= ОПТИКА И СПЕКТРОСКОПИЯ. ЛАЗЕРНАЯ ФИЗИКА
Подавление локального электрон—фононного взаимодействия в полупроводниковых олигомерах и его мониторинг с помощью комбинационного рассеяния света
А.Ю. Сосорев1' *
1 Московский государственный университет имени М. В. Ломоносова, физический факультет.
Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2 (Поступила в редакцию 11.04.2023; после доработки 18.05.2023; принята к публикации 22.05.2023)
Для эффективной работы многих устройств органической электроники требуются органические полупроводники с высокой подвижностью носителей заряда. Однако в большинстве известных органических полупроводников подвижность зарядов невелика, поскольку ограничена сильным локальным электрон-фононным взаимодействием. В настоящей работе на примере тиофен-фениленовых со-олигомеров — класса органических полупроводников, сочетающих достаточно высокую подвижность зарядов со светоизлучением и потому перспективных для светоизлучающих транзисторов и лазеров с электрической накачкой, — изучен механизм подавления электрон-фононного взаимодействия путём введения в молекулу электроотрицательных атомов или дополнительного тиофенового кольца. Выявлено, что такие изменения структуры приводят к изменению вклада различных колебательных мод в локальное электрон-фононное взаимодействие, в частности к подавлению вклада низкочастотной торсионной моды. Кроме того, показано, что для двух мод, вносящих наибольший вклад в локальное электрон-фонон-ное взаимодействие в незамещённом олигомере, это изменение коррелирует с их интенсивностью комбинационного рассеяния света, что подтверждает перспективность исследования электрон-фононного взаимодействия с помощью спектроскопии комбинационного рассеяния. Полученные результаты позволяют улучшить понимание связи локального электрон-фононного взаимодействия с молекулярной структурой органических полупроводников, что чрезвычайно важно для направленного дизайна таких материалов с высокой подвижностью заряда.
PACS: 33.20.Fb, 31.10^. УДК: 539.1
Ключевые слова: энергия реорганизации, теория функционала плотности, молекулярные колебания, сопряжённые олигомеры, органическая электроника, органические полупроводники, подвижность носителей заряда.
БО!: 10.55959/MSU0579-9392.78.2340404
ВВЕДЕНИЕ
Органическая электроника — быстро развивающаяся высокотехнологичная область, нацеленная на создание электронных устройств нового поколения на основе органических полупроводников (ОП). Такие устройства во многих областях применения могут превзойти традиционные неорганические устройства. Одним из наиболее успешно развивающихся направлений органической электроники является органическая оптоэлектроника. В частности, органические светодиоды (OLED) активно используются в дисплеях мобильных телефонов и телевизоров. В то же время управляющими элементами таких устройств по-прежнему остаются неорганические транзисторы, что не позволяет использовать в полной мере преимущества ОП. В связи с этим в настоящее время идёт интенсивная работа по созданию устройств нового типа, объединяющих функционал светоизлучающих и управляющих устройств — органических светотранзисторов (OLETs) [1].
* E-mail: sosorev@physics.msu.ru
Вещества, составляющие рабочий слой свето-транзистора, должны обладать достаточно редким свойством — совмещать эффективное светоизлуче-ние и достаточно высокую подвижность зарядов. Одним из подходящих классов органических полупроводников являются тиофен-фениленовые со-олигомеры (ТФСО) [2], обладающие квантовым выходом фотолюминесценции до ~ 80-90% в кристалле [3, 4] и значительными подвижностями носителей заряда — до 0.1 см2В-1с-1 в линейных ТФСО и до 7 см2В-1с-1 в ТФСО с аннелированными фрагментами [5]. Благодаря таким свойствам ТФСО они были успешно применены в различных органических оптоэлектронных устройствах: светоди-одах [6], полевых транзисторах [2], светоизлучающих транзисторах [3-5], лазерах с оптической накачкой [7] и солнечных батареях [8]. Синтетическая гибкость позволяет улучшать свойства ТФСО, в частности подвижность зарядов в них, которая на настоящий момент уступает таковой в лучших ОП (например, монокристаллическом рубрене, где она достигает 20 см2В-1с-1 [9]).
В большинстве ОП носитель заряда (электрон или дырка) за счёт локального и нелокального электрон-фононного (электронно-колебательного) вза-
имодеиствия локализуется на одной молекуле и движется некогерентно, «перепрыгивая» с одной молекулы на другую. При таком механизме транспорта, называемом прыжковым, скорость переноса заряда между молекулами в высокотемпературном приближении хорошо описывается с помощью формулы Маркуса [10, 11]:
k = 2J
i
ft V4nA kT
где Н — постоянная Планка, 3 — интеграл переноса, характеризующий электронное взаимодействие между молекулами, А — энергия реорганизации, характеризующая локальное электрон-фононное взаимодействие, к в — постоянная Больцмана, Т — абсолютная температура, ДЕ — разность энергий носителя заряда в начальном и конечном состояниях (ДЕ = 0 для идентичных молекул). Подвижность носителей заряда, рассчитывается на основе уравнения (1) с помощью соотношения Эйн-штейна-Смолуховского (см., например, [10]). В связи с экспоненциальной зависимостью подвижности зарядов от энергии реорганизации А, уменьшение последней, т.е. подавление локального элек-трон-фононного взаимодействия, крайне перспективно для повышения подвижности [12, 13]. Отметим, что подавление локального электрон-фонон-ного взаимодействия также способствует увеличению подвижности зарядов в ОП, в которых наблюдается когерентный транспорт заряда (зонного типа). Энергию реорганизации можно представить в виде разложения по вкладам от различных колебательных мод, Аi [14]:
a = Е A = Е
fa^AQ? 2
(2)
где — частота г-й колебательной моды, а ДQi — безразмерный вклад данной моды в изменение координат атомов при переходе от нейтрального состояния к заряженному. Для уменьшения локального электрон-фононного взаимодействия полезно понимать, какие именно моды вносят в него наибольший вклад, и подстраивать молекулярную структуру таким образом, чтобы эти моды оказались подавлены.
Локальное электрон-фононное взаимодействие в ТФСО было исследовано в работе [15] и статье автора в этом журнале (№6, 65 (2019)). В работе автора было выявлено, что в модельном ТФ-СО РТТР (Р — фенил, Т — тиофен, см. химическую структуру на рис. 1, а) основной вклад в А вносят колебательные моды двух диапазонов: 1400-1600 см-1 (высокочастотная (ВЧ) область) и 0-200 см-1 (низкочастотная (НЧ) область). Среди них наибольший вклад вносит коллективное колебание атомов всех ароматических колец, составляющих олигомер, с волновым числом ~ 1500 см-1 (т.н. Я-мода [16]; здесь и далее используются спектроскопические единицы измерения частоты см-1).
Причиной большого значения Aj для этого колебания является то, что последнее существенно изменяет длины связей между атомами п-сопряжённой системы, и, как следствие, длину сопряжения в исследуемых молекулах. Действительно, при переходе от нейтрального состояния молекулы к катиону изменяются длины связей между кольцами PTTP, а также длины С—С связей внутри тиофеновых колец (рис. 4 в статье автора в этом журнале №6, 65 (2019)). В то же время Я-мода включает сжатие—растяжение именно этих связей, т.е. именно она «переводит» нейтральное состояние в состояние катиона, а поэтому имеет высокое Aj. В НЧ-обла-сти присутствуют два колебания, вносящие значительный вклад в A: торсионное колебание фениль-ных колец относительно тиофеновых с волновым числом ~ 50 см-1 и сжатие/растяжение молекулы вдоль длинной оси с волновым числом ~ 170 см-1. В работах [15, 17] были предложены два способа уменьшения энергии реорганизации полупроводниковых олигомеров. Одним из них является введение электроотрицательных атомов, например фторирование фенильных/фениленовых колец [15], другим — замена серы на кислород и перехода от ТФСО к фуран—фениленовым соолигомерам [17]. Кроме того, известным способом уменьшения энергии реорганизации является увеличение длины сопряжённой системы [12]. Однако изменение вкладов различных колебаний в A при изменении структуры со-олигомеров детально изучено не было.
Константы локального электрон—фононного взаимодействия и его интегральная характеристика — энергия реорганизации — не являются наблюдаемыми величинами, и прямое их измерение невозможно. Также ненаблюдаемыми величинами являются и вектора смещений атомов для каждой колебательной моды («формы» колебаний). В связи с этим для предсказания влияния модификации структуры на электрон—фононное взаимодействие наиболее перспективным способом является компьютерное моделирование. Метод теории функционала плотности (DFT) является наиболее точным методом, позволяющим рассчитывать свойства относительно больших молекул (число атомов в которых превышает ~ 20—30) и используется очень широко [18, 19]. Именно с его помощью в подавляющем большинстве работ получают расчётные данные об электронных, оптических и колебательных свойствах органических полупроводников [9, 14]. Важно, что существующий косвенный экспериментальный метод оценки энергии реорганизации — ультрафиолетовая фотоэлектронная спектроскопия (UPS) — даёт результаты, подтверждающие расчёты методом DFT [12]. Подчеркнём, что использование метода DFT для моделирования свойств различных органических полупроводников является чрезвычайно важным для органической электроники, поскольку позволяет выбрать из неисчислимого множества молекул наиболее перспективные до проведения химического синтеза и экспериментального исследования свойств.
Недавно было показано, что для многих колебательных мод Л. коррелирует с их интенсивностью комбинационного рассеяния света (КР), I. см. [20, 21] (а также вышеуказанную статью автора в этом журнале), I. ~ а2Л.ш., где а — поляризуемость молекулы. Причиной является то, что интенсивность КР определяется способностью колебательной моды изменять поляризуемость системы, которая для молекул ОП, в свою очередь, связана с энергиями высшей заполненной молекулярной орбитали (ВЗМО) и низшей свободной молекулярной орбитали (НСМО). В то же время модуляция энергий ВЗМО и НСМО определяет энергии реорганизации при переносе дырки и электрона соответственно [12, 14]. Хотя прямого соответствия между Л. и I. нет, наличие корреляции между ними позволяет использовать спектроскопию КР для экспериментального исследования локального элек-трон-фононного взаимодействия в ОП. Более того, спектроскопия КР также применима для исследования нелокального электрон-фононного взаимодействия в кристаллах ОП и скрининга ОП с высокой подвижностью зарядов [22-25]. Для дальнейшей проверки и уточнения метода исследования элек-трон-фононного взаимодействия с помощью КР полезно сопоставить изменения в спектрах Л. и I. в близких по структуре соединениях.
В настоящей работе с помощью квантово-хими-ческих расчётов методом БЕТ исследуется изменение вклада различных колебательных мод в энергию реорганизации при переносе дырки и интенсивность КР при изменении структуры модельного ТФСО РТТР: фторировании, замене атомов серы на атомы кислорода и добавлении тиофенового кольца в центр молекулы. Показано, что перечисленные модификации, особенно первые две, приводят к подавлению вклада НЧ торсионного колебания фенильных колец в Л. Это объясняется устранением отталкивания атомов водорода фенильного и тиофенового колец за счёт изменения электростатического потенциала молекул. Подавление данной моды отражается и в спектре КР — её интенсивность становится крайне малой. Кроме того, изменяется вклад Я-моды в Л, увеличиваясь в результате фторирования и уменьшаясь в остальных рассмотренных случаях. В то же время Л. для НЧ растяжения-сжатия молекулы практически не изменяется. Полученные результаты полезны для понимания локального электрон-фононного взаимодействия в ТФСО, что, в свою очередь, необходимо для направленного дизайна молекул этого типа.
1. МЕТОДИКА
Расчеты методом БЕТ были выполнены с использованием программного пакета СЛМЕББ [26, 27] в приближении В3ЬУР/6-3Ю(^р). Такая комбинация функционала плотности и базисного набор хорошо описывает свойства органических полупроводников [22], обеспечивая компромисс между вре-
менем расчета и точностью вычислений. Более того, расчёты с помощью функционала плотности В3ЬУР наиболее точно описывают экспериментальные оценки энергии реорганизации [12]. Энергия реорганизации была рассчитана методом разложения по нормальным колебаниям согласно (2). Для вычисления ДQi изменение координат атомов при переходе молекулы от нейтрального к заряженному состоянию раскладывалось по базису векторов колебаний [14]. Внешнесферная энергия реорганизации, обусловленная поляризуемостью молекулярного окружения, не учитывалась. Для визуализации использовались программы Jmol [28] и СИетсгаЙ; [29]. Длина сопряжения вычислялась как длина делокализации электрона на ВЗМО в соответствии с работой [15] 1С = ^. с^т"^ ^с2, где с. — коэффициенты при атомных орбиталях ¿-го атома в ВЗМО.
2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
Структура и равновесные геометрии исследуемых соединений представлены на рис. 1, вид граничных орбиталей — высшей заполненной молекулярной орбитали, ВЗМО, и низшей свободной молекулярной орбитали, НСМО, представлен на рис. 2. Согласно проведённым квантово-химическим расчётам, молекулы РТТР и РТТТР не являются плоскими (непланарны): двугранный угол между плоскостями фенильного и тиофенового колец, в (см. рис. 1, а), составляет 26° (см. таблицу). Это можно объяснить наличием электростатического отталкивания водородов тиофенового и фенильного колец, имеющих одноимённые положительные парциальные заряды [30] и, соответственно, формирующих области положительного электростатического потенциала (см. рис. 3, а). Напротив, молекулы РрТТРр и РЕЕР планарны, что обусловлено подавлением отталкивания указанных атомов водорода. Действительно, в молекуле РрТТРр электроотрицательные атомы фтора фенильного кольца формируют области отрицательного потенциала (см. рис. 3, б) и притягиваются к атомам водорода. В молекуле РЕЕР за счёт меньшего радиуса атомов кислорода и наличием вокруг них сильного электроотрицательного потенциала (рис. 3, в) угол у между связью С-С, соединяющей фурановое и фенильное кольца, и ближайшей связью С-0 (см. рис. 1, а) становится меньше (у = 122° в РТТР, у =117° в РЕЕР). Это, в свою очередь, увеличивает расстояние между атомами водорода фенильного и тиофе-нового/фуранового колец и ослабляет их отталкивание. Тиофеновые/фурановые кольца находятся в одной плоскости во всех исследованных соединениях за исключением РТТТР, где торсионный угол между плоскостями тиофенов достигает ~ 10°.
В таблице приведены также рассчитанные значения длины сопряжения, поляризуемости исследуемых молекул и энергии реорганизации при перено-
Рис. 1. Равновесные геометрии рассчитанных соединений: РТТР (а), РрТТРр (б), РЕЕР (в), РТТТР (г)
Рис. 2. Вид ВЗМО и НСМО исследуемых молекул
се дырки, А^, для исследуемых молекул. Как видно из этой таблицы, фторирование фенилов увеличивает длину сопряжения и поляризуемость, что можно объяснить планаризацией молекулы и улучшением сопряжения между тиофеновыми и фениль-ными кольцами. Замена серы на кислород уменьшает длину сопряжения и поляризуемость, несмотря на планаризацию молекулы, что связано с меньшей поляризуемостью атома кислорода и уменьшением длины молекулы (14.87А в РТТР и 13.73А
в РЕЕР). Наконец, добавление тиофенового кольца существенно увеличивает длину сопряжения и поляризуемость, что связано с увеличением длины молекулы (до 18.67А) и количества п-электронов в ней. Энергии реорганизации для всех исследованных модификаций РТТР ниже, чем для исходной молекулы. Наибольшее понижение А наблюдается для РЕЕР, наименьшее — для РрТТРр. Далее мы рассмотрим причины различия в А, наблюдая за изменением вкладов различных колебательных мод
РТТР я РРБР
Рис. 3. . Распределение электростатического потенциала в исследуемых молекулах. Синим обозначены области положительного потенциала, красным — отрицательного
Таблица. Торсионный угол между плоскостями фенилов и тиофенов в, длина сопряжения 1С, поляризуемость а и энергия реорганизации при переносе дырки, \н, для исследуемых молекул
Соединение в, ° 1с А а, А3 Аь, мэВ
РТТР 26 6.47 45.11 312
РрТТРр 0 6.96 48.32 287
РЕЕР 0 6.04 39.96 255
РТТТР 26 7.76 62.58 275
в локальное электрон-фононное взаимодействие.
Рассчитанные вклады различных колебательных мод в А в исследуемых соединениях представлены на рис. 4. Как видно из рисунка, во всех соединениях наибольший вклад даёт Я-мода (см. выше), в согласии с вышеприведенной работой автора. Смещения атомов в Я-моде исследуемых соединений представлены на рис. 5, а-г. Они имеют похожую картину, однако есть некоторые различия. В молекуле РрТТРр движутся в основном атомы углерода тиофеновых колец, а их амплитуда смещения больше, чем в остальных молекулах, т.е. Я-мода более локализована (рис. 5, б). Поскольку на тиофе-новых кольцах плотность ВЗМО и НСМО больше, чем на фенильных кольцах (см. рис. 2), и длины связей С-С первых изменяются сильнее, чем вторых, значение Аi для Я-моды в РрТТРр велико (см. рис. 4). Напротив, в РЕЕР Я-мода более де-локализована и включает также значительные смещения атомов фенильных колец, на которых плотность ВЗМО и НСМО мала, что приводит к меньшей Аi по сравнению с РрТТРР (рис. 5, в). Более высокое волновое число Я-моды в РЕЕР, по сравнению с остальными исследуемыми соединениями, обусловлено меньшей атомной массой кислорода по сравнению с серой. Более делокализованный ха-
рактер Я-моды в РТТТР (рис. 5, г) по сравнению с РТТР, РрТТРр и РЕЕР объясняет наименьшее Аi для этой моды в ряду рассчитанных соединений.
В РТТР второе по величине значение Аi наблюдается для торсионного колебания с волновым числом ~ 50 см-1, при котором фенильные кольца поворачиваются относительно тиофеновых, в согласии с вышеприведенной работой автора, см. рис. 5, е-ж. Причина в том, что в основном состоянии фениль-ные кольца повёрнуты относительно тиофеновых (см. выше), в то время как в заряженном состоянии (например, в состоянии катиона) молекула является плоской. Таким образом, данное колебание вносит большой вклад в переход от геометрии основного состояния в геометрию заряженного. В молекулах РрТТРр и РЕЕР упомянутое колебание не вносит сколь-либо существенного вклада в энергию реорганизации (см. рис. 4). Причина состоит в том, что в этих молекулах нейтральное состояние также является плоским, поэтому данное колебание не способствует переходу из нейтрального в заряженное состояние. В молекуле РТТТР торсионная мода вносит вклад в А, однако он меньше, чем в РТТР, что можно объяснить большей дело-кализацией п-электронной плотности. Третий по величине вклад в энергию реорганизации даёт мода
РТТР
[
я
РрТТРр
I
Лл_
, рррр
1. п , ■ ГЬПп м! ■1
РТТТР
А... 1. .1 Ли. 1.
-1
Волновое число, см
Рис. 4. а — Вклады различных колебаний в энергию реорганизации при переносе дырки в исследуемых соединениях и б — спектры КР исследуемых соединений
сжатия-растяжения молекулы, в которой движутся в основном фенильные или перфторфенильные кольца (см. рис. 7). Примечательно, что при исследуемых изменениях структуры Л. для этой моды практически не изменяется.
На рис. 4, б представлены рассчитанные спектры КР. Достоверность полученных данных подтверждается хорошим согласием с экспериментом для РТТР [30] и РТТТР [31], а также других ОП [15, 20, 32], в т.ч. ТФСО с перфторированны-ми фенильными кольцами [15]. В спектрах КР всех исследуемых соединений доминирует Я-мода, что согласуется с её преобладающим вкладом в элек-трон-фононное взаимодействие. КР-интенсивность Я-моды в РЕЕР несколько ниже, чем в РТТР, что может быть обусловлено меньшей поляризуемостью первой молекулы (см. табл. 1). Напротив, в РрТТРр КР-интенсивность этой моды более чем в 2 раза выше, чем в РТТР, что можно объяснить одновременным увеличением Л. (см. рис. 4, а) и а (см. табл. 1). Наконец, в РТТТР интенсивность КР Я-моды более чем в 3 раза превышает таковую в РТТР, что объясняется значительным увеличением а (см. табл. 1). Таким образом, между значением Л.а2 и I. наблюдается корреляция (рис. 8 а, отклонение точки для РТТТР от линии корреляции может быть связано с отличающейся симметрией молекулы).
Изменение интенсивности КР для НЧ торсионной моды хорошо коррелирует с изменением Л. в исследуемых соединениях. Действительно, в соединениях РрТТРр и РЕЕР, где данная мода не вносит вклад в Л, её КР-интенсивность пренебрежимо мала. В РТТТР, где эта мода имеет небольшое значение Л., мала и её I.. Таким образом, и для торсионной моды между значением Л.а2 и I. наблюдается корреляция (рис. 8, б, отклонение точки для РТТТР от линии корреляции может быть связано с отличающейся симметрией молекулы). Корреляция между Л. и I. для вышеупомянутых мод в исследованных веществах подчёркивает перспективность использования спектроскопии КР для оценки электрон-фононного взаимодействия в ОП. В то же время мода сжатия-растяжения молекулы, характеризующаяся существенным вкладом в КР в исследуемых соединениях, крайне слабо проявляется в спектре КР. Это говорит о необходимости дополнительной проверки выводов о локальном электрон-фононном взаимодействии, полученных из спектроскопии КР.
В кристаллах ОП НЧ-колебания обычно имеют существенный межмолекулярный характер, однако при наличии внутримолекулярных колебаний в данном диапазоне последние могут смешиваться с межмолекулярными [33]. Таким образом, НЧ торсионная мода должна вносить существенный вклад в Л.
Рис. 5. Смещения атомов в Я-моде (а-г) и НЧ торсионной моде (д-з) в исследуемых соединениях
Рис. 6. Сопоставление расчётных (столбцы) и экспериментальных (линия) спектров РТТР (а) и РТТТР (б). Экспериментальные данные взяты из работ [30, 31] для РТТР и РТТТР, соответственно
и подавляться путём введения электроотрицательных атомов и в кристалле, т.е. проведённые рассуждения должны оставаться справедливыми и при учёте кристаллического окружения. Однако кристаллическое окружение может ограничивать амплитуду торсионных колебаний в РТТР, вследствие чего уменьшение А в кристалле может быть не так выражено, как в изолированной молекуле. Вместе с тем данный вопрос находится за пределами настоящей статьи, поскольку требует расчётов собственных колебаний кластеров молекул или кристаллов.
ЗАКЛЮЧЕНИЕ
Показано, что при введении электроотрицательных атомов или дополнительного тиофенового кольца в модельный ТФСО РТТР ослабляется локальное электрон-фононное взаимодействие (уменьшается энергия реорганизации). Основной причиной этого является переход молекулы к пла-нарной геометрии в основном состоянии, вследствие чего вклад НЧ торсионной моды в энергию реорганизации, который был велик в РТТР, крайне мал в его исследованных производных с электроотрицательными атомами и незначителен в производ-
РТТР, 174 cm"1 a PFFP, 216cm1 в
Ъа?, эВА3 ка2, эВА3
Рис. 8. Корреляция между величиной \ial2 и интенсивностью КР для ВЧ Я-моды (б) и НЧ торсионной моды (а)
ном с добавленным тиофеновым кольцом. Такое изменение в электрон-фононном взаимодействии чётко проявляется в спектрах КР, где интенсивность данной моды в исследованных производных с электроотрицательными атомами также крайне мала. Вместе с тем вклад НЧ-моды сжатия-растяжения в энергию реорганизации практически не изменяется, а вклад Я-моды изменяется сложным образом, существенно увеличиваясь для фторированного производного РТТР. Таким образом, полученные результаты позволяют понять механизм подавления локального электрон-фононного взаимо-
действия в ТФСО, а также могут быть использованы для молекулярного дизайна полупроводниковых олигомеров других классов.
БЛАГОДАРНОСТИ
Автор выражает благодарность проф. Д.Ю. Па-ращуку за обсуждения и полезные рекомендации. Работа выполнена при финансовой поддержке РНФ (грант № 22-72-10056).
[1] Capelli R., Toffanin S., Generali G. et al. // Nat. Mater. 9. 496. (2010).
[2] Hotta S,Yamao T. // J. Mater. Chem. 21. 1295. (2011).
[3] Bisri S.Z., Takenobu T., Yomogida Y. et al. // Adv. Funct. Mater. 19. 1728. (2009).
[4] Komori T., Nakanotani H., Yasuda T. et al. // J. Mater. Chem. C 2. 4918. (2014).
[5] Fedorenko R.S., Kuevda A.V., Trukhanov V.A. et al. // Adv. Electron. Mater. 8. 2101281 (2022).
[6] Dokiya S., Ono Y., Sasaki F. et al. //J. Nanoscience and Nanotechnology. 16. 3194. (2016).
[7] Fang H.H., Ding R., Lu S. et al. // Adv. Funct. Mater. 22. 33. (2012).
[8] Taniguchi T., Fukui K., Asahi R. et al. // Synth. Met. 227. 156. (2017).
[9] Ostroverkhova O. // Chem. Rev. 116. 13279. (2016).
[10] Köhler A., Bassler H. In Electronic Processes in Organic Semiconductors. Wiley, Weinheim, 2015.
[11] Marcus R.A., Sutin N. // Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics. 811. 265. (1985).
[12] Coropceanu V., Cornil J., da Silva Filho D.A. et al. // Chem. Rev. 107. 926. (2007).
[13] Atahan-Evrenk S'., Aspuru-Guzik A. In Prediction and Calculation of Crystal Structures: Methods and Applications. / eds. Atahan-Evrenk §., Aspuru-Guzik A. Springer International Publishing, Cham, 2014, pp. 95-138.
[14] Li Y., Coropceanu V., Bredas J.-L. In The WSPC Reference on Organic Electronics: Organic Semiconductors. / (eds: Bredas J.-L., Marder S.R. World Scientific, Singapore, 2016. Ch. 7.
[15] Sosorev A.Yu., Trukhanov V.A., Maslennikov D.R. et al. // ACS Appl. Mater. Interfaces 12. 9507. (2020).
[16] Tian B., Zerbi G. // J. Chem. Phys. 92. 3892. (1990).
[17] Koskin I.P., Mostovich E.A., Benassi E., Kazantsev M.S. // J. Phys. Chem. C. 121. 23359. (2017).
[18] Цирельсон В.Г. Квантовая химия. Молекулы, молекулярные системы и твёрдые тела. М.: Бином, 2010. ISBN 978-5-9963-2362-3
[19] Игнатов С.К. Квантовохимическое моделирование атомно-молекулярных процессов. Нижний Новгород: Нижегородский государственный университет им. Н.И. Лобачевского, 2019. ISBN 978-5-91326-563-0
[20] Nuraliev M.K., Parashchuk O.D., Tukachev N.V. et al. // J. Chem. Phys. 153. 174303. (2020).
[21] Myers A.B. // Chem. Rev. 96. 911. (1996).
[22] Sosorev A.Yu., Parashchuk O.D., Tukachev N.V. et al. // Phys. Chem. Chem. Phys. 23. 15485. (2021).
[23] Trukhanov V.A., Dominskiy D.I., Parashchuk O.D. et al. // RSC Adv. 10. 28128. (2020).
[24] Vener M.V., Parashchuk O.D., Kharlanov O.G. et al. // Adv. Electron. Mater. 7. 2001281. (2021).
[25] Kharlanov O.G., Maslennikov D.R., Feldman E.V. et al. // Adv. Electron. Mater. 7. 2100579. (2021).
[26] Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 14. 1347. (1993).
[27] Gordon M.S., Schmidt M.W. Advances in electronic structure theory: GAMESS a decade later. 2005. In Theory and Applications of Computational Chemistry. (C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria Eds.) Elsevier: Amsterdam, 2005; pp. 1167-1189.
[28] Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/
[29] Chemcraft — graphical software for quantum chemical computations. https://www.chemcraftprog.com/
[30] Sosorev A.Y., Nuraliev M.K., Feldman E.V. et al. // Phys. Chem. Chem. Phys.21. 11578. (2019).
[31] Castro CM, Delgado M.G.R., Hernöndez V. et al. // J. Chem. Phys. 116. 10419. (2002).
[32] Tukachev N.V., Maslennikov D.R., Sosorev A.Yu. et al. // J. Phys. Chem. Lett. 10. 3232. (2019).
[33] Sosorev A.Y., Ghernyshov I.Y., Paraschuk D.Y., Vener M.V. In Molecular Spectroscopy: A Quantum Chemistry Approach, Vol. 2 (Eds: Y. Ozaki, M.J. Wyjcik and J. Popp), Wiley-VCH, Weinheim, Germany 2019 Ch. 15.
Suppression of local electron-phonon interaction in п-conjugated oligomers and its monitoring using Raman scattering
A.Yu. Sosorev
Faculty of Physics, Lomonosov Moscow State University. Moscow 119991, Russia E-mail: sosorev@physics.msu.ru
For efficient operation of many organic electronic devices, organic semiconductors with high charge carrier mobility are required. However, in most of the known organic semiconductors, the charge mobility is low, since it is limited by the strong local electron-phonon interaction. In the present work, using the example of thiophene-phenylene co-oligomers, a class of organic semiconductors that combine a sufficiently high charge mobility with light emission and therefore promising for light-emitting transistors and electrically pumped lasers, the mechanism of suppression of the electron-phonon interaction by introducing electronegative atoms or an additional thiophene ring is studied. It was found that such structural changes alter the contribution of various vibrational modes to the local electron-phonon interaction, in particular, to the suppression of the contribution of the low-frequency torsion mode. In addition, it is shown that for the two modes that make the largest contribution to the local electron-phonon interaction in an unsubstituted oligomer, this change correlates with their intensity of Raman scattering, and this confirms the promise of studying the electron-phonon interaction using Raman spectroscopy. The results obtained improve the understanding of the relationship between the local electron-phonon interaction and the molecular structure of organic semiconductors, which is extremely important for the directed design of such materials with high charge mobility.
PACS: 33.20.Fb, 31.10.+z.
Keywords: reorganization energy, density functional theory, conjugate molecular vibrations oligomers, organic electronics, organic semiconductors, carrier mobility charge. Received 11 April 2023.
English version: Moscow University Physics Bulletin. 2023. 78, No. 4. Pp. 496-505. Сведения об авторе
Сосорев Андрей Юрьевич — канд. физ.-мат. наук, науч. сотрудник; e-mail: sosorev@physics.msu.ru.