УДК 547.836.3 + 547.78 + 543.48 + 543.215
Ю.А. Глазова1, Е.В. Луковская1, А.А. Бобылева1, О.А. Федорова1,2, 12 1 Ю.В. Федоров ’ , А.В. Анисимов
1 Химический факультет, МГУ им. М.В. Ломоносова, Москва, Россия
2 Институт элементоорганических соединений РАН им. А.Н. Несмеянова, Москва, Россия
ОПТИЧЕСКИЕ СВОЙСТВА ПРОИЗВОДНЫХ АРИЛ-ИМИДАЗО-ФЕНАНТРОЛИНА И ИХ КОМПЛЕКСОВ
Синтезированы краун-содержащее и некраунированное производные арил-имидазо-фенантролина, изучено их комплексообразование с перхлоратами кальция и цинка методами спектрофотометрического титрования, а также 'Н ЯМР спектроскопии. Изучена флуоресценция лигандов и их комплексов. Найдены условия приготовления мультиионного комплекса краун-содержащего лиганда с катионами кальция и цинка.
Crown-containing and crown-free phenantroline derivatives were synthesized, the process of complex formation with calcium and zinc perchlorate was investigated using spectrophotometric titration and :Н NMR spectroscopy methods. The fluorescence of ligands and their complexes was studied. The conditions of multiionic complex formation of crown-containing ligand with calcium and zing cations were found.
Арил-имидазо-фенантролины играют важную роль в прикладной химии благодаря своим оптическим свойствам. Эти соединения могут использоваться в качестве лигандов для синтеза комплексов с Ru (II), Cu (II), Co (II), Ni (II), Mn (II) и некоторыми лантанидами [1, 2]. Металл-органические комплексы такого типа могут найти применение в нелинейных оптических материалах [3].
Одним из интересных направлений в этой области исследований является получение мультиионных комплексов. Комбинирование различных ионов в составе комплексов может давать системы, демонстрирующие многообещающие энергетические свойства, способные к переносу электрона так же, как мультипараметрические оптические сенсоры.
В настоящем исследовании был осуществлен синтез фенантролино-вых производных.
Соединение 1 имеет два центра координации: атом азота имидазоль-ного и атомы азота фенантролинового фрагмента, способные координировать различные катионы тяжёлых металлов.
Ca2+ Sr2+ Ba2+
Zn2+, Cd2+, Fe2+, Hg2+, Cu2+, Ru2+
Ty0--^
Zn2+, Cd2+, Fe2+, Hg2+, Cu2+, Ru2+
2
Схема 1. Структуры фенантролиновых производных
Введение краун-эфира в состав фенантролиновых производных приводит к появлению дополнительного места связывания. Вводимый азакра-ун-эфирный фрагмент проявляет сродство к катионам щелочно-земельных металлов. Из-за различного состава центров связывания становится возможным комбинировать катионы различных металлов в комплексах.
Методика синтеза [4] ранее неизвестных соединений включает в себя взаимодействие соответствующих альдегидов с 1,10-фенантролин-5,6-дионом в присутствии ацетата аммония в ледяной уксусной кислоте. Дальнейшая нейтрализация водным раствором гидроксида аммония приводит к выпадению целевых продуктов в виде окрашенных осадков.
Структура полученных соединений подтверждена методами спек-
1 13
троскопии ЯМР Н, С, COSY, NOESY и масс-спектрометрии.
R
NH4OAc, CH3COOH ice-cold
boil 4-8h. ^
R
R = H (1),
O
(2)
1: 36% 2: 46%
O-
Схема 2. Схема синтеза фенантролиновых производных
Процесс протонирования лигандов 1 и 2 кажется схожим с процессом связывания катионов металлов. Поэтому мы начали с изучения оптических свойств при протонировании. Для определения порядка протонирования
атомов азота в лигандах 1 и 2 мы использовали метод спектрофотометрического титрования. Мы добавляли определённое количество НСЮ4 в ацето-нитрильный раствор с известной концентрацией лиганда. После каждой добавки мы записывали спектр поглощения и определяли расчётные спектры поглощения с помощью анализа данных в программе 8ресШ32.
Протонирование производных фенантролина сопровождается появлением интенсивной полосы поглощения при 308 нм, а при избытке кислоты - двух пиков с максимумами при 274 и 290 нм.
Лиганд 2 координирует три протона - сначала по фенантролиновому фрагменту, затем по имидазольному и, наконец, по краун-эфиру. После того, как атом азота краун-эфирной части связывается с протоном, полоса поглощения при 347 нм, соответствующая чистому лиганду, исчезает. Это связано с тем, что неподелённая электронная пара атома азота перестаёт быть сопряжённой с хромофором и образует ковалентную связь с протоном.
Рис. 1. Расчетные спектры поглощения Рис. 2. Расчетные спектры поглощения лиганда 1 и его комплексов с одним и лиганда 2 и его комплексов с одним, двумя протонами двумя и тремя протонами
Ниже представлены изменения в спектре поглощения лиганда 2 при добавлении перхлората кальция. Согласно данным спектрофотометрического титрования, процесс комплексообразования включает в себя координацию по фенантролиновому фрагменту и последующее взаимодействие кальция с краун-эфирной частью. Важно отметить, что при добавлении перхлоратов кальция и цинка мы не наблюдали появления полосы с максимумом при 309 нм, которая соответствует координации по имидазольному фрагменту.
|н
400 420 440 460
Длина волны,нм
Схема 3. Схема последовательного образования комплексов лиганда 2 с катионами кальция и их константы устойчивости
с°
^°^ н
с°
ку°
|_д К„ = 5.5
ЇСИ>> ^
н ^°о
Са(С1°4)2
Ьд К12 = 84
Рис. 3. Электронные спектры поглощения лиганда 2 при различной концентрации перхлората кальция (спектрофотометрическое титрование). Исходная концентрация лиганда С2=1.67*10"5 М, концентрация перхлората кальция изменяется в интервале 0 - 0.007 М.
Растворитель - ацетонитрил, Т = 294 К
Поскольку катион цинка не имеет сродства к кислородному краун-эфиру, схема комплексообразования для обоих лигандов одинакова. Она включает в себя последовательное образование комплексов цинка с тремя, двумя и одним лигандом, которое наблюдается при увеличении количества перхлората цинка в растворе лиганда.
\=/ N^4
н
-Л-т
Схема 4. Схема последовательного образования комплексов лигандов 1, 2 с катионами цинка
Данные ЯМР спектроскопии демонстрируют отдельные сигналы протонов для каждого комплекса, а также сложный спектр, соответствующий комплексу состава 3:1. Сложность спектра может быть связана с особенным окружением центрального катиона цинка фенантролино-выми фрагментами. Близкое расположение трёх фенантролиновых ли-
*
гандов вызывает анизотропный эффект, который приводит к сдвигу некоторых сигналов протонов в область сильных полей. Изменения в положении протонов краун-эфирной части при комплексообразовании лиганда 2 с перхлоратом цинка не обнаружено.
Табл. 1. Константы устойчивости комплексов лигандов 1, 2 с катионами цинка
Лиганд Константы устойчивости
іобКц 1о§К2і іо§Кзі
1 6,0 12,7 18,7
2 5,9 13,9 20,5
9
Рис. 4. Изменение в спектрах *Н ЯМР при Рис. 5. Оптимизированная структура, комплексообразовании лиганда 2 с ка- ММЇТ94
тионами цинка.
Растворитель - СБ3С^ Т = 294 К
Мы изучали возможность получения смешанного комплекса. Для этого мы приготовили комплекс лиганда 2 с перхлоратом цинка состава 3:1. Добавление перхлората кальция к этому комплексу приводит к гипсохромному сдвигу ДПП, что свидетельствует о взаимодействии катиона кальция с краун-эфирной частью и согласуется с данными ЯМР спектроскопии.
------------------------------- 86 ----------------------------------------------
ё
0
1 о
L:Zn : Ca
L : Zn
ц цЛ\ і
от\ХХК> її 11 "
1ёк121 ~ 18,6
2
Рис. 6. Расчетные спектры поглощения комплексов лиганда 2 с катионами цинка, кальция, а также смешанного комплекса. Изменения в положении сигналов кра-
ун-эфирной части в *Н ЯМР спектре
о
о
3
Рис. 7. Спектры флуоресценции лиганда 1 и его комплексов с перхлоратами кальция и цинка. Концентрация лиганда Сі=2х10"6 М, концентрация перхлората кальция С=1*10"2 М, концентрация перхлората цинка С=1.15х10"3 М. Растворитель - ацетонитрил, Т = 294 К
Рис. 8. Спектры флуоресценции лиганда 2 и его комплексов с перхлоратами кальция и цинка. Концентрация лиганда С1=4х10"6 М, концентрация перхлората кальция С=1.5х10"4 М, концентрация перхлората цинка С=1.35х10"5 М. Растворитель - ацетонитрил, Т = 294 К
Оба лиганда демонстрируют флуоресценцию с близкими значениями квантовых выходов. Анализ флуоресценции показывает, что добавление катионов металлов к лиганду без краун-эфира вызывает сдвиг спектра флуоресценции в длинноволновую область. Квантовый выход флуоресценции меняется незначительно. Противоположная ситуация наблюдается
для краун-содержащего фенантролинового производного - добавление катионов кальция и цинка к раствору лиганда вызывает не только батохром-ный сдвиг, но и практически полное тушение флуоресценции. Это может быть связано с МЬСТ-переносом между электрон-донорным азакраун-эфиром и катионом металла, связанным с фенантролиновым фрагментом.
Табл. 2. Квантовые выходы флуоресценции лигандов 1, 2 и их комплексов с катионами цинка и кальция
Соединение 1 1--Ca2+ 13-Zn2 2 2- Ca2+ 23-Zn2+
Квантовый выход 0,11 0,17 0,09 0,10 0,002 0,0006
Таким образом, данное исследование показывает, что в краун-содержащем фенантролиновом производном предпочтительным местом связывания как для тяжёлых, так и для щелочно-земельным металлов является фенантролиновый фрагмент. Атом азота имидазолия не принимает участия в образовании комплекса. Также были найдены условия приготовления смешанного Zn-Ca комплекса.
Библиографический список
1. New alkynyl- and vinyllinked benzo- and aza-crown ether-bipyridynyl ruthenium (II) complexes which spectrochemically recognize group IA and IIA metal cations / P.D. Beer [a.o.] // J. Chem. Soc. Dalton Trans. - 1993. - P.2629-2638.
2. Crystal structure and spectroscopy of a hydrogen-bridged onedimensional Cu (II) complex containing both octahedral and square pyramidal geometries in the same unit cell /C. Karunakaram [a.o.] //J. Chem. Crystallography - 2000.- V.30. - P.351-357.
3. Mayer C.R., Dumas E., Secheresse F.1,10-phenanthroline and 1,10-phenanthroline-terminated ruthenium (II) complex as efficient capping agents to stabilize gold nanoparticles: Application for reversible aqueous-organic phase transfer processes // J. Coll. Interphase Science. - 2008. - V.328. - P.452-457.
4. Synthesis and characterization of novel (oligo)thienyl-imidazo-phenanthrolinesas versatile п-conjugated systems for several optical applications / R.M.F. Batista [a.o.] // Tetrahedron. - 2008. - V.64. - P.9230-9238.