Научная статья на тему 'MODELING SPRING AS A FINITE ELEMENTS IN C++ BUILDER'

MODELING SPRING AS A FINITE ELEMENTS IN C++ BUILDER Текст научной статьи по специальности «Строительство и архитектура»

34
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MODELING SPRING AS A FINITE ELEMENTS IN C++ BUILDER»

Zamonaviy ta'limda matematika, fizika va raqamli texnologiyalarning dolzarb muammolari va yutuqlari

Toshkent viloyati Chirchiq davlat pedagogika instituti

MODELING SPRING AS A FINITE ELEMENTS IN C++ BUILDER

O. T. Rajabov

Chirchik State Pedagogical Institute of Tashkent region, Chirchik, Uzbekistan

bryus [email protected]

A liner elastic spring is a mechanical device capable of supporting axial loading only, and the elongation or contraction of the spring is directly proportional to the applied axial load. The constant of proportionality between deformation and load is referred to as the spring constant, spring rate, or spring stiffness k, and has units of force per unit length. As an elastic spring supports axial loading only, we select an element coordinate system (also known as a local coordinate system) as an x axis oriented along the length of spring, as shown.

Pic №1 Liner spring element with nodes, nodal displacements, and nodal forces.

Pic №2 Load-deflection curve Assuming that both the nodal displacement are zero when the spring is undeformed, the spring deformation is given by b=u2+u2 and the resultant axial force in the spring is: f=kS=k(u2+u2) For aquilibrium,

fi+f2=0 or fi=-f2 (1)

Then, in terms of the applied nodal forces as:

fi=-k(u2-ui) (2)

f2=k(u2-u1) (3)

Google Scholar Scientific Library of Uzbekistan

Academic Research, Uzbekistan 791 www.ares.uz

Zamonaviy ta'limda matematika, fizika va raqamli texnologiyalarning dolzarb muammolari va yutuqlari

Toshkent viloyati Chirchiq davlat pedagogika instituti

which can be expressed in matrix form as: k -k {fi L-k k J W I/2 -k k

or [ke][u} = {f}

(4)[1]

(Where

k -k

Stiffness matrix for one spring element is defined as the element

stiffness matrix in the element coordinate system (or local system), {u} is the column matrix (vector) of nodal displacements, and {/} is the column matrix (vector) of element nodal forces.

(4) equation shows that element stiffness matrix for linear spring element is 2x2 matrix. This corresponds to the fact that the element axhibits two nodal displacement (or degrees of freedom) and that the two displacement are not independent (that is, the body is continuous and elastic). Furthermore, the matrix is symmetric. This is a consequence of the symmetry of the forces (equal and opposite to ensure equilibrium). Also the matrix is singular and therefore not in invertible. That is because the problem as defined is incomplete and does not have a solution: boundry conditions are required. By (4) quation we find forces on each nodes by c++ and Borland c++ GUI

Pic №2- GUI interface We find as a result nodal displacement |u1-u2|=0.83-0.7=0.13

REFERENCES

Zamonaviv ta'limda matematika, fizika va raqamli texnologiyalarning dolzarb muammolari va vutuqlari

Toshkent viloyati Chirchiq davlat pedagogika instituti

1. Larry J.Segerlind //Agricultural Engineering Department Michigan State University 1984. P 32.

2. Боймуродов, А.Х. (2020). Integration of general educational schools and higher education institutions in the innovative cluster of pedagogical education. European Journal of Research and Reflection in Educational Sciences, 8(8), 1-5.

3. Боймуродов, А.Х. (2019). Умумий урта таълим тизимида Информатика ва ахборот технологиялари фани кластер модели ахборот манбаларини яшратиш. Замонавий таълим, 10(10), 43-51.

4. Боймуродов, А.Х. (2020). Умумий урта таълим тизимида информатика ва ахборот технологиялари фанини укитишнинг инновaцион кластер модели. УзМУ хабарлари, 1(2), 42-46.

5. Боймуродов, А.Х. (2020). Педагогик таълим инновaцион кластерида on-line тизимидан фойдалани. УзМУ хабарлар, 1(2), 72-74.

6. Боймуродов, А.Х. (2020). Online form of ensuring the connection of educational claster participants. International OnlineConference Economics&Social Sciences.28(1), 289-291.

7. Азимкулов, С.Н., Боймуродов, А.Х., (2021). Таълим самарадаорлигига эришишда тизимда инновацион улуллар. Academic Research In Educational Sciences, 2(2), 5967.

8. А.Ж. Сейтов, Ф.Х. Абдумавлонова. Решение геометрических задач с помощью математического пакета MAPLE. Academic research in educational sciences, 2021. T.2 №6 Pp.933-941.

9. Жураева, Н. В., Султанов, Р. О., Абдуллаева, С. А., Рахимжонова, В. А. (2020). Systematization of word combinations in the uzbek language. Наука и Мир, 2(6), 65-68

10. Kamolov, E. R., Raximov, S. M., Sultanov, R. O., Maxmudov, M.A., (2021). Innovative method of developing creative thinking of students. Экономика и социум, 1(80).

11. Sultanov, R., Xalmetova, M.(2021). Ikki g'ildirakli transport robotlari harakatini dasturlash. Academic Research in Educational Sciences, 2(2), 108-114.

12. Kuralov, Y. A. (2020). Development Of Geometric Creativity Of Secondary Scholl Students By Computer. International Journal of Scientific & Technology Research -(IJSTR) Volume-9 Issue-2, February 2020 Edition, 4572-4576.

Zamonaviy ta'limda matematika, fizika va raqamli texnologiyalarning dolzarb muammolari va yutuqlari

Toshkent viloyati Chirchiq davlat pedagogika instituti

13. Kuralov, Y. A., (2021). Elektron raqamli imzo algoritmlarining qiyosiy tahlili (RSA, ELGAMAL, DSA). Academic Research in Educational Sciences, 2(5) 428-438.

14. Ш. Х. Рахимов, А. Ж. Сейтов, М. Р. Шербаев, Д. Жумамурадов, Ф. Ж. Дусиеров. Структура базы данных и программные модули для моделирования управления водными ресурсами каскада насосных станций каршинского магистрального канала. Мелиорация 2019 3(89) стр. 85-91. (№5, web of science IF=0.144)

15. А. Ж. Сейтов А. Р. Кутлимурадов Р. Н. Тураев Э. М. Махкамов Б. Р. Хонимкулов. Оптимальные управления водных ресурсов крупных магистральных каналов с каскадом насосных станций ирригационных систем. academic research in educational sciences volume 2 | ISSUE 2 | 2021 ISSN: 2181- 1385 Scientific Journal Impact Factor (SJIF) 2021: (№5, web of science IF=5.723)

16.

i Надоели баннеры? Вы всегда можете отключить рекламу.