УДК 541.183:543.54:678.03
Р. М. Гадельшин, Д. А. Ибрагимова, Р. Р. Закиева, Я. И. И. Абдельсалям, С. М. Петров
МОДИФИКАЦИЯ ОКИСЛЕННЫХ БИТУМОВ КИСЛОРОДСОДЕРЖАЩИМИ СОЕДИНЕНИЯМИ
Ключевые слова: битум, кислородсодержащий, соединение, модификатор, сополимер, этилен.
Установлены закономерности изменения структурно-группового состава, концентрации парамагнитных центров, микроструктуры битума, модифицированного смесью карбоновых кислот с многоатомными спиртами и сополимером этилена с винилацетатом. Определены оптимальные содержания кислородсодержащих соединений с сополимером этилена и с винилацетатом в составе модификаторов с целью улучшения адгезионных, упруго-деформационных и низкотемпературных свойств битума. Разработаны составы модификаторов для битумов дорожного назначения, улучшающих их основные эксплуатационные характеристики.
Keywords: bitumen, oxygenate, modifier, copolymer, ethylene.
The regularities of changes in the structural-group composition, the concentration of paramagnetic centers, the microstructure of modified bitumen mixture of carboxylic acids with polyhydric alcohols and ethylene vinyl acetate. The optimum content of oxygenated compounds with a copolymer of ethylene with vinyl acetate in the composition of modifiers to improve adhesion, the elastic-deformation and low temperature properties of bitumen modifiers .. Compositions of bitumens for road purpose of improving the basic operational characteristics.
В настоящее время предъявляются повышенные требования к деформационной устойчивости битумов, используемых в дорожном строительстве, связанных с ростом интенсивности движения и повышением грузоподъемности транспортных средств [1]. Регулирование структурно-группового, дисперсного состава дорожных битумов варьированием технологических параметров при окислении нефтяного остатка не позволяет получить вяжущий материал с приемлемым уровнем адгезии и деформационной стойкости к высоким нагрузкам [2]. Одним из способов решения этой задачи является введение в окисленный битум поверхностно-активных веществ с полимерными материалами [3, 4]. Вместе с этим известные адгезионные добавки <Юшогат», «PoИram>», БП-КСП, «Адгизол», «Дорос», «АМДОР» имеют ряд недостатков: дороговизна, термическая неустойчивость, вредное воздействие на организм человека и окружающую среду. Полимерные добавки, широко применяемые в практике США и Европы, предназначенные для остаточных битумов, оказывают не всегда положительное влияние на окисленные битумы, произведенные в России, а их совмещение порой представляют собой сложную техническую задачу.
В статье приведены результаты исследований, направленных на разработку модификаторов для основных пород каменных материалов, сочетающих в себе свойства известных адгезивов и полимерных добавок, улучшающих упруго- деформационные показатели битумов, на базе доступных и экологически чистых источников сырья.
Известно [4, 5], что высокомолекулярные кислоты широко применяются в качестве адгезионных добавок, исходя из этого были выбраны высокомолекулярные непредельные карбоновые кислоты, многоатомные спирты, высокодисперсные частицы оксида марганца. Введение в состав модификатора оксида марганца объясняется его катализирующим действием при взаимодействии карбоновых и гидроксильных групп. Высокие
адгезионные свойства вяжущих будут обеспечиваться введением в их состав большого количества кислородсодержащих групп, способные образовывать ассоциативные водородные, связи с поверхностью минерального материала. В качестве полимерной добавки, улучшающей адгезионные и упруго-деформационные, прочностные свойства битума был выбран сополимер этилена с содержанием винил ацетатных групп 7-10%мас., обладающий комплексом желательных свойств для дорожного битума: высокой адгезией, ударопрочностью и гидроизоляцией, химической стойкостью к антигололёдным системам, физиологической безвредностью и низкой стоимостью. Для испытаний был использован битум марки БНД 90/130, обладающий плохим сцеплением с поверхностью минерального материала, что соответствует контрольному образцу №3 (табл. 1). Приготовление модифицированного битума осуществлялось с помощью планетарного смесителя, снабженного термостатированной емкостью с мешалками. С целью получения однородной композиции в обезвоженный битум, нагретый до температуры 1000С, вводили в заданном количестве компоненты модификатора, в том числе мелко измельчённый сополимер. Далее температуру смеси доводили до 1500С с интенсивным перемешиванием в течение 30-40 мин.
Для оценки качественного содержания структурных фрагментов в битуме был использован метод инфракрасной спектроскопии [6]. Полосы поглощения спектров в интервале частот от 500 см-1 до 1780 см-1, полученных с помощью ИК Фурье спектрофотометра «Vector», дают качественную информацию о присутствии преобладающих типов структурных групп в битумах.
Данные о расположении атома кислорода в соединениях модифицированного битума,
свидетельствуют о высоком присутствии карбонильных структур 1706 см-1, расположенных преимущественно в метиленовой группе 1460 см-1, при этом связанных водородной связью, что в значительной
степени обуславливает ассоциацию смол и асфальтенов. Отметим появление широкой полосы, соответствующей сложноэфирным группам 1190-1070 см-1 [160]. Интересно подчеркнуть, что присутствующая в спектре для исходного битума полоса поглощения в области 1680см-1 относится к карбонильным группам, не связанным водородной связью, например, диарилкетон; их количество значительно меньше карбонильных групп модифицированного битума. Напротив широкая линия от 3200 см-1 до 3450 см-1, говорит о наличии гидроксильных групп, связанных водородной связью, как видно полоса поглощения в этой области для модифицированного битума несколько меньше, т.е. дополнительно происходит процесс этерификации и по хинонным и асфальтенным группам расположенным в одном ароматическом кольце или в соседних периферийных положениях конденсированной циклической системы (1, 2) (рис.1).
ОН С Н20Н С Н 2 Н СООС
асфальтеновым группам
В литературе отводится определенная роль в формировании надмолекулярных структур
высокомолекулярных соединений в битумах свободным радикалам [6, 7]. С этой позиции с помощью метода электронного парамагнитного резонанса, на приборе РЭ-1306, исследовались парамагнитные центры полученных образцов битумов.
Так, концентрация парамагнитных центров модифицированных битумов значительно снижается (до 30% и больше) по сравнению с исходным, что предопределено склонностью асфальтенов к ассоциации с полимерной добавкой, в известной мере это способствует «стабилизации» надмолекулярных образований [7]. Полученные экспериментальные данные хорошо согласуются с литературными [8], где показывается зависимость концентрации
парамагнитных центров от количества гетероатомных соединений, особенно кислородных, которые, по-видимому, в нашем случае имеют хинноидную структуру. Необходимо также отметить, что порфириновые комплексы являются достаточно стойкими соединениями, хотя, исходный образец битума обладает более высокой интенсивностью сигнала 1уо2+ по сравнению с модифицированным образцом (рис. 2). В первую очередь это связано с тем, что порфирин-подобные ванадиевые комплексы в пачечной организации асфальтенов могут, располагаются как между слоями, так и во внутренних дефектах самих монослоев [8]. Комплексы первого типа в условиях модификации в результате разрыхления надмолекулярных структур
разрушаются и перестают быть парамагнитными, а комплексы с внутрислоевым размещением, являясь более устойчивыми, сохраняются.
Резюмируя вышеизложенное, действие модификатора заключается в необратимых реакциях его компонентов, а также в вовлекании соединения битума в эти превращения. Таким образом, улучшение физико-химических свойств вяжущего обеспечивается не только вовлечением дополнительных активных функциональных групп и полимерного составляющего, которые со временем в рядовом случае претерпевают изменения и теряют свои положительные свойства, а главным образом за счёт изменения непосредственно структурно-группового и химического состава битума. В свою очередь, качество модифицированного битума во многом зависит не только от свойств и реакционной способности составляющих компонентов
модификатора, но и от способа их совмещения.
Для визуальной оценки распределения сополимера в битуме, были проведены исследования микроструктуры образцов с помощью сканирующей электронной микроскопии (рис. 2). Сканирование поверхности образцов осуществлялось на приборе РЭМ-100У.
а б в
Рис. 2 - Микрофотография: а) битума, б) битум модифицированный образец № 1, в) битум модифицированный образец № 2
При введении модификатора в окисленный битум частицы сополимера абсорбируют часть мальтеновой фракции, с образованием пространственной полимерной структуры [9]. Что происходит за счет ассоциативных связей между кислородсодержащими фрагментами модификатора и имеющимися структурными хинонными и асфальтеновыми фрагментами битума. Таким образом, обеспечивается стабильность
модифицированной системы, при этом улучшаются адгезионные и упруго-деформационные, прочностные показатели битума.
Согласно полученным данным по физико-химическим свойствам модифицированных битумов (табл. 1) при оптимальном соотношении олеиновой кислоты и глицерина образец 5 в количестве 2%мас. по показателю «адгезия вяжущего» соответствует контр.обр.№1, при этом значительно улучшаются низкотемпературные свойства и изменение температуры размягчения после прогрева. При других соотношениях компонентов (образцы 2, 4), полученные модификаторы улучшают адгезию битума до контр. обр.№2, главным образом, за счет присутствия сополимера этилена с винилацетатом, при этом максимальный эффект достигается при
введении модификатора в больших количествах 3-8%мас. При этом Тразм находится в прямой зависимости от количества вводимого сополимера и достигает 600С при 3%мас., образец 13. Вместе с этим
П25 и Д25 имеют экстремальную зависимость, достигая максимальных значений при минимальном содержании EVA соответственно 120*0,1 10-1мм и более 100 см, образец 2.
Таблица 1 - Физико-химические характеристики модифицированных битумов
Модифициро ванный битум Пенетра-ция, 0,1 мм Температура, 0С Растяжимость, см Изменение Тразм после прогрева, 0С Адгезия, контр.обр.№
250С 00С Размягчения хрупкости вспышки 250С 00С
Исходный битум 120 20 45 -15 230 >100 4,5 5,0 3
Образец 1 120 24 45 -16 230 >100 5,0 4,5 3
Образец 2 125 32 44 -26 230 >100 5,2 4,5 2
Образец 3 140 42 43 -32 240 >100 5,0 4,0 1
Образец 4 110 25 45 -17 240 >100 4,5 3,8 2
Образец 5 100 36 45 -24 245 98 7,0 1,2 1
Образец 6 92 38 48 -28 245 87 8,5 0,5 1
Образец 7 95 22 48 -22 240 96 6,0 3,4 2
Образец 8 90 28 56 -27 245 80 9,6 2,5 1
Образец 9 91 36 46 -24 245 75 12,0 1,6 1
Образец 10 96 24 44 -21 250 54 5,6 1,2 2
Образец 11 110 18 48 -16 250 80 3,8 1,6 2
Образец 12 80 18 52 -18 260 65 3,5 0,8 2
Образец 13 68 15 56 -14 260 40 2,0 0,2 2
Норма для битума марки БНД 90/130 по ГОСТ 22245-90 91-130 не менее 28 не менее 43 не более -17 не менее 230 не менее 65 не менее 4,0 не более 5
Наибольший положительный эффект связан с оптимальным соотношением жировой композиции и глицеринового гудрона с сополимером (например, образец 6), в нем происходит улучшение низкотемпературных и адгезионных свойств, так, Тхр снижается от -15 до -280С, сцепляемость с минеральным материалом соответствует показателям контр.обр.№1, остальные показатели соответствуют значениям ГОСТ 22245-90 на дорожный битум марки БНД 90/130.
В результате проведенных исследований установлено, что выбранные органические соединения вступают в реакции этерификации, в том числе с вовлечением углеводородов битума, в результате увеличивается содержание сложноэфирных и гидроксильных групп, при этом структура модифицированного вяжущего представляет собой двухфазную систему, в которой частицы сополимера образуют пространственную полимерную структуру с меньшим содержанием парамагнитных центров, что указывает на долговечность битума. С учетом результатов исследований определены оптимальные содержания кислородсодержащих соединений с сополимером этилена с винилацетатом в составе модификаторов с целью улучшения адгезионных,
упруго-деформационных и низкотемпературных
свойств битума.
Литература
1. Дорожное хозяйство России [Электронный ресурс]. -Режим доступа: URL http://www.rosavtodor.ru/information (дата обращения 10.01.2010).
2. Ипполитов Е.В. и др., ХТТМ. 2000№ 4.С.13.
3. Басова С.П., Леоненко В.В., Сафонов Г.А., Нефтепереработка и нефтехимия. 2001.№2.С.19.
4. Поконова Ю.В., Нефтяные битумы. Скт.Пет.: Санкт-Петербургская издательская компания «Синтез».2005.154с.
5.Руденский А.В., Автомобильные дороги. 1993.№4.С.15.
6. Ремизов А. Б. ,Казань: Институт химико-технологический им. С. М. Кирова.1985.20с.
7. Унгер Ф.Г. и др., М.: Наука.1985.197с.
8. Посадов И.А., Поконова Ю.В. , Журнал прикладной химии. 1974.№11.С.2533.
9. Гохман Л.М., М.: Информавтодор.2002.111с.
10.Халикова Д.А., Петров С.М., Башкирцева Н.Ю.// Вестник Казанского технологического университета//. 2013, Т. 16. № 3. С. 217-221.
11. Абдрафикова И.М., Рамазанова А.И., Каюкова Г.П., Вандюкова И.И., Петров С.М., Романов Г.В.// Вестник Казанского технологического университета. //2013. Т. 16. № 7. С. 237-242.
© Р. М. Гадельшин - бакалавр гр 4111-44 КНИТУ; Д. А. Ибрагимова - канд. хим. наук, доц. каф. ХТПНГ КНИТУ, [email protected]; Р. Р. Закиева - бакалавр гр 4111-44 КНИТУ; Я. И. И. Абдельсалям - асп. каф. ХТПНГ КНИТУ, [email protected]; С. М. Петров - канд. техн. наук, каф. ХТПНГ КНИТУ, [email protected].
© R. M. Gadelshin - student KNRTU, [email protected]; D. A. Ibragimova - associate professor of Chemical Technology of Petroleum and Gas Processing Department KNRTU, [email protected]; R. R. Zakieva - student of KNRTU; [email protected]; Ya. I. I Abdelsalam - post-graduate student of KNRTU, [email protected]; S. M. Petrov - associate professor of Chemical Technology of Petroleum and Gas Processing Department KNRTU, [email protected].