Научная статья на тему 'NILPOTENTS ZERO DIVISORS OF A MULTIDIMENSIONAL MATRIX'

NILPOTENTS ZERO DIVISORS OF A MULTIDIMENSIONAL MATRIX Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
16
4
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
nilpotent / quadratic stochastic operators / zero divisor / multidimensional matrix / simplex. / нильпотент / квадратическое стохастическое операторы / делители нуля / многомерная матрица / симплекс.

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — S. Masharipov

In this article, the necessary conditions for nilpotency of matrices of three and higher dimensions are studied. In addition, its application to quadratic stochastic operators is presented.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

НИЛЬПОТЕНТЫ ДЕЛИТЕЛИ НУЛЯ МНОГОМЕРНЫХ МАТРИЦЫ

В данной статье изучаются необходимые условия нильпотентной матриц трех и более размерностей. Кроме того, представлено его приложение к квадратичным стохастическим операторам.

Текст научной работы на тему «NILPOTENTS ZERO DIVISORS OF A MULTIDIMENSIONAL MATRIX»

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 5 UIF-2022: 8.2 | ISSN: 2181-3337

NILPOTENTS ZERO DIVISORS OF A MULTIDIMENSIONAL MATRIX

Masharipov Sirojiddin

National university of uzbekistan (phd) (doktorant) https://doi.org/10.5281/zenodo.7069796 Abstract. In this article, the necessary conditions for nilpotency of matrices of three and higher dimensions are studied. In addition, its application to quadratic stochastic operators is presented.

Keywords: nilpotent, quadratic stochastic operators, zero divisor, multidimensional matrix, simplex.

НИЛЬПОТЕНТЫ ДЕЛИТЕЛИ НУЛЯ МНОГОМЕРНЫХ МАТРИЦЫ Аннотация. В данной статье изучаются необходимые условия нильпотентной матриц трех и более размерностей. Кроме того, представлено его приложение к квадратичным стохастическим операторам.

Ключевые слова: нильпотент, квадратическое стохастическое операторы, делители нуля, многомерная матрица, симплекс.

INTRODUCTION

We know that quadratic stochastic operators depend on p k coefficients, that is way we

need to study three-dimensional matrices. Although matrices have been widely studied in n = 2, but the properties of matrices in three and higher dimensions have not been fully studied. This article is devoted to it and shows its connection with quadratic stochastic operators. MATERIALS AND METHODS

We introduce the necessary concepts of multidimensional matrices and quadratic stochastic operators. We mainly need three-dimensional matrices, so we give their definitions below.

Definition. Let T, T, TT be k x n matrices with real entries. A 3-d matrix A is

1 7 2 7 J 7 7 m

an array of the matrices T, T, T,•••, Tm arrayed from top to bottom. We denote this as A = [T | T I •••! Tm\ and call this the top representation of A . We also write A as follows. [1]

(1)

A is a m x k x n matrix.

Definition. The nonlinear stochastic operators are defined on a simplex S, and the dimensional of the simplex is (m — l), as [3]

m

Sm—l = {x. = (*2,X,,...,^n)e Rm,XX = l, and x. > 0}

¿=1

Definition. The evaluation of the nonlinear stochastic operators as

ai,u aU,2 ■ a,, 1,1,и a ,, /72,1,1 a 19 . /72,1,2 . a , /77,1,/2

A = • • • • • •

_ ai,k ,1 a\,k,2 • a,, 1 ,k,n a ,, m,k,\ a , 9 . m,k, 2 . a , m,k,n T

i, J=1

i x X ■

k i j

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 5 UIF-2022: 8.2 | ISSN: 2181-3337

Where the p k is the transaction matrix under the condition:

m

o,Y%fc = i.

k=1

We write the operator in the form of a matrix. []

Pij,k — Pji,k ^ 0, ^ Pij,k —

. x =

( xl x2

( xj x2

( xj x2

x )

m s

x)

m

x)

m

a

& ,, V mi,i

a

a

V mi,2

a

a

V mi,m

,. ¿7,

¿7

.. ¿7,

a

a,

¿7

mm,m

Xo

VXm 7

A'0

x

V m y

A'0

x

V m //

(2)

If we multiply and calculate this matrix, we can write each in the following form.

V(Xj) = aniXiXi + a12,ixix2 h ••• h aim,\X\Xm h a21,1X2X1 h a22,1X2X2

^h... ^h i xx ^h... ^h a 11 x Xi ^h a rs 1 x Xo ^h ••• ^h a 1 x x

2 m,1 2 m m1,1 m 1 m 2,1 m 2 mm,1 m m

V ( x ) =

V(x2) = &ii,2xixi h &22,2xix2 h ••• h &im,2xixm h &2i,2x2xi h &22,2x2x2

^h••• ^h ^xox ^h ••• ^h & ^ ^x xi ^h & * ^x x^ ^h ••• ^h ^x x

2m,2 2 m mi,2 m i m 2,2 m 2 mm,2 m m

:=:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+:+: V ( x ) ^ ^^ x^ x^ + x^x^ + ••• + x^x + x0x, + x0x0

V m/ ii,m i i i2,m i 2 im,m i m 2i,m 2 i 22,m 2 2

(3)

22, m 2 2

. ^h... ^h X ^h ... ^h X Xi ^h ^ X X/-* X X

2 m,m 2 m ml,m m 1 m 2,m m 2 mm,m mm

In our work, it is clear that a nonlinear operator can be constructed using multidimensional matrices.

RESULTS

1. For multidimensional matrices [2], we will consider which conditions are fulfilled for divisors and nilpotency of zero, and we will construct a nonlinear operator using those matrices. Of course, for zero to have divisors, the following condition must be fulfilled A • B = 0 . We calculate from the property of multidimensional multiplication.

A =

a,

V &6

7

a, a.

V &2

a

3

B =

b5 b8 bi b

4 y

b6 b7 V b2 b3 y

F

i=i

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 5 UIF-2022: 8.2 | ISSN: 2181-3337

f a 1 T1 = T 2 f m A F1 = f a N F21= f c 1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

=

y c y y p y y m y y p y

f b ' T 2 = T 2 f « 1 F12 = f b 1 F1 = f d 1

= y d v y q, y « y y q y

T =

t = T2

T1 • F1 T 2 • F2 "

t;1 • F21 T;2 • F22 _

T • F/ T22 • F;2'

T1 • f1 T2 • F;2

^^ + ab ab + arjb^

a5b6 + ab ab + ab

ab + ab ab + a3b4

ab + ab ab + ab3

A • B =

ab + ab ab + ab

y ab + ab ab + ab y

ab + a2bx ab + a3b4 ab + ab ab + ab

3 y

ab + ab = 0, ab + ^b = 0, ab + a2b = 0, ab + ab = 0 ab + aèb = 0, ab + ab = 0, ab + ab = 0, ab + ab = 0

When we solve this system of equations, the possible solutions are as follows.

0,0,0,0,0,0,0,0, b, b, b, b, b, b, b, b 0,0, c, d ,0,0, a, a, b, b ,0,0, b, b ,0,0 a, a ,0,0, a, a ,0,0,0,0, b, b4 ,0,0, b, b

0,0,0,0,0,0,0,0

2. In our next problem, we will consider nilpotency. « = 2, A2 = 0

F

fa b 1 f m « 1 f a b 1 f c d 1

A = y c d y A =

y p q y T y m « y y p q,

T11 =

T12 =

y c y

y d y

T1 = T 2

T2 = T 2

m

y P f «

y q y

F1 =

F;2 =

y m y

y « y

F1 = 1 2

F1 =

y p y

f d 1

y q y

T

T = T 2

T1 • F1 T2 • F2

Ti 11 Ti 11

T1 • F1 T2 • F2

Ti 1 2 Ti 1 2 _

T1 • F1 T2 • F2

T 2 1 1 T 2 1 1

T1 • F1 T2 • F2

T2 1 2 T2 1 2

A2

/ j 9 \

a + mc b + d« ac + pc bd + dq

a2 + mc b2 + d« ac + pc bd + dq

ma + mp nb + qn mc + p2 «d + q2

^ma + mp nb + q«^

2 „J , „2

mc + p «d + q2

y

2

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 5 UIF-2022: 8.2 | ISSN: 2181-3337

a2 + mc = 0, ma + mp = 0

ac + pc = 0, mc + p2 = 0

b2 + dn = 0, nb + qn = 0

bd + dq = 0, nd + q2 = 0 3. The solution can be in the following forms. (0,0,0,0,0,0,0,0), (0,0,0,0,0, n,0,0), (0,0,0,0, m,0,0,0), (0,0,0,0, m, n,0,0),

b2 b2 a2

(0, b,0,--,0, n,0, -b), (0, b,0,--, m, n,0, -b), (a,0,--,0, m,0, -a,0),

n n m

a2 a2 b2

(a,0,--,0, m, n, -a,0), (a, b,--,--, m, n, -a, -b).

m m n

This is our problem, when does the multiplication of the matrix by itself become equal to

itself again A2 = A ?

A =

A2 =

^ a b^ v c d j

K p q

A =

'a b^

v m n j

i c d)

kP qy

a2 + mc b2 + dn ac + pc bd + dq

rma + mp nb + qn^ mc + p2 nd + q2

/

2

a + mc = a, ma + mp = m

ac + pc = c, mc + p2 = p

b2 + dn = b, nb + qn = n

bd + dq = d, nd + q2 = q (a, b, c, d, m, n, p, q) = {(1,0,0,0,0,0,0,0),(1,0,0,0,0,0,0,1), (1,0,0,0,0,0,1,0), (1,0,0,0,0,0,1,1), (1,0,0,0,0, n ,0,1), (1,0,0,0,0, n ,1,1), (1,0,0,0, m,0,0,0), (1,0,0,0, m, 0,0,1), (1,0,0,0, m, n,0,1),

(1,1,0,0,0,0,1,1), (1,1,0,0,0, n ,0,0), (1,1,0,0,0, n ,1,0),

(1,1,0,0, m ,0,0,0),(1,1,0,0, m ,0,0,1),(0,0,0,0,0,0,0,0),

(0,0,0,0,0,0,0,1), (0,0,0,0,0,0,1,0), (0,0,0,0,0,0,1,1), (0,0,0,0,0, n,0,1),

(0,0,0,0,0, n,1,1), (0,0,0,0, m, 0,1,0), (0,0,0,0, m,0,1,1), (0,0,0,0, m, n,1,1),

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(0,1,0,0,0,0,0,0), (0,1,0,0,0,n,1,1)(0,1,0,0,m,0,1,0),(0,1,0,0,m,0,1,0),

(0,1,0,0,0,0,1,0),(0,1,0,0,0,0,1,1),(0,1,0,0,0, n ,0,0),(0,1,0,0,0, n ,0,0),(0,1,0,0,0, n,1,0),

(0,1,0,0, m, 0,1,1), (0,1,0,0, m, n, 1,0), (0, b, 0,b(1 ~ b) ,0, n,0,1 - b), ,

n

(0, b, 0, b(1-b), m, n,1,1 - b), (1,1,0,0, m, n,0,0), (1, b, 0, b(1-b) ,0, n,0,1 -b):

n

n

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 5 UIF-2022: 8.2 | ISSN: 2181-3337

(1, b,0,b) ,0, «,1,1 - b),(1, b,0,b), m, n,0,1 - b),(a,0,,0, m,0,1 - a,0), n n m

(a,0,a(1 - a) ,0, m,0,1 - a,1),(a,0,a(1 - a) ,0, m, n,1 - a,1),(a,1,a(1 - a) ,0, m,0,1 - a,0), m m m

(0, b,0, ,0, «,1,1 - b),(a,1,a(1 - a) ,0, m,0,1 - a,1),(a,1,a(1 - a) ,0, m, n,1 - a,0)

n m m

a(1 - a) b(1 - b)

(a, b,-,-, m, n,1 - a,1 - b).

m n

DISCUSSION

We have shown that there are many solutions for nilpotency and zero divisors. Through these for each matrix, a nonlinear stochastic operator [4]-[14] can be construct. Example: If coefficient (1,1,0,0,0,0,1,1) for a three-dimensional matrix, from (3) we see its expression on the

V (X ) = X\ + X1X2

operator. .

V (X ) — X2 ^ %2

CONCLUSIONS

In short, we want calculate multiplication of matrix, zero divisors, nilpotency and construction of an operator using three-dimensional matrices.

REFERENCES

1. Don. D. Vo. 3-dimensional matrix mathematical operations. Dissertation of master's science, California state University, pp. 60, 2017

2. N. P. Sokolov, Spartial matrices and their applications (Russian), Gosudarstv. Izdat. Fiz. -Mat. Lit., Moscow, 1960, pp,300 MR24-A122.

3. R. Abdulghafor. S. Almotairi. H. Almohamedh. B. Almutairi. A. Bajahzar. S.S. Almutairi. A nonlinear convergence consensus: Extreme doubly stochastic quadratic operators for multiagent systems. MDPI. Basel. Symmetry. Pp.19. 2020.

4. R.A.Brualdi and J.Csima,"On the plane term rank of a three dimensional matrix,"Proceedings of the American Mathematical Society,vol.54,no.1,pp.471-473,197

5. F.Shahidi, R. Ganikhodzaev and R. Abdulghafor. The dynamics of some extreme doubly stochastic quadratic operators. Middle east journal of scientific research.Malaysia. January 2013.

6. B.C. Arnold. Majorization: here, there and everywhere. Statistical scince. institute of mathematical statistics, Vol.22, No. 3, 2007. 407-413

7. R. Turkmena, E. Vehbi. B. Paksoy , F. Zhang. Some inequalities of majorization type. Linear algebra and its applications 437 (2012) 1305-1316.

8. Majorization, Doubly Stochastic Matrices, and Comparison of Eigenvalues T. Ando Division of Applied Mathematics Research Institute of Applied Electricity Hokkaido University, Sapporo, Japan

9. Constantin P. Niculescu and Lars-Erik Persson convex functions a contemporary approach second expanded edition May 23, 2018.

10. J.W.Moon. Topics on tournament. University of Alberta. 2013

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 5 UIF-2022: 8.2 | ISSN: 2181-3337

11. U. A. Rozikov. Evolution Operator and Algebras of Sex-linked inheritance. Asia Pacific Mathematics Newslette. Volume 3. Number 1. January 2013

12. R.N.Ganikhodzhaev, F. Mukhammedov. U. A. Rozikov. Quadratic stochastic operators and processes results and open problems. Infinite Dimensional Analysis, Quantum Probability and Related Topics. Vol. 14, No. 2. 20011. 279-335.

13. A.W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its application, springer, New York, 2011.

14. R. Kaneiwa, N-dimensional matrices and nth order invariant forms (Japanese). Characterization of arithmetic functions (Proc. Sympos., Res. Inst. Math. Sci., Kyoto University, Kyoto, (1975). Surikaisekiken yusho Kokyuroku 274(1976), 83-97. MR 5810955.

i Надоели баннеры? Вы всегда можете отключить рекламу.