Научная статья на тему 'Transmuted Sine-Dagum Distribution and its Properties'

Transmuted Sine-Dagum Distribution and its Properties Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
129
42
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Dagum distribution / Sine-G family / Reliability function / Order statistics / Lorenz curve / Maximum likelihood method

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — K.M. Sakthivel, K. Dhivakar

In this paper, we introduce a new four parameters continuous probability distribution called transmuted sine-Dagum distribution obtained through the transmuted Sine-G family introduced by Sakthivel et al. [13]. We have obtained some distributional properties including moments, inverted moments, incomplete moments, central moments and order statistics for proposed model. The reliability measures such as reliability function, hazard rate function, reversed hazard rate function, cumulative distribution function, mean waiting time and mean residual life time are studied in this paper. Further, we have discussed some income inequality measures including Lorenz curve, Bonferroni index and Zenga index. The maximum likelihood method is used to estimate the parameters of the proposed probability distribution. Finally, we demonstrated goodness of fit the proposed model with other suitable models in the literature using real life data sets.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Transmuted Sine-Dagum Distribution and its Properties»

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

Transmuted Sine-Dagum Distribution and its Properties

K.M. Sakthivel and K. Dhivakar •

Department of Statistics, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India.

[email protected]

Abstract

In this paper, we introduce a new four parameters continuous probability distribution called transmuted sine-Dagum distribution obtained through the transmuted Sine-G family introduced by Sakthivel et al. [13]. We have obtained some distributional properties including moments, inverted moments, incomplete moments, central moments and order statistics for proposed model. The reliability measures such as reliability function, hazard rate function, reversed hazard rate function, cumulative distribution function, mean waiting time and mean residual life time are studied in this paper. Further, we have discussed some income inequality measures including Lorenz curve, Bonferroni index and Zenga index.

The maximum likelihood method is used to estimate the parameters of the proposed probability distribution. Finally, we demonstrated goodness of fit the proposed model with other suitable models in the literature using real life data sets.

Keywords: Dagum distribution, Sine-G family, Reliability function, Order statistics, Lorenz curve, Maximum likelihood method.

I. Introduction

The lifetime model is playing a vital role in different fields such as life sciences, biological sciences, environmental sciences, medicine, finance and actuarial science. The last three decades, the development and applications of new probability distributions for lifetime data are remarkable in the literature. In this information era, the data generated from different fields are voluminous and dynamic in nature. Therefore, the need for generating new family of probability distributions is inevitable. As a result, the generating new family of probability distribution has attracted many researchers. The main advantage of generating new family of probability distributions is provide better flexibility and better fit at the cost of one or more additional parameters. The following are a list of few well-known generating new family of probability distributions: exponential family is introduced by Gupta et al. [6], Marshall-Olkin family is introduced by Marshal and Olkin [9], transmuted family is introduced by Shaw and Bucklay [14], Kumaraswamy-G family is introduced by Cordeiro and Castro [3], Topp-Leone family is introduced by Al-Shomrani et al. [1], Power Lindley-G family is introduced by Hassan and Nassr [7] and gamma-G family is introduced by Cordeiro et al. [4], to mention a few.

Dagum distribution is introduced by Camilo Dagum [5] in the year 1977 for modeling income data. It has been extensively used in various fields including wealth data, reliability analysis, survival analysis and meteorological data. The Dagum distribution is an alternative to log-normal, Pareto and generalized beta distributions. This distribution is also called Burr-XII distribution, particularly in the actuarial literature.

150

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

A continuous random variable X is said to have Dagum distribution with three parameters а, в and в if its probability density function and cumulative distribution function are given respectively as

f (x; а, в, в) = авв х-в-1 (l + ах—) в 1; x > 0, а > 0, в > 0 and в > 0. (1)

and

F(x; а, в,в) = (1 + ах-в) в; х > 0, а > 0, в > 0 and в > 0. (2)

where а is scale parameter, while в and в are shape parameters. It is to be noted that if а=1 the Dagum distribution becomes Burr III distribution and if в=1, the Dagum distribution becomes log-logistic or Fisk distribution.

In this paper, we introduce a new four parameter continious probability distribution namely transmuted Sine-Dagum distribution. This generating probability distribution provides better fit and flexibility for real life problem.

This paper is organized as follows: In Section 1, a brief introduction and need for the generating family of distributions is given. In Section 2, we present the transmuted Sine-G family and the proposed probability distribution namely transmuted Sine-Dagum distribution. In Section 3, we discuss some reliability measures like reliability function, hazard rate function, reversed hazard rate function, cumulative hazard function, mean waiting time, mean residual life function and mean past life time. In Section 4, we present some distributional properties including moments, inverted moments, incomplete moments, central moments and order statistics. The income inequality measures are discussed in Section 5. The method of maximum likelihood estimation is presented in Section 6. In Section 7, the real time application is presented. Finally, the concluding remarks are presented in Section 8.

II. Transmuted Sine-G Family

Transmuted Sine-G family is introduced by Sakthivel and Rajkumar [13]. This transmuted Sine-G family is the mixture of Sine function and quadratic rank transmuted map. The probability density function of transmuted Sine-G family of distributions is given by

f (x; Я) = Пh(x)cos ПH(x) j (1 + A) - 2Asin ^ПH(x)

; x > 0, A > 0.

and the corresponding cumulative distribution function is given by

F(x; A) = (1 + A)sin ПH(x)j - A sin ^ПH(x)j

n2

; x > 0, A > 0.

(3)

(4)

where, A is the parameter of transmuted Sine-G family of distributions. If A = 0, the transmuted Sine-G family is becomes Sine-G family.

I. Transmuted Sine-Dagum Distribution

A continuous random variable X is said to be follow the transmuted Sine-Dagum distribution with parameters а, в, в and A, (i.e.,) X ~ TSD(X; а, в, в, A), then the probability density function of X is of the form

f (x; а, в, в, A) = Павв x-в-1 ^1 + аx-в j - cos ^П ^1 + аx-вЛJ ^

(1 + A) - 2A sin ^2 ^1 + аx в x > 0, а > 0, в > 0, в > 0 and - 1 < A < 1

п

(5)

151

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

The above equation can be rewritten as

f (x;a,в,в, А) =(1 + A)Пx—в-1 ^1 + ax-^j ^ cos ^^2(1 + ax~e^j ^ — hnadfi x—в—1

-в \ — в

' ^ cos ( П (1 + ax в

sin | -2(1 + ax-

x 1 + a x

The cumulative distribution function is given by

(1 + A A) sin ^ П ^1 + ax—в j ^ — A ^s in П (

x > 0, a > 0, в > 0, в > 0 and — 1 < A < 1.

F (x; a, в, в, A) =

. п в \ — в

sin — 1 + ax

(6)

(7)

where в is scale parameter; a and в are shape parameters and A is the parameter of quadratic rank transmutation map.

of A.

152

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

of a.

a.

153

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

Figure 4: Cdfs of transmuted Sine-Dagum distribution for fixed values of a = 4,0 = 2, A = 0.7 and different values of в.

Figure 5: Reliability function of transmuted Sine-Dagum distribution for fixed values of a = 3.5,0 = 2.2, A = 0.8 and different values of ft.

154

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

III. Reliability Measures

In this Section, we deal with some reliability measures for transmuted Sine-Dagum distribution. If X^TSD (X;u,0,j8,A), then the reliability measures of random variable X are given by;

I. Reliability function

The reliability function is defined by

R(x; а, в, в, Л) = 1 - F(x; а, в, в, Л)

= 1 -

(1 + Л)sin ^ у (1 + ах в^ ^ - Л in -2 ^1 + ах в

II. Hazard rate function

The hazard rate function is defined by

h(x, а, в, в, Л)

f (x, а, в, в, Л)

1 - F(x, а, в, в, Л)

(8)

2авв x в 1 (1 + аx в) в 1 cos ^2 (1 + аx в) ^ (1 + Л) - 2Л sin 2 (1 + аx в)

1

(1 + Л^in (f (1 + аx-в) ^ - Л [sin2 (1 + аx-в)

(9)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2

III. Reversed hazard rate function

The reversed hazard rate function is given by

r(x, а, в, в, Л)

2авв x в 1 (1 + аx в) в 1 cos (2 (1 + аx в) в j (1 + Л) - 2Лsin (2 (1 + аx в)

(1 + Л)sin ^f (1 + аx- в) в j - Л sin2 (1 + аx-в)

(10)

IV. Cumulative hazard function

The cumulative hazard function is defined by

H(x,а,в,в,Л) = -log R(x,а,в,в,Л)

f (x, а, в, в, Л) F(x, а, в, в, Л)

= -log 1

(1 + Л)sin ^~2 (1 + аx в^ ^ - Л ^sin~2 (1 + аx в

(11)

155

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

V. Mean waiting time

The mean waiting time is defined by

<p(x) = x -

F(x) Jo

sf (s)ds

<p(x) =x -

f(x) Г fавв s-e l1+as-")-1 cos(211+т~е) 0

x 1(1 + Я) - 2As in [ П (1 + as 9)

-в \-в

ds

Therefore, the mean waiting time of transmuted Sine-Dagum distribution is given by

Г

L-t\

(-1)n(П)2n r

n=0 (2n)!

(-1)n( f )2n+1

b (1 - 1,2en + в +1;y)

- Г“=о (-1()2n„(+f1))!n 2Ява1B (1 - \,4fin + 2в + 1; y)

=x

(1 + Я)sin [2 (1 + ax-e) ^ - Я [sinП (1 + ax-e)

VI. Mean residual life function

The mean residual life function is defined by

1

1 r“

^(x) = s(x) L xf(x)dx - x

/0“ x Пx-e-1 (1 + ^x-e) в 1 cos (П2 (1 + ax-e) в)

x f(1 + Я) - 2Яsin [П (1 + ax в) -

dx x

1

(1 + Я)sin [П (1 + ax-e) ^ - Я [sin2 (1 + ax-e)

(12)

Therefore, the mean residual life function of transmuted Sine-Dagum distribution is given by

Г

L-t\

(-1)n(2)2n Г

n=0 (2n)!

v-“ г„=0

(1 + Я) П£a1B (1 - \,2fin + в + ^

(2n+1)! Яв^5 B (1 - 0,4en + 2в + l)

(-1)n (f )2n+1

1

(1 + Я)sin [П (1 + ax-e) ^ - Я [sinП (1 + ax-e)

n— x.

(13)

VII. Mean past lifetime

The mean past lifetime of the component can be defined as

K(x) = E [x - X|X < x] =

fo F(t)dt F(x)

x

/px tf (t)dt

F(x)

/0x t f авр t в 1 (1 + at в) в 1 cos [ f (1 + at в) в j

K(x) = x - ^

x f(1 + Я) - 2Яsin [2 (1 + at в) -

dt

(1 + Я)s in [ 2 (1 + ax-e) ^ - Я [sin [ 2 (1 + ax-e)

1

2

2

2

156

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

Therefore, the mean past life time is given by

Его

n=I

(1 + A) § fiae B (1 - 1,2^n + e + 1; y)

ЕГО=о (-1()2>П+1)!Я+1 A£a1B (l - 1 Авп + §e + 1;y)

(-i)n(П)2n Г

(2n)!

= X--F

(1 + A)sin § (l + ax-1) ^ — А {sin(l + ax-1) ^

2

(14)

Figure 6: Reliability function of transmuted Sine-Dagum distribution for fixed values of a = 1.4, f = 2.4, А = 0.7 and different values of 1.

Figure 7: Hazard rate function of transmuted Sine-Dagum distribution for fixed values of 1 = 4, f = 6, А = 0.5 and different values of a.

157

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

RT&A, No 4 (65)

Volume 16, December 2021

IV. Distributional Properties

I. Moments

The rth moment of transmuted Sine-Dagum distribution of the random variable X is obtained as

\ir =J xr (1 + Я) Падв x-2-1 (1 + ux-2 j - cos ^П (1 + ux-2 j ^

-Япадв x-2-1 ^1 + ux-2 j - cos ^ПП (1 + ax—j ^ sin ^П (1 + ux-2 j -

Using the Taylor series of the sine and cosine functions for moments, we have

“ (-1)nx2n+l “ (-1)nx2n

sin x = > 2---Y—, cos x = > —

n> (2n +1)! , n==0 (2n)!

dx

Therefore, we have

cos

n

2

1 + ax д

в

TO

>

n=0

(-1)n(n)2n (1 + ax-d) (2n)!

2fin

sin ( П (1 + ax 2 j

дj-e\ “ (-1)n(%)2n+1 (1 + ax-d) 2ne в

>

n=0 (2n +1)!

Hence, the rth moment of transmuted Sine-Dagum distribution is given by

V-r = £

(-1)n (f)

n( n \2n _

n=0 (2n)!

(1 + Я)Пвад B (1 - д,2/in + в + Г)

(-1)n ( f )2n + 1

n=0 (2n + !)!

- Явад B (1 - - ,4вn + 2в + ^

We have obtained the mean and variance of this distribution as

(-1)n (f )2n

(1 + А)2ва'1 B (1 - 1,2вn + в + в)

V1 = £ ^

to ( I )n ( n )2n+1 1

- £ ( (2„ +1), ЯпвадB | 1 - в,4в» + 2в + д

TO

and

v(x)

to (__-\ ^nf 2n

£0 (2")!

( 1V(2Г 2(1 + я)2ва2B (1 - |,2ви + в + 2

to (__1)n ( n )2n+1

n>=0 (2n +1)!

2

2

2Япвад B 1 - -, 4вn + 2в + ^

д

д

>

n=0

(-1)n (f )2n

(2n)!

((1 + Я)f ва1 B (1 - 1^n + в + 1)

(-1)n (|)2n+1 1

2

n>=0 (2n +1)!

Аква2 B (1 - в, 4вn + 2в + в

д

TO

(15)

(16)

158

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

The moment generating function of transmuted Sine-Dagum distribution is given by

\n( n\2n

(h + a)

tr

MX (t) = E r!

r=0

E

n=0

( 1Г(2^ ((1 + A)(1 - Г,2вп + в + 0

(2n)! (-1)n (f )2n+1

n=0 (2n + !)!

- E ( 1E(ЕЕ 2\пваЬB (1 - -,4en + 2в + ^

The characteristic function is given by

Фх (t) = E

TO (it)r

r=0

Г!

to

E

n=0

n

(-1)n(2)n ((1 + A)Пe.iB (1 - ',2в„ + в + Г)

(2n)!

“ (-1)n(П)2n+1 . , , ,

- E ( ,L(,2^ 2АвanB (1 - -,4en + 2в + ^

n=0 (2n + 1)!

and the cumulant generating function is given by

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

KX(t) = log

TO ,r

E -

L-1 r!

r=0

TO

TO

E

n=0 n

(-1)n (f )2n

(2n)!

j n r / r r \

(1 + A)-e^B (1 - -Q,2en + в + g)

TO (_ 1 )n(n )2n+1 ( r r)

- E ( (2n+ 1)! A^B (1 - ё^ + 2в + ё)

(17)

(18)

(19)

II. Inverted moments

The inverted moment is defined by

ц* = / x rf(x)dx

-TO

Thus, the inverted moment for this distribution is given by

-ё)-в-* (п Л , _-ё)-в

ц* =J x r (1 + A)П^в x ё 1 ^1 + ax ^ - cos ^П ^1 + ax ^ ^ - Акаёв x-

х (1 + ax-) - cos f П (1 + ax-) sin (П (1 + ax-)

ё-1

dx

TO

E

n=0

(-1)n (f)

n ( n\ 2n n

(2n)!

(1 + А) П2вarB (1 + ё^n + в - r)

TO (_ 1 )n (n )2n+1 . r r.

- E ( (jn +1)! Апва-rB (1 + ё^ + 2в - ё)

III. Incomplete moments

The rth incomplete moment is defined by

mr(x) =/ srf(s)ds

(20)

m

(x) =J sr Паёв s ё 1 (1 + as ё) ^ cos ^2^1 + as ё) ^- Апаёв s-х (1 + as -в-x) cos f ~2 (1 + as- ё) ^'j sin ГП (1 + as- ё) -

ё-1

ds

159

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

Hence, the rth incomplete moments of transmuted Sine-Dagum distribution is given by

E

(-1)n (n)

n ( n\ 2n -

n=0 (2n)!

(1 + А)П fieriВ (1 - 0,2fiie + fi + 0;y)

- nE ^р^Г*2^0 B l1 - -o ■4in+2e+3 ^У

o

IV. Central moments

The central moment is defined by

V = I (x - *)rf (x)dx = E (L) (-1)m(^1)т*

J-то m=0 Vm/

Therefore, the central moments of transmuted Sine-Dagum distribution is given by

* = E (J(-1)

m=0

E (-1)” (2 )2n r ,S=0 (2n)!

(1 + A) 2В [1 - 1,20n + в + 1

то ( 1)n( n )2n+1 1

- E ( ,!(,2 L Апвае В ( 1 - o,4^n + 2в + o

n=0

(2n + 1)!

TO

(-1)n (2 )2n

_ n=0 то / 1 \n

(2n)!

r=mf^ r - m „ r - m\

(1 + A) -0 B --------3^-,2fin + e + —Q—J

E \ ч м

E (2i

~1W2 ) Anfia^B (1 - r-^m,4 fin + 2^ +

e (-1)n(2)2”+i

nE0 (2n + 1)!

r - m

0

V. Order statistics

The pdf of the jth order statistics for transmuted Sine-Dagum distribution is given by n!

f%,(x)

(j - 1)(n - j)!

2авв x-0-1 (1 + ax-0'}

-e-1 / П ( o\ -в

cos( - (1 + ax 0'

21j-1

x ^(1 + A) - 2Asin ^-2(1 + ax 0j -

(1 + A)sin ^2 (1 + ax-0j - A^sin ^у (1 + ax-0^

x 1 - ^(1 + A)sin ^2 (1 + ax-0 j ^ - A^sin^2 (1 + ax-0 j The pdf of the smallest order statistics X(1) is given by

2n

fX(1)(x) =n

1 - ^(1 + A)sin ^2 (1 + ax 0 j ^ - A (sin ^2 ^1 + ax 0 j ^ ^ 2a0j8 x-0-1 ^1 + ax-0^ - cos ^2 (1 + ax-0 j ^

2n

x |(1 + A) - 2Asin[ 2 (1 + ax 0

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

rm

m

(21)

(22)

1

(23)

-1

(24)

160

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

The pdf of the largest order statistics X(n) is given by

/X(„)M =n

^(1 + A)sin ^П (1 + ax 0) - A^sinП (1 + ax 0 ) ^

-| n—1

- x 0 1 (1 + ax

1 (n Л -0)-в

cos 2 (^1 + ax 0'

f (x) _(2m + 1) /m+1:n (x)_ m!m!

x ^(1 + A) - 2Asin уП ^1 + ax 0j The pdf of the median order statistics is given by

(1 + A)sin ^ 2 ^1 + ax-e^j — A ^sin 2 ^1 + ax-0^j ^

x 1 — ^(1 + A)sin ^ 2 (1 + ax—0) — A ^sin 2 (1 + ax—0) ^

x 2a0e x—0—1 (1 + ax-0) - cos ^2 (1 + ax-0) ^ x |(1 + A) — 2Asin (~2 (1 + ax-'0j

(25)

(26)

V. Income inequality measures

In this section, we deal with different basic income inequality measures including Lorenz curve, Bonferroni index and Zenga index. The following measures are given below.

I. Lorenz curve

The lorenz curve was introduced by Lorenz [8] in the year 1905. it is widely used in economic and many other fields and its defined by

1 Г x

L(x) _ 7 s/(s)ds

7 Jo

Hence, the Lorenz curve of transmuted Sine-Dagum distribution is given by

L(x)_717s[2a0es-Ч1+as-0P1 cos(ft1+as-0 0

x Г(1 + A) - 2As inf 2 ^1 + as-'0j dx

(-1)n(2)2n г

Г1 _____________

rn_0 (2n)!

(1 + A)2ea-0B (1 - r,2en + в + 0;y)

Г“_о (-1)(n2(n+/12))!2ni12AearB (1 - 0,4fin + 2в + 0; y)

2n+1

Г

L-t\

(-1)n( § )

n( n\2n г

(1 + A)2ea0B (1 - 1,2en + в + ))

n_0 (2n)!

Г“_0 (-1)(n2(n+/12))!2n+12Aea1 B (1 - 1,4en + 2в + 1

(27)

II. Bonferroni index

The Bonferroni index was introduced by Bonferroni [2] in the year 1930. it is ratio of Lorenz curve and cumulative distribution function of the distribution. The Bonferroni index is defined as

B(x)

LM

F(x)

0

1 m

161

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

Hence, the Bonferroni index of transmuted Sine-Dagum distribution is given by

B(x) = -

where

- = E

n ( n\ 2n -

(-1)n (П)

(2n)!

(1 + Я)П2(l - r,4^n + 2в + r;y)

n=0

to (_1)n ( n )2n+1

- E ( ,L(2in ЯпраЬB (1 - -,4en + 2в+ ^;y

n=0

(2n + 1)!

(-1)n (f)

n / n\2n г

(1 + Я) 2 B ^1 - 1,201 + в + 1)

n = E ^

to ( 1 )n ( n )2n+1 1

- E ( (2,1 + 1)! 2Яв"'B 11 - j■ 4в" + 2e + г

(1 + A)sin ^П ^1 + ax e j - Я (sinП ^1 + ax e j ^

TO

2

III. Zenga index

Zenga index is introduced by Zenga [15] in the year 1980. The Zenga index is defined by

where

Z

1 V(x)

^(X)

1 fX

V(x) = F(Xy Jo sf(s)ds

1 Г TO

'U = т=щ1 xf (x)dx

Therefore, we get

V (x)

E'

n=0

(-1)n(2)2n -(2n)!

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(1 + Я)2ва-rB (1 - r,2en + в + r;y)

(_ 1)n( П )2n+1 r , .

- ETO=0 ( (Л2!), Яжва-eB (1 - j,4en + 2в + j; y)

(1 + Я)sin ^ 2 (1 + ax-e) - Я (sin ^ 2 (1 + ax-e)

2

V+x)

v-iTO

En=0

E

-

(-1)n (f)2n

(2n)!

(1 + Я)2ea1 B (1 - 1,2en + в + 1)

„=о (-1()2n„(++1)!n+ ЯжваъB (1 - 1,4en + 2в + 1)

1

(1 + Я)sin ^2 (1 + ax-e) в j - Я (sin (^ (1 + ax-e) в j

Hence, the Zenga index of transmuted Sine-Dagum distribution is given by

z = 1 - Y

-

2

162

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

where

_ к (-1)”(f )2n 7=к (2”)!

j n r / Г Г \

(1 + A) 2 lia’B (1 - -,2/in + в + g;y)

- к A^B (1 - g ,4в”+2в+g; y)

1 - f(1 + A)sin ^П2 (1 + ax-0j ^ - A^sin ^П (1 + ax-0 j

to /__1 \n( n\2n

s = к ( (2 )

д к (2n)!

(1 + A)nfl„ 1

2

1

^ B ( 1 - g, 2ftn + в + g

(-1)n(2)2n+1 A fla 1

n=0 (2n + 1)!

- L4tr^~A^B ( 1 - -,4en + 2в + ^

(1 + A)sin ^ 2 (1 + ax 0 j ^ - A^sin^ 2 (1 + ax 0 j ^ ^

VI. Parameter Estimation

Let X1, X2, ... , xn be a random sample from the transmuted Sine-Dagum distribution then the likelihood function is given by

L(a0,в A;x)= П 7a0e x(i) Ч1 + aw) - 1 cos(li1 + a«) -)

i=1 L к /

x ^(1 + A) - 2Asin ^2 (1 + a--)0j ^

Hence, the log likelihood function is given by

jjg ___(

L(a,0,в, A; x) =n log — + n loga + n log9 + n loge + (-0 - 1) к logx(

2 i=1

i)

+ (-в - 1) к log (1 + ax-)0 j + к logcos (7 (1 + j ^

i=1 i=1 к /

+ к log cos ^(1 + A) - 2A sin ^2 (1 + ax-) j

The MLE of parameters a, 0, в and A are obtained from the following equations

d,ogL- 0, ^ = 0, ^ = 0 and ^ = 0

a

g

в

A

That is,

-0

ЭlogL _ n к ( в 1 )x(i) к1"

da = a + к (1 + ax-0) + к

sin (f (1 + ax-)0 j fв (1 + ax-j

cos (П2 (1 + ax-2 -

-0j в 1x-0

) x(i)

(28)

0 (29)

2

2

n

163

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

and

MogLn + £(<№) + £ ( - 1)x—)logx(i)

дв в

i=1

1 0+cx—>)

д\ —в\ ( дЧ — в — 1

+ £

(тт (1 + cx ^^ в (1 + — 1 cx—)log V(i)

i=1

cos ( 2 (1 + Cx—)

£

2Aco^T2 (1 + cx—) ^ e (1 + cx—) — ( о-Х(—в|ogV(i)

i=1 cos ^(1 + Я) — 2A sin 1 ^1 + cx^ ^ ^

0 (30)

dlogL n П1 (л -в) — e

~W =J - £ l°g l1+сх— ^

i=1

£

i=1

sin (2 (1+CV—i )) 2 (1 + сх— )) — log (1 + сх— ))

cos(+ сх—)в)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1 — 2sin T2 (1 + сх—)в j ^

(1 + A) — 2Asin(T2 (1 + сх—" j j

0 (31)

dlogL

dA

0.

(32)

n

The above mentioned four nonlinear equations are difficult to solve analytically. Therefore, these equations can be solved through iteration methods like Newton-Raphshon method etc., However, we estimate the parameters using R software.

VII. Applications

The data set is about the time-to-failure of a 100 cm polyster/viscose in a textile experiment to evaluate the tensile fatigue characteristics of the yarn when its strain level is 2.3 percentage. This data set is used early by Quesenberry and Kent [12], Pal and Tiensuwan [11] and Nasiru et al. [10].

We have fitted the model based on the minimum value of different goodness of fit measures values represented by -2log likelihood, corrected Akaike Information Criterion (CAIC), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC). We have compared the Topp-Leone generated Dagum distribution with other competitive statistical models like Exponentiated generalized exponential Dagum distribution (EGEDD), Exponentiated generalized Dagum distribution (EGDD), Dagum distribution (DD), Exponentiated generalized exponential Burr distribution (EGEBD), Exponentiated generalized Burr distribution (EGBD), Exponentiated generalized exponential Frechet distribution (EGEFD), Exponentiated generalized Frechet distribution (EGFD), Mc-Dagum distribution (McD), exponentiated Kumaraswamy Dagum distribution (EKDD) for this yarn data. The transmuted Sine-Dagum distribution provides better fit for tensile fatigue characteristics of the yarn data compared to other above mentioned competitive statistical models. The details are given in the following tables.

Table 1: Summary of statistics for tensile fatigue characteristic of the yarn data

n Mean Median Minimum Maximum Q1 Q3

100 222.0 195.5 15.0 829.0 129.2 283.0

164

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

Table 2: The values of estimated parameters for tensile fatigue characteristic of the yarn data

Model Estimated value of the parameters

TSDD (7=10868.26, 0=1.732, /3=1.0574, A=-0.473

EGEDD 7=0.026, 7=75 .310, /3=0.017, 0=3.513, c=45.692, d=0.090

EGDD A=1.992, в=10.480, 0=4.733, C=75.487, cf=0.223

DD a=19.749, $=11.599,01=1.126

EGEBD A=35.463, в=35.965, 0=4.859, C=15.667, d=0.070

EGBD ^=24.801, 0=4.196, C=73.9120, d=0.258

EGEFD a=20.662, A=34.477, 0=5.217, c=16.438, d=0.65

EGFD a=10.537, 0=5.239, c=21.341, d=0.140

McD A=0.027, <3=0.600, ^=98.780, a=0.333, b=25.042, C=46.276

EKD a=546.109, A=39.413, <=5.188, ф=0.203, 0=31.169

Table 3: Statistical model selection for tensile fatigue characteristic of the yarn data

Model -2LL aic aicc bic

TSDD 1252.689 1260.689 1261.11 1271.11

EGEDD 1256.34 1268.336 1269.553 1283.967

EGDD 1306.14 1316.137 1317.040 1329.163

DD 1298.52 1304.517 1304.938 1312.333

EGEBD 1261.74 1271.745 1272.648 1284.771

EGBD 1306.06 1314.056 1314.694 1324.447

EGEFD 1261.52 1271.523 1272.426 1284.549

EGFD 1333.76 1341.757 1342.395 1352.177

McD 1256.4 1268.399 1269.616 1284.030

EKD 1307.92 1317.913 1318.816 1330.938

VIII. Conclusion

In this paper, we have presented a new transmuted Sine-Dagum distribution using transmuted Sine-G family of distributions. We have studied some reliability measures like reliability function, hazard rate function, reverse hazard rate function, cumulative hazard rate function, second failure rate function, mean waiting time, mean past lifetime and mean residual life. We have obtained some distributional properties like moments, moment generating function, characteristic function, cumulant generating function, incomplete moments, central moments and order statistics. We have also investigated some income inequality measures including Lorenz curve, Bonferroni index and Zenga index for proposed new probability distribution. The maximum likelihood method is used to estimate the parameters of proposed new probability distribution. Finally, we have analysed a real lifetime data set for proposed probability distribution. The proposed distribution fits well for this data compared to other competitive models.

165

Sakthivel and Dhivakar

TRANSMUTED SINE-DAGUM DISTRIBUTION

RT&A, No 4 (65)

Volume 16, December 2021

References

[1] Al Shomrani, A., Arif, O., Shawky, A., Hanif, S., and Shahbaz, M.Q., (2016). Topp -Leone family of distributions: some properties and applications, Pakistan Journal of Statistics and Operation Research, Vol. 12(3), pp. 443-451.

[2] Bonferroni, C., (1930). Elmenti di statistica generale, Libreria Seber, Firenze.

[3] Cordeiro G.M., and De Castro, M., (2013). A new family of generalized distributions, Journal of Statistical Computation and Simulation, Vol. 81, pp. 883-893.

[4] Cordeiro, G.M., Silva, R.B., and Nascimento A.D.C., (2020). The gamma-G family of distributions, Recent Advances in Lifetime and Reliability Models, Vol. 29, pp. 149- 177.

[5] Dagum, C., (1977). A new model of personal income distribution: specification and estimation, Economie Appliquee, Vol. 30, pp. 413-437.

[6] Gupta, R. C., Gupta P.L., and Gupta, R.D., (1998). Modeling failure time data by Lehmann

alternatives, Communication in Statistics Theory and Methods, Vol. 27, pp. 887-904.

[7] Hassan, A.S., and Nassr, S.G., (2019). Power Lindley-G family of distribution, Annals of Data Science, Vol. 16(2), pp. 189-210.

[8] Lorenz, M.O., (1905). Methods of measuring the concentration of wealth, American Statistical Association, Vol. 9, pp. 209-219.

[9] Marshall, A.W., and Olkin, I., (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, Vol. 84(3), pp. 641-652.

[10] Nasiru, S., Mwita, P.N., and Ngesa, O., (2019). Exponentiated generalized exponential Dagum distribution, Journal of King Saud University-Science, Vol. 31(3), pp. 362-371.

[11] Pal, M., and Tiensuwan, M., (2014). The beta transmuted exponentiated Weibull geometric distribution, Austrian Journal of Statistics, Vol. 43 (2), pp. 133-149.

[12] Quesenberry, C.P., and Kent, J., (1982). Selecting among probability distributions used in reliability, Technometrics, Vol. 24 (1), pp. 59-65.

[13] Sakthivel, K.M., and Rajkumar, J., (2021). Transmuted sine-G family of distributions: theory and applications, Statistics and Applications, (Accepted: 10 August 2021).

[14] Shaw, W. and Buckley, I., (2009). The Alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation

map, Research Report.

[15] Zenga, La curtosi (Kurtosis), (1996). Statistica, Vol. 56, pp. 87-101.

* * *

166

i Надоели баннеры? Вы всегда можете отключить рекламу.