Рис. 1. Дерево G и его минимальное реберное 1-расширение
Рис. 2. Сверхстройное дерево G и его минимальное реберное 1-расширение
ЛИТЕРАТУРА
1. Абросимов М. Б. О сложности некоторых задач, связанных с расширениями графов // Матем. заметки. 2010. №5(88). С. 643-650.
2. Hayes J. P. A graph model for fault-tolerant computing system // IEEE Trans. Comput. 1976. V.C25. No. 9. P. 875-884.
3. Абросимов М. Б. Минимальные расширения неориентированных звезд // Теоретические проблемы информатики и ее приложений. Саратов, 2006. Вып 7. С. 3-5.
4. Абросимов М. Б., Комаров Д. Д. Минимальные реберные расширения сверхстройных деревьев с малым числом вершин // Саратов: Саратов. гос. ун-т, 2010. 27 с. Деп. в ВИНИТИ 18.10.2010 № 589-В2010.
5. Кабанов М. А. Об отказоустойчивых реализациях графов // Теоретические задачи информатики и ее приложений. Саратов, 1997. Вып.1. С.50-58.
УДК 519.17
О НЕКОТОРЫХ СВОЙСТВАХ МИНИМАЛЬНЫХ ВЕРШИННЫХ РАСШИРЕНИЙ ОРГРАФОВ
М. Б. Абросимов, О. В. Моденова
Симметризацией орграфа GG = (V, а) называется неограф G = (V,, (a U а-1)\Д), то есть симметризация орграфа получается заменой дуг ребрами и удалением петель.
В работе [1] удалось найти некоторые связи точных вершинных k-расширений орграфов с точными вершинными k-расширениями неографов. Приведем некоторые из полученных результатов.
Теорема 1. Пусть (С * — точное вершинное к-расширение орграфа (С. Тогда отношения смежности а и а* являются одновременно либо рефлексивными, либо анти-рефлексивными.
Теорема 2. Пусть (С* —точное вершинное к-расширение орграфа (С. Тогда симметризация (* является точным вершинным к-расширением симметризации СС.
Теорема 3. Пусть (С —диграф с числом вершин больше 1, тогда его точное вершинное к-расширение, если оно есть, также будет диграфом.
Теорема 4. Пусть (* —точное вершинное к-расширение орграфа (. Тогда дополнение (* является точным вершинным к-расширением дополнения (.
Обратным орграфом, или обращением орграфа ( = (V, а) называется орграф ( = (У,0), получающийся заменой ориентации всех дуг (: в = а 1 = {(и, у) Е Е V х V : (у,и) Е а}.
Теорема 5. Пусть (* — точное вершинное к-расширение орграфа (. Тогда обращение (* является точным вершинным к-расширением обращения (.
Точное вершинное к-расширение является частным случаем минимального вершинного к-расширения. При переходе к минимальным вершинным к-расширениям от точных вершинных к-расширений некоторые из полученных свойств сохранились. Удалось получить следующие результаты.
Теорема 6. Пусть (* —минимальное вершинное к-расширение орграфа (. Тогда отношения смежности а и а* являются одновременно либо рефлексивными, либо антирефлексивными.
Теорема 7. Пусть (* —минимальное вершинное к-расширение орграфа (. Тогда симметризация (* является вершинным к-расширением симметризации (.
Теорема 8. Пусть (* —минимальное вершинное к-расширение орграфа (. Тогда обращение (* является минимальным вершинным к-расширением обращения (.
Отдельный интерес представляет случай, когда минимальное вершинное к-расши-рение диграфа также является диграфом. Был проведен вычислительный эксперимент по построению минимальных вершинных к-расширений всех диграфов с числом вершин до 6. В работе рассматриваются полученные в ходе эксперимента результаты.
ЛИТЕРАТУРА
1. Абросимов М. Б., Долгов А. А. Точные расширения некоторых турниров // Вестник Томского госуниверситета. Приложение. 2007. №23. С. 211-216.
УДК 519.178
ВЫЧИСЛИТЕЛЬНЫЕ АСПЕКТЫ ДРЕВОВИДНОЙ ШИРИНЫ ГРАФА
В. В. Быкова
Древовидная ширина — числовой параметр, характеризующий меру древовидности графа. Графы с ограниченной древовидной шириной образуют специальный класс графов, называемых частичными к-деревьями. Этот класс графов был введен четверть