействии длинных поверхностных волн с частично погруженным телом'

Применение моделей мелкой воды в задачах о взаимодействии длинных поверхностных волн с частично погруженным телом Текст научной статьи по специальности «Физика»

CC BY
32
8
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Применение моделей мелкой воды в задачах о взаимодействии длинных поверхностных волн с частично погруженным телом»

66 Секция 4

выполненными с помощью совместной модели циркуляции атмосферы и океана высокого разрешения. Проведенные эксперименты показывают несомненную перспективность данного подхода.

Применение моделей мелкой воды в задачах о взаимодействии длинных поверхностных волн с частично погруженным телом

О. И. Гусев, Г. С. Хакимзянов Институт вычислительных технологий СО РАН Email: [email protected] DOI: 10.24411/9999-017A-2019-10134

В работе использована иерархия математических моделей [1], описывающих взаимодействие длинных поверхностных волн с частично погруженным телом. На ее верхнем уровне находится модель потенциальных течений жидкости со свободной границей, а на следующих - модели мелкой воды второго и первого длинноволнового приближения. Для последних разработаны и численно реализованы условия сопряжения решений на границе между течением со свободной поверхностью и течением под телом. При помощи сравнений численных решений, полученных в рамках моделей этой иерархии, сделаны выводы об областях применимости моделей мелкой воды при различных значениях параметров, определяющих набегающую волну, размеры тела и его осадку. Приведены сравнения полученных решений с экспериментальными данными.

Список литературы

1. Khakimzyanov G. S., Dutykh D. Long wave interaction with a partially immersed body. Part I: Mathematical models // Communications in Computational Physics. 2019. Vol. 24. (в печати).

О k - e, LES, Рейнольдс и степенных моделях

К. Б. Джакупов

Казахский национальный университет им. аль-Фараби (Алматы) Казахстан

Email: [email protected]

DOI: 10.24411/9999-017A-2019-10135

Тезисы печатаются в авторской редакции

Моделирование турбулентных течений несжимаемой жидкости уравнениями Рейнольдса для искомых осредненных скоростей, давления и произведений пульсаций, продолжением которых являются бесконечные системы уравнений моментов высоких порядков Келлера - Фридмана, а также LES-методом, заложены в невозможности определения такого универсального периода осреднения Т во времени, который имеет единственное постоянное значение во всех точек турбулентного потока и одинаков для всех динамических функций. Данное обстоятельство привело к использованию нефизичных по своей сути и абсурдных по конструкции полуэмпирических математических моделей турбулентности, в том числе и основанных на идеях Колмогорова семейств k - e моделей, служащих для определения не-физичного "эффективного коэффициента турбулентной вязкости цг". Модели типа k - e, LES противоречат действию сил трения и уравнению переноса кинетической энергии, в том числе и турбулентной кинетической энергии пульсаций. В данной работе для моделирования течений вязких жидкости и газа обосновано использование физических законов трения Fmp = -kmvme, m = 1,3,5,7,9,..., но с нечетными показателями степени, выбор которых зависит от компонент скорости течения в данной точке потока. Соответственно выведены несимметричные тензоры напряжений и уравнения динамики. Полученные таким образом модели не содержат полуэмпирических констант. Показано, что закон трения Ньютона и уравнения Навье динамики вязкой жидкости вытекают как частный случай при показателе степени, равном единице m = 1.

Список литературы

1. Савельев И. В.Курс общей физики.- Т.1. М.: "Наука", 1977г.

2. Jakupov K. B. RHEOLOGICAL LAWS OF VISCOUS FLUID DYNAMICS // Известия НАН РК, сер.физ.-мат.. 1(293), 2014. С. 51-55.

3. Джакупов К.Б. Ликвидация фальсификаций и модернизация теоретических основ механики сплошной среды-Алматы: Типография "Гылым ордасы", 2018. С. 460.

i Надоели баннеры? Вы всегда можете отключить рекламу.