Научная статья на тему 'MODELING AND ANALYSIS OF SINE POWER RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS'

MODELING AND ANALYSIS OF SINE POWER RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS Текст научной статьи по специальности «Математика»

CC BY
120
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
Sine G family / Rayleigh distribution / Sine Rayleigh distribution / Reliability Analysis / Entropy / Order Statistics / Maximum Likelihood Estimation

Аннотация научной статьи по математике, автор научной работы — Aadil Ahmad Mir, S.P. Ahmad

In this manuscript, a new probability model named as Sine Power Rayleigh distribution (SPRD) is proposed using a Sine-G function as generator. Various statistical properties of this new distribution were investigated, including the survival function, hazard function, reverse hazard rate, cumulative hazard function, mills ratio , quantile function, moments, moment generating function, conditional moments , entropy, and order statistics. The parameters of the proposed distribution were estimated using the method of maximum likelihood estimation. To assess the model’s versatility and applicability, we conduct analyses on two real life data sets. The outcomes affirm the superior performance of the newly proposed model SPRD as compared to existing models.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «MODELING AND ANALYSIS OF SINE POWER RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS»

Aadil Ahmad Mir , S.P.Ahmad

MODELING AND ANALYSIS OF SINE POWER

RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS

RT&A, No 1 (77)

Volume 19, March 2024

MODELING AND ANALYSIS OF SINE POWER RAYLEIGH

DISTRIBUTION : PROPERTIES AND APPLICATIONS

AADIL AHMAD MIR

Department of Statistics, University of Kashmir, Srinagar, India

[email protected]

S.P.AHMAD*

Department of Statistics, University of Kashmir, Srinagar, India

[email protected]

Abstract

In this manuscript, a new probability model named as Sine Power Rayleigh distribution (SPRD) is

proposed using a Sine-G function as generator. Various statistical properties of this new distribution were

investigated, including the survival function, hazard function, reverse hazard rate, cumulative hazard

function, mills ratio , quantile function, moments, moment generating function, conditional moments

, entropy, and order statistics. The parameters of the proposed distribution were estimated using the

method of maximum likelihood estimation. To assess the model's versatility and applicability, we conduct

analyses on two real life data sets. The outcomes affirm the superior performance of the newly proposed

model SPRD as compared to existing models .

Keywords: Sine G family, Rayleigh distribution, Sine Rayleigh distribution, Reliability Analysis,

Entropy, Order Statistics, Maximum Likelihood Estimation.

1. Introduction

The concept of probability distribution has shown to be quite helpful in managing both small

and large data sets. Probability distribution models are essential and widely utilised in many

domains, including as physics, medicine, business management, engineering, and food. The field

of probability distributions has advanced steadily due to the wide range of domains in which

they are applied.Over the past few decades, researchers have used a variety of ways to introduce

numerous novel probability distributions. New distributions are needed to address the problem

more precisely and effectively, even though there are numerous existing ways for handling

real-world data. From an applied and practical perspective, the new family of distributions

modifies some of the current distributions to make them more flexible, which serves key purposes

in the generalisation of distributions. There are several ways to create new models, including

exponentiation, compounding, and changing and adding constants to well-known distributions.

The Rayleigh distribution (RD), named after Lord Rayleigh [15] is prominent lifetime prob-

ability model concerned with describing skewed data. The probability density function (PDF)

associated with random variable x > 0 having RD with scale parameter 9 is given by

x f x2 \

f(x;9) = 92exp y-2992); x > 0 9 >0

703

Aadil Ahmad Mir , S.P.Ahmad

MODELING AND ANALYSIS OF SINE POWER

RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS

RT&A, No 1 (77)

Volume 19, March 2024

and the corresponding cumulative distribution function (CDF) is given as

F(x; в) = 1 - exp Г-2^): x > 0, в > 0

In the statistical literature, numerous extensions of Rayleigh distribution (RD) have been pro-

posed. Surless and Padgett[17] introduced the two parameter Burr type X distribution and named

it as exponentiated Rayleigh distribution (ERD) or generalized Rayleigh distribution. Kundu

and Raqab [11] studied and estimated the parameters of the generalized Rayleigh distribution

using different estimation techniques. Ahmed et al. [2] used the square error loss function and

Al-Bayyati's loss function to perform a Bayesian analysis of RD. Ajami and Jhansi [3] discussed

the parameter estimation of weighted Rayleigh distribution. Ahmad et al. [1] proposed the

Weibull-Rayleigh distribution and studied its characterization and parameter estimation using the

transformed transformer technique. Bhat and Ahmad [6] proposed a new extension of exponenti-

ated Rayleigh distribution and studied its various properties and demostrated its applicability by

considering different datasets. Bhat and Ahmad [5] studied mathematical properties of mixture

of Gamma and Rayleigh distributions. Kilai et al. [8] proposed a new versatile modification

of the Rayleigh distribution for modeling COVID-19 mortality rates. Various researchers have

introduced generalised distributions and their applications, see Mahmood et al. [12] , Muse et al.

[13] and Ahmed et al. [15]. Bhat et al. [7] proposed a new extension of odd lindley power rayleigh

distribution, studied its properties and evaluated parameter estimation techniques using both

classical and Bayesian methods. Bhat and Ahmad [4] recently introduced a new generalization of

the Rayleigh distribution using power transformation technique with PDF and CDF respectively

given by

g(x-вв) = в2x2e xexp^-2^; x > ° ^в > 0 (1)

and the corresponding cumulative distribution function (CDF) is given as

G(x; в, в ) = 1 - exp (- x > 0, в, в > 0 (2)

In the present manuscript, we proposed a new extension of Power Rayleigh distribution (PRD)

using the Sine G family of generated distributions. The proposed distribution is named as Sine

Power Rayleigh distribution (SPRD). It is more flexible and exhibits more complex shapes of

density and hazard rate functions. Also, the proposed model outclass some well established

models in terms of two real life data sets. The rest of the article is unfolded as : In section 2, the

Ratio Transformation (RT) method is discussed. In Section 3, the PDF and CDF of the proposed

model i.e., SPRD are defined. Section 4 deals with the reliability measures of the SPRD. The

expansion of PDF and CDF is discussed in Section 5. Some of important statistical properties are

explored in Section 6. The parameter estimation is discussed in Section 7. The simulation study

and applicability of the model is debated in section 8 and 9 respectively. Finally, some conclusion

are provided in Section 10.

2. SINE G FAMILY OF DISTRIBUTIONS

The CDF and PDF of the Sine G family of distributions proposed by [10] are defined by the

following equations respectively:

' n,

F(x; Z) = sin G(x; Z)

f (x; Z) = П2g(x; Z) cos [ПG(x; Z)

x e R

xe R

(3)

(4)

704

Aadil Ahmad Mir , S.P.Ahmad

MODELING AND ANALYSIS OF SINE POWER

RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS

RT&A, No 1 (77)

Volume 19, March 2024

Where G(x; Z) and g(x; Z) in equation (3) and (4) are the CDF and PDF of the base line

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

distribution with parameter vector Z, respectively.

3. SINE POWER RAYLEIGH DISTRIBUTION (SPRD)

The PDF of the newly proposed probability distribution Sine Power Rayleigh Distribution (SPRD)is

obtained as

f (x; в, в)

пА ив-1

2 в2

х2А

e 2в2 cos

п

2

1 - e

х2А

2в2

x е R+, в, в > 0

(5)

The CDF of the newly proposed probability distribution Sine Power Rayleigh Distribution

(SPRD) is obtained as

F(x; в, в) = sin

п

2

1e

x2?

2в2

x е R+, в, в > 0

(6)

The plots of density function of SPRD for different parameter combinations are presented in

Figure 1 . It is clear from the density function plots that the proposed distribution is unimodal,

decreasing, symmetric and positively skewed.

X

Figure 1: Density plots of SPRD for different combinations of в and в.

4. RELIABILITY ANALYSIS OF THE SINE POWER RAYLEIGH

DISTRIBUTION (SPRD)

This section focuses on obtaining the reliability (survival function), hazard rate (failure rate),

reverse hazard function, cumulative hazard function and mills ratio expressions respectively for

SPRD.

4.1. Survival function

The survival function or reliability function is defined as the probability that a system will survive

beyond a specified time and is obtained for the SPRD as

R(x; в, в) = 1 - F(x; в, в) = 1 - sin

п

x2?

- 1 - e 2в2

(7)

705

Aadil Ahmad Mir , S.P.Ahmad

MODELING AND ANALYSIS OF SINE POWER

RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS

RT&A, No 1 (77)

Volume 19, March 2024

4.2. Hazard Rate

The Hazard rate evaluates a lifetime component's likelihood of failure or expiration based on

the completed portion of its life, and consequently, it finds diverse applications in the analysis of

lifetime distributions. Using equation (5) and (7), the expression for the hazard rate of SPRD is

obtained as

h(x; в,9)

f (x; в, 9)

R(x; в, 9)

2p

п в х2в 1 e 292 cos

2 92

_ х2в

П ( 1 - e 292

1 — sin

_x2l

n (1 - e 292 )

(8)

Figure 2 depicts graphs of the hazard rate of the SPRD for different parameter values. Figure

2 suggests that the proposed distribution is quite flexible in nature and can exhibit variety of

shapes such as constant, decreasing, increasing and j-shaped shaped over the parameter space.

x

Figure 2: Hazard rate plots of SPRD for different combinations of в and 9.

4.3. Reverse Hazard function

The concept of reversed hazard rate of a random life is defined as the ratio between the life

probability density to its distribution function . It is expressed as

hr (x; в, 9)

f (x; в, 9)

F(x; в, 9)

„ Лв

п в x^-1e-W

cos

_ x^

n [1 - e 292

sin

, _x^

2(1 - e 292

4.4. Cumulative Hazard function

The cumulative hazard function can be thought of as providing the total accumulated risk of

experiencing the event of interest that has been gained by progressing to time t. The cumulative

hazard function for the SPRD is defined as

ЛspRD(x; в,9) = - logR(x; в,9)

log

1 - sin

n

~2

1-e

706

Aadil Ahmad Mir , S.P.Ahmad

MODELING AND ANALYSIS OF SINE POWER

RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

RT&A, No 1 (77)

Volume 19, March 2024

4.5. Mills Ratio

The mills ratio for the SPRD is defined as

M.R

F(x; в, в)

R(x; в, в)

sin

2(1 - e 2в2

1 — sin

_ х2в

2(1 - e 2в2

(9)

4.6. Quantile function

The quantile function for the SPRD is given by

-ie2log ( 1---sin 1 u

n

(10)

The first quartile (Qi), median (Q2), and third quartile (Q3) can be derived by setting u = ^,^,

and 3 in equation (10) respectively.

5. Expansion of PDF and CDF

Various statistical properties can be easily deduced by using mixture representation of PDF and

CDF of the proposed model.

expansion of cos

_ х2в

2(1 - e 2в2

can be expressed as

cos

n / - 4

2 I 1 - e 2в2

£ £ (1 - e-222

l=0

2l! 221

_x2l\2

Also (1 - e 2в2 can be expressed as

_х2в\21 “ /2А тх2в

1 - e 2в2 J = £ (-1)m( )e 2в2

m=0

m

expansion of sin

_ х2в

П2 ( 1 - e 2в2

sin

n

х2в

2 I 1 - e 2в2

can be expressed as

“ (- 1)p n2P+1 ( _x2t\2p+1

= £0 (2Р + 1)! 22p+T 1 - e 2в2

х2в \ 2p+1

Also (1 - e 2в2 1 can be expressed as

х2в \ 2p+1 TO (2p + 1 \ ^х2в

1 - e-= £ (-1)4 ( 2p + M e-V

/ 4=0 V 4 /

Thus, the PDF and CDF of the proposed model can be written in the mixture representation

respectively as

П TO TO

f (х; в, в) = в х2в-1 £ £

(_ 1 )l+m /2А n2l+1 (т+1)х2в

-e 2в2

l=0 m=0

2l! \m 22l+1

т(х; в, в) = ££ i-Z+L (2 р +1\ п2Р+1 e-

Р=0 4=0 (2Р + 1)!V 4 / 22p+1

(11)

(12)

х

2l

707

Aadil Ahmad Mir , S.P.Ahmad

MODELING AND ANALYSIS OF SINE POWER

RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS

RT&A, No 1 (77)

Volume 19, March 2024

6. STATISTICAL PROPERTIES OF SPRD

Some of the mathematical properties such as the rth moment, moment generating function,

conditional moments and associated measures, the entropy and order statistics are derived.

6.1. Moments

The rth moment of the SPRD can be evaluated directly by extending the PDF given in equation (11)

CO

E(Xr) = j xrf (x; в, d)dx ,r = 1,2,..

where f(x ) is the PDF of the SPRD given in equation (11), thus

E(Xr) = в EE (—^_ ( 21 ) I xr+2e-

(_1)Z+m /21 \ n21+!

1=0 m=0

21! \m 221+!

(m+1)x2e

(13)

Using integration via substitution method in equation (13), we perform the following operations.

let (m+^=z =^x=( m+) 2в ,suchthat dx=(mi+T) (z) 1

Thus, simplifyingequation (13) yields

E(Xr ) = (2,2) * EE цр (m) ( mU ) *+1 r( £ +1)

1=0 m=0

(14)

where,

O

CO O

CO , r

Г( + 1) = / z( ^ +) e_zdz

20

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

setting r = 1 in equation (14) the mean of the model is computed as

1 O O (_ 1 )/ + и

E(X) = (202) 2? EE ( )

1=0 m=0

21!

2 A n21+1 ( 1

m

22/+1 U + 1

2?

+1

Г( 2в + 1)

(15)

Similarly for r = 2, 3 and 4 in equation (14) ,the second, third and fourth moment about origin are

respectively calculated as

E(X2)

1 O O

(2d2)1E E

1=0 m=0

E(X3) = (202)2в E E

1=0 m=0

O

CO

E(X4)

(202)2 E E

1=0 m=0

CO O

(_1)1+m

(_1)1+m

(_1)1+m

21

m

21

m

21

m

, п21+х ( 1

1 221+1 Vm +1

п21+х / ' 1 '

221+1 1 vm +1

, п21+х ( 1

1 221+1 Vm +1

в+i

2?

+1

в + 1

1

Г( в +1)

3

Г( 2в +1)

2

Г( в + 1)

(16)

(17)

(18)

708

Aadil Ahmad Mir , S.P.Ahmad

MODELING AND ANALYSIS OF SINE POWER

RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS

RT&A, No 1 (77)

Volume 19, March 2024

6.2. Moment Generating function of SPRD

we can calculate moment generating function based on the rth moment of SPRD as given by

TO tr

MX(t) = E r!E(Xr)

r=0 Г

(19)

mx (t) = (ie2)2? eee

r=01=0 m=0

tr (_1)7+m /21

r! 27! Vm

n

-27+1

1

227+1 I m + 1

2? + 1

r( 2? +1)

(20)

6.3. Conditional moments and associated measures

In this section, the expression for conditional moments is acquired. But first we will introduce an

important lemma which will be applied in the next section.

Lemma 1. Let us suppose a random variable X follows SPRD (?, в) with PDF given in equation

(11) and let фг(z) = /0 xrf (x; ?, в) dx denotes the rth incomplete moment, then we have

r TO TO

фг(z) =(2в2) 2 E E

1=0 m=0

(_1)1+m

27!

21

m

n27+l

227+1

1 \ 2?+1

m +1/ Y

r Л (m + 1)z2?

2? + )' 202

(21)

b

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

where 7(я, b) = f za-1 e_zdz denotes the lower incomplete gamma function.

0

Proof: Using the PDF of SPRD given in equation (11), we have

z

фг (z) = J xrf (x; ?, 0)dx

0

? E E (_1)7+m 721

02 7=0 «Ьс^7^ U

n27+l

227+1

z

/ xr+2? 1 e

0

(m+1)x2?

2в2

(22)

On Simplification, we obtain

Фг (z) = (202) 2? E E

7=0 m=0

(_1)7+m /27\ П

27!

t-27+1

m 227+1

TO TO

1 \ 2?+1

m + 1 / Y

r Л (m + 1)z2?

2? + y' 202

(23)

Setting r=1 in equation (23) will yield first incomplete moment as given by

1 TO TO

Ф1 (z) = (2в2) 2? E E

7=0 m=0

(_1)7+m /27\ П

27!

r27+1

m 227+1

1 \ 2? +1

m +1) Y

1 + Л (m + 1 )z2?

2? + У' 2в2

(24)

6.3.1 Lorenz and Bonferroni inequality Curves

The Lorenz and Bonferroni inequality curves are an important application of the first incomplete

moment. For a given probability distribution, they are defined by

= E(X) lxf(x; ?,e) dx = вд

709

Aadil Ahmad Mir , S.P.Ahmad

MODELING AND ANALYSIS OF SINE POWER

RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS

RT&A, No 1 (77)

Volume 19, March 2024

v—'TO v—к

Ul=0 и

(-1)l+m

(2l) +1 // ± + Л (m+1)t2e

(m) 221+1 \m+1J l\\2fi + 1)' 2Q2

>1=0 Um=0 2l!

(-1)l+m (2l) n2l+1 ( 1 \2в

Ul=0 Um=0 27! (m) 22l+1 l m+1 J

+1

Г( 2? + 1)

L

P

Similarly,

BP

1

PE(X)

•t

xf (x; в, Q) dx

Ф1(t)

pE(X)

bp

(—1)l+m (2l) n2l+1

Ul=0 Um=0 27! (m) 2й+1

1

m+1

2?+1

7

p u=o uto=o

(-1)l+m (2l) п27+1

2l! (m) 227+1

1

m+1

K2? +1

(m+1)t2? ^

2Q2 j

2?+1

Г( 2? + 1)

6.3.2 rth Conditional Moment and rth Reversed Conditional Moment of SPRD

The rth conditional moment of the SPRD is calculated by

E [Xr |x > t]

1

R(t) Jt

xr f (x; в, Q) dx

1

R(t)

[E(Xr) - фг(t)]

where R(t) is the reliability of SPRD at time t.

Inserting the value of equation (7), (14) and (23), we obtain

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(2q2)2в П=0UU (m)ПТ+- (m+T)2в+1 [r (2? +1) - 7 ((2e + l) ,)

E [Xr |x > t] =

(-1)p+q

■t2?

(2p+1) Й+ e-^

-| V-'TO

1 - up=0 Uq=0 (2p+1)! ( ’q ) 22P+1 1

Similarly, the rth reversed conditional moment of the SPRD is defined by

Фг (t)

E [Xr|x < t]

F(t) Уо

xrf (x; в, Q) dx

F(t)

CO

E [Xr |x < t]

_ r

(2Q2)2в U“=0

(-1)l+m (2l) n2l+1

2Л (m) 22Т+Г

1

m+1

2j3 +1

7

2? + 1

(-1)p+q (2p+1) n2p+1 e

Up=0 Uq=0 (2p+1)! ( q ) 22P+1 e

qt2?

2Q2

(m+1)t2?

2Q2 J

6.3.3 Mean Residual Life (MRL) and Mean Waiting Time (MWT)

The MRL is defined as

H(t)

1

ЗД

E(t) — J xf (x; ?, Q) dx

t

1

щ[Е0) - ф1«] - t

After inserting the value of equation (7), (15) and (24), we obtain the required expression for

mean residual life as

Ф(0

(2Q2)2? U=o U

0 Um=0 2l!

(-1)f+m (2U n2‘

(2l)п^Ц (^_) 2?+1 Гг (1 + 13 7 ((x + 1) (m+1)t2<i

(m) 227+1 ^m+1 j |/ ^2? + ) \2p + ^ , 2Q2

qt2?

(-i)p+q (2p+i) ПрЦe-

1 Up=0 uq=0 (2p+1)! ( q ) 22P+1 e

t

710

Aadil Ahmad Mir , S.P.Ahmad

MODELING AND ANALYSIS OF SINE POWER

RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS

RT&A, No 1 (77)

Volume 19, March 2024

The MWT is defined as

n(t) = t - jQ xf (x;e9) dx =t —

ц(t) = t

(292)2в ET=0 ЕЖ=о

(—1)l+m (2l) п2+

21! (m) "22Г+Т"

_X_ ^ 25+1Y

m+1 J '

2)3 + 1

у-^ж v-^ж ( — 1)p+q (2p+1) n2p+1 e

Ep=0 Eq=0 (2p+1)! ( q ) 22P+1 e

qj2^

2d2

(m+1)t2e \

2d2 )

6.4. Renyi entropy

The entropy of a random variable is defined as the average amount of information lost during

a random experiment. The Renyi entropy, which Alfred Renyi introduced [16] and generalises

Shannon's measure of information, is defined as

1 f “

Rn = -----log/ fn (x; в, 9) dx, n > 0, n = 1

1 — n J—ж

Using the PDF given in equation (11), we have

Rn

1

1—n

log

ву

9

ж ж

ЕЕ

l=0 m=0

( —1)l+m

2Г!

21

m

n2l+t

221+1

n ж

/ xn(2e x) e

n(m+1)x2e

292

0

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

R

n

A -•(9 Y i (s lo ЧE C) Й’

П(2в—1)+1

292 N 2в / п(2в —1) +1

П (m +1) J V 2в

6.5. Order Statistics of SPRD

The order statistics connected to the SPRD is devoted in this section. Let x(r;n) be the rth order

statistics with the random sample x^), x(2), x(3), ...x(n) derived from the SPRD having the PDF

f (X;,в,9) and CDF F(X;в,9). Therefore, the PDF and CDF of x(r;n) say f(r;n)(x) and F(r;n)(x)

are respectively defined as

f(r;n) (x)

1

[F(x; в, 9)]r—1 [1 — F(x; в, 9 )]n—rf (x; в, 9)

B(n, n — r + 1)

(25)

j=r \J

F(r;n)(x) = Е J [F(x;в,9)У [1 — F(x;в,9)]

n—j

(26)

Using equation (5) and equation (6) in equation (25) and equation (26), the PDF and CDF of rth

ordered statistics for the SPRD are derived and are expressed as

n

f(r;n) ( x)

в x2в ПП (2x^e 292 cos Г / x2P\l n (1 — e 292 j

B(n,n — r +1)

sin

1e

x2в

292

r—1

1 sin

n

2

1e

x2l

292

n—r

711

Aadil Ahmad Mir , S.P.Ahmad

MODELING AND ANALYSIS OF SINE POWER

RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS

RT&A, No 1 (77)

Volume 19, March 2024

F(r;n) (x) = E ( .■

J=r

sin

П t - x2?

2 I 1 - e 292

1 — sin

п t - x23

- ( 1 - e 292

n —J

where B(a, b) = ^a+b^ is the beta function.

7. Estimation of Parameters

The goal of this study is to estimate the unknown parameters в and 9 of the SPRD using Maximum

Likelihood Estimation (MLE). we assume that Xi, x2,..., xn be a random sample of n observations

drawn from the SPRD (?, 9) with unknown parametric vector 0 = (?, 9)T.

7.1. Maximum Likelihood Estimation (MLE)

Here, Maximum Likelihood Estimation (MLE) approach is used to obtain the estimators of the

unknown parameters of SPRD ( в, 9) . The likelihood function is given by

L(0)

пв

W

x2 в n

П xf-1

cos

k=1

x23

п (1 - e-292)

For the parametric vector (0) = (в, 9)T , the logarithm likelihood function is expressed as

-in n

l = n log (2) + n log(3) - 2n log(9) - ^ E X2/ + (2в - 1) E logXk

2 29 k=1 k=1

+ E log cos

k=1

П , £

2 I 1 - e 292

(27)

J

n

e

The elements of the score vector U(0) =(U?, U9) are obtained by partially differentiating

Equation (27) with respect to the model parameters and are given by

M

¥

nn

-+2 E ln(xk)

в k=1

1

292

n

E x? ln(xk)

k=1

п

402

n

E tan

k=1

п

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2

1e

x23

xk

292

x23

e 292 x^3 ln(xk)

dl

d9

2n 1

+ Й E x? + 4 E tan

п

9

93

k=1

293

k=1

x23

П I k

2 I 1 - e 292

n

n

x23

e- m2 x^3

The likelihood estimates of the model parameters can be obtained by setting the score vector U(0)

= 0 . Since, the above equations are non-linear and hence the model parameters are estimated

using Newton-Raphson algorithm.

8. SIMULATION ILLUSTRATION

In this section, we carry out simulation study using R software to examine the behaviour of MLE's

for various sample sizes.We generate the random samples of size 25,75,150,300 and 500 from

712

Aadil Ahmad Mir , S.P.Ahmad

MODELING AND ANALYSIS OF SINE POWER

RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS

RT&A, No 1 (77)

Volume 19, March 2024

SPRD and repeat the process for 1000 times in R software.Various combinations of parameters

are chosen as (1.5,1.35) and (0.5,2.2) with relation to the standard order (в,в). The average

MLE values, bias, and related empirical mean squared errors (MSEs) were determined for each

scenario. Tables 1 exhibits the ML estimates, bias and MSE. We observe from table 1 that the

agreement between theory and practice improves as the sample size n increases. MSE and bias of

the estimators suggest that the estimators are consistent and the maximum likelihood estimator

of the parameters perform quite well and the results are precise and accurate. The MSE decreases

with increasing sample size under all conditions.

Table 1: MLE,Bias and MSE for the parameters в and в

sample size Parameters MLE Bias MSE

n в в в в в в в в

25 1.5 1.35 1.58963 1.38116 0.21193 0.15622 0.07685 0.04192

75 1.52863 1.36292 0.11586 0.08563 0.02170 0.01211

150 1.51474 1.35744 0.07911 0.05752 0.00999 0.00543

300 1.50528 1.35236 0.05462 0.03945 0.00459 0.00248

500 1.50487 1.35130 0.04267 0.03108 0.00278 0.00153

25 0.5 2.2 0.53233 2.39244 0.07177 0.40725 0.00960 0.36239

75 0.50767 2.24504 0.03767 0.20412 0.00222 0.06987

150 0.50439 2.22579 0.02799 0.14628 0.00126 0.03659

300 0.50299 2.21458 0.01852 0.10195 0.00054 0.01658

500 0.50085 2.20587 0.01432 0.07776 0.00034 0.00967

9. APPLICATION

This section is devoted to illustrate the flexibility, adaptability, and suitability of the SPRD, by

means of two real data sets . We compare the proposed distribution with the following models :

• Power Rayleigh distribution (PRD) With PDF given as

f (x;вв) = J>*2e-1exp(-2^2); в,в >0

• Weighted Rayleigh Distribution (WRD) with PDF given as

хв+1 exp (-2в2)

f (x; в, в)

вв+22вГ (§ + 1)'

в, в > 0

Rayleigh distribution (RD) with PDF given as

f(x;в) = e2exp (-2^); в >0

Here, several goodness of fit criterion such as -2ll, Akaike Information Criterion (AIC), Bayesian In-

formation Criterion (BIC), Akaike Information Criterion Corrected (AICC), Kolmogorov-Smirnov

(KS) and P value statistics are used. The statistic with the lowest value of -2ll, AIC, BIC, AICC,K-S

and maximum value of P value is considered the best fit.

713

Aadil Ahmad Mir , S.P.Ahmad

MODELING AND ANALYSIS OF SINE POWER

RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS

RT&A, No 1 (77)

Volume 19, March 2024

9.1. Data Set 1

Data set 1:The first data is on the breaking stress of carbon fibres of 50 mm length (GPa). The

data has been previously used by [4] and [14] . The data is as follows:

0.39, 0.85, 1.08,1.25,1.47,1.57,1.61,1.61, 1.69, 1.80,1.84,1.87,1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41,

2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95,

2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60,

3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90

Table 2: Estimates (standard errors), -211, AIC, BIC, AICC, K-S statistic and P-valuefor Data-set 1.

Model в 6 —2ll AIC BIC AICC K-S P-value

SPRD 1.6366 (0.1595) 5.8515 (1.2057) 171.6825 175.6825 180.0618 175.8730 0.0791 0.8029

PRD 1.7205 (0.1654) 4.8502 (1.0369) 172.1352 176.1352 180.5145 176.3256 0.0823 0.7625

WRD 2.5727 (0.7452) 1.3551 (0.1234) 175.7107 179.7107 184.0900 179.9012 0.1104 0.3963

RD 2.0491 (0.1261) 196.4168 198.4168 200.6065 198.4793 0.2265 0.0022

Histogram of data

Figure 3: Fitted density plots for dataset 1

9.2. Data set 2

Data set 2: Consider the following data set in Johnson and Kotz [9] and represent the survival

times (in years) after diagnosis of 43 patients with a certain kind of leukemia.

0.019, 0.129, 0.159, 0.203, 0.485, 0.636, 0.748, 0.781, 0.869,1.175, 1.206, 1.219, 1.219, 1.282, 1.356,

1.362, 1.458, 1.564, 1.586, 1.592, 1.781, 1.923, 1.959, 2.134, 2.413, 2.466, 2.548, 2.652, 2.951, 3.038, 3.6,

3.655, 3.745, 4.203, 4.690, 4.888,5.143, 5.167, 5.603, 5.633, 6.192, 6.655, 6.874

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

714

Aadil Ahmad Mir , S.P.Ahmad

MODELING AND ANALYSIS OF SINE POWER RT&A, No 1 (77)

RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS Volume 19, March 2024

Table 3: Estimates (standard errors), -2ll, AIC, BIC, AICC,K-S statistic and P-valuefor Data-set 2.

Model в 0 —2ll AIC BIC AICC K-S P-value

SPRD 0.5887 (0.0736) 1.6864 (0.2041) 162.9906 166.9906 170.5130 167.2906 0.0869 0.901

PRD 0.6198 (0.0766) 1.3094 (0.1647) 163.2203 167.2203 170.7427 167.5203 0.0903 0.8744

WRD 0.0010 (0.3799) 2.2409 (0.2728) 181.9592 185.9592 189.4816 186.2592 0.2423 0.0128

RD 2.2415 (0.1709) 181.9277 183.9277 185.6889 184.0252 0.2421 0.0128

Histogram of data

<D

0 1

1 -----------------1-----------------1------------------1-----------------г

2 3 4 5 6

A

7

data

Figure 4: Fitted density plots for dataset 2

The results obtained in Table 2 and Table 3 reveal that SPRD has the least value of all the

comparison criterions, hence SPRD can be considered a strong competitor to other distributions

compared here for fitting data. The plots of the fitted models are displayed in figure 3 and 4.

Also, from these plots , it is evident that SPRD provides a close fit to the two data sets.

10. CONCLUSION

In this paper, a new life time distribution namely Sine Power Rayleigh distribution (SPRD) is

proposed and studied. The SPRD model is an expansion that incorporates the Sine-G family

of distributions introduced by [10] resulting in a novel trigonometric distribution. The new

distribution is more flexible and its hazard rate function exhibits complex shapes. The study

derives various properties of the proposed distribution, including the survival function, hazard

rate function, reverse hazard function, cumulative hazard function, moments, moment generating

function, quantile function, Lorenz and Bonferroni inequality curves, Renyi entropy and order

statistics.The parameters of the proposed distribution are estimated using the maximum likeli-

hood method and a simulation study is conducted to assess the performance of the maximum

likelihood estimators (MLEs) for these parameters. Furthermore, the effectiveness of the proposed

715

Aadil Ahmad Mir , S.P.Ahmad

MODELING AND ANALYSIS OF SINE POWER

RAYLEIGH DISTRIBUTION : PROPERTIES AND APPLICATIONS

RT&A, No 1 (77)

Volume 19, March 2024

distribution is evaluated by applying it to two distinct real life datasets and comparing it with well

known standard distributions such as the Rayleigh distribution, Power Rayleigh distribution and

Weighted Rayleigh distribution. The results demonstrate that the Sine Power Rayleigh distribution

(SPRD) surpasses its competitors in terms of fitting the two datasets.

References

[1] A. Ahmad, S. P. Ahmad, and A. Ahmed. Characterization and estimation of weibull-rayleigh

distribution with applications to life time data. Appl. Math. Inf. Sci. Lett, 5:71-79, 2017.

[2] A. Ahmed, S. P. Ahmad, and J. Reshi. Bayesian analysis of rayleigh distribution. International

Journal of Scientific and Research Publications, 3(10):1-9, 2013.

[3] M. Ajami and S. Jahanshahi. Parameter estimation in weighted rayleigh distribution. Journal

of Modern Applied Statistical Methods, 16(2):14, 2017.

[4] A. A. Bhat and S. P. Ahmad. A new generalization of rayleigh distribution: Properties and

applications. Pakistan journal of statistics, 36(3), 2020.

[5] A. A. Bhat and S. P. Ahmad. Mixture of gamma and rayleigh distributions: Mathematical

properties and applications. Journal of Applied Probability, 16(2):81-97, 2021.

[6] A. A. Bhat and S. P. Ahmad. An extension of exponentiated rayleigh distribution: Properties

and applications. Thailand Statistician, 21(1):209-227, 2023.

[7] A. A. Bhat, S. P. Ahmad, E. M. Almetwally, N. Yehia, N. Alsadat, and A. H. Tolba. The

odd lindley power rayleigh distribution: properties, classical and bayesian estimation with

applications. Scientific African, 20:e01736, 2023.

[8] M. Kilai, G. A. Waititu, W. A. Kibira, M. Abd El-Raouf, and T. A. Abushal. A new versatile

modification of the rayleigh distribution for modeling covid-19 mortality rates. Results in

Physics, 35:105260, 2022.

[9] S. Kotz, N. Balakrishnan, C. B. Read, and B. Vidakovic. Encyclopedia of Statistical Sciences,

Volume 1. John Wiley & Sons, 2005.

[10] D. Kumar, U. Singh, and S. K. Singh. A new distribution using sine function-its application

to bladder cancer patients data. Journal of Statistics Applications & Probability, 4(3):417, 2015.

[11] D. Kundu and M. Z. Raqab. Generalized rayleigh distribution: different methods of estima-

tions. Computational statistics & data analysis, 49(1):187-200, 2005.

[12] Z. Mahmood, T. M Jawa, N. Sayed-Ahmed, E. Khalil, A. H. Muse, A. H. Tolba, et al. An

extended cosine generalized family of distributions for reliability modeling: Characteristics

and applications with simulation study. Mathematical Problems in Engineering, 2022, 2022.

[13] A. H. Muse, A. H. Tolba, E. Fayad, O. A. Abu Ali, M. Nagy, M. Yusuf, et al. Modelling

the covid-19 mortality rate with a new versatile modification of the log-logistic distribution.

Computational Intelligence and Neuroscience, 2021, 2021.

[14] S. U. Rasool and S. P. Ahmad. Power length biased weighted lomax distribution. Reliability:

Theory & Applications, 17(4 (71)):543-558, 2022.

[15] L. Rayleigh. Xii. on the resultant of a large number of vibrations of the same pitch and

of arbitrary phase. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science, 10(60):73-78, 1880.

[16] A. Renyi. On measures of entropy and information. In Proceedings of the Fourth Berkeley

Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of

Statistics, volume 4, pages 547-562. University of California Press, 1961.

[17] J. Surles and W. Padgett. Inference for reliability and stress-strength for a scaled burr type x

distribution. Lifetime data analysis, 7:187-200, 2001.

716

i Надоели баннеры? Вы всегда можете отключить рекламу.