Научная статья на тему 'К 85-летию Владимира Андреевича Якубовича'

К 85-летию Владимира Андреевича Якубовича Текст научной статьи по специальности «Математика»

CC BY
84
32
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по математике , автор научной работы — Гелиг А. Х., Ермаков С. М., Ибрагимов И. А., Леонов Г. А., Морозов Н. Ф.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «К 85-летию Владимира Андреевича Якубовича»

Вестник СПбГУ. Сер. 1. 2012. Вып. 2

К 85-ЛЕТИЮ ВЛАДИМИРА АНДРЕЕВИЧА ЯКУБОВИЧА

21 октября 2011 года исполнилось 85 лет заведующему кафедрой теоретической кибернетики математико-механического факультета Санкт-Петербургского государственного университета, члену-корреспонденту Российской Академии Наук, доктору физико-математических наук, профессору Владимиру Андреевичу Якубовичу.

В. А. Якубович — выдающийся ученый с широким спектром научных интересов, охватывающим ключевые разделы теории дифференциальных уравнений и теоретической кибернетики. В каждой из этих областей им получены принципиально важные результаты, хорошо известные специалистам во всем мире. В. А. Якубовичем опубликовано более 300 работ, в том числе 9 монографий.

Первые научные результаты В. А. Якубович получил ещё студентом Московского университета. Выполненные в те годы две его работы были представлены И. Г. Петровским и А. Н. Колмогоровым для публикации в Докладах АН СССР. Глубокое исследование структуры функционального пространства гамильтонианов позволило В. А. Якубовичу установить разнообразные критерии устойчивости гамильто-новых периодических систем, обобщающие классические критерии А. М. Ляпунова, Н. Е. Жуковского. Развитая им математическая теория параметрического резонанса позволяет получать важные для приложений результаты.

В. А. Якубович — один из тех, кто внес фундаментальный вклад в создание современной теории управления. Его статья 1962 года, содержащая частотную теорему, включена в специальный том, изданный Международным Институтом инженеров по электротехнике и электронике, в котором представлены 25 статей, по мнению авторитетной международной комиссии оказавших наибольшее влияние на развитие теории управления в XX веке. Этот результат, дополненный в 1963 году американским математиком Р. Калманом, широко известен как «лемма Якубовича—Калмана». Она устанавливает связь между частотными методами и методами функций Ляпунова в теории управления и применяется в разных областях, таких как устойчивость, адаптация, оптимальное управление, странные аттракторы. Использование этой леммы позволило получить разнообразные частотные критерии абсолютной устойчивости, которые придали «второе дыхание» методу функций Ляпунова. Якубовичем найдены частотные условия устойчивости и неустойчивости в целом, условия существования устойчивых в целом периодических и почти периодических режимов, частотные условия автоколебательности. Частотная теорема позволила также дать эффективное решение задачи аналитического конструирования регулятора, минимизирующего квадратичный функционал. Развитый В.А.Якубовичем метод матричных неравенств нашел многочисленных последователей в России и за ее пределами. В книге американского математика С. Бойда с соавторами «Linear Matrix Inequalities in System and Control Theory» (S. Boyd et al., SIAM Studies in Applied Mathematics. Vol. 15, Philladelphia, 1994) В.А.Якубович назван «отцом» научного направления исследований линейных матричных неравенств (в почетной компании с А. М. Ляпуновым, объявленным там же «дедушкой» этого направления).

Ещё одним направлением научных интересов В. А. Якубовича является теория оптимального управления. Им построен вариант абстрактной теории оптимального управления, который позволяет получать необходимые (а в ряде случаев и доста-

точные) условия оптимальности типа «принцип максимума» Понтрягина для разных классов уравнений. В исследованиях последних лет В. А. Якубовичем найден новый подход к проблеме невыпуклой глобальной оптимизации. Эффективность этого подхода подтверждается решением конкретных задач стохастического и детерминированного оптимального управления. В работах по оптимальному гашению колебаний и оптимальному отслеживанию им разработана концепция «универсального регулятора», обеспечивающего оптимальность управления при заранее неизвестных помехах и отслеживаемых сигналах. Полученные результаты подводят определенный итог драматичной дискуссии об инвариантности систем управления относительно внешних воздействий, ведущейся с 1939 года.

Для В. А. Якубовича характерно сочетание плодотворной работы в абстрактных областях математики с успешными исследованиями прикладных задач. Он обладает счастливой способностью ставить содержательные математические задачи на основе анализа запросов практики. Якубович — один из создателей математической теории обучаемых распознающих систем и родоначальником ленинградской школы по теории адаптивных систем управления и обработки информации. Ему принадлежит получивший большую популярность метод рекуррентных целевых неравенств, с помощью которого решен широкий круг задач. Он был организатором шести ленинградских симпозиумов по теории адаптивных систем, членом редколлегий «Сибирского математического журнала» и международных журналов «Systems and Control Letters», «Dynamics and Control».

Большое внимание уделяет Владимир Андреевич педагогической деятельности. По его инициативе на математико-механическом факультете открыты 3 новых специализации кибернетического профиля, им разработан оригинальный цикл курсов лекций под общим названием «Теоретическая кибернетика», подготовлено через аспирантуру более 40 кандидатов наук (более десяти из них стали докторами наук). Усилиями В. А. Якубовича создан коллектив кафедры и лаборатории теоретической кибернетики, который пользуется заслуженным авторитетом в научном мире. Научная продукция его сотрудников исчисляется многими сотнями публикаций, среди которых более шести десятков книг. Воспитанники кафедры плодотворно работают во многих российских и зарубежных университетах и научных центрах. Область интересов научной школы В. А. Якубовича охватывает важнейшие разделы теоретической кибернетики.

В. А. Якубович удостоен премии Ленинградского университета за педагогическое мастерство в 1986 г., является лауреатом Международной премии им. Н. Винера 1993 года за вклад в кибернетику, лауреатом премии Санкт-Петербургского университета 1996 года за цикл работ по оптимальному управлению. В 1995 году он получил премию Международной академической издательской компании «Наука» за лучшую публикацию в издаваемых ею журналах, а в 1996 году ему присуждена главная ежегодная премия по системам управления международного общества IEEE (IEEE Control Systems Award) и медаль «за пионерские и фундаментальные достижения в теории устойчивости и оптимального управления». В 1998 году В. А. Якубовичу присвоено почетное звание «Заслуженный деятель науки Российской Федерации», а в 2005 году он награжден «Орденом Почета». В. А. Якубович является членом-корреспондентом РАН и академиком РАЕН.

В последние годы В. А. Якубович продолжает вести активную научную и учебную работу. В период 2006-2011 гг. им с учениками опубликовано более 10 статей в журналах. Его ученик канд. физ.-мат. наук А. В. Проскурников в 2009 году был

удостоин медали Российской академии наук для молодых ученых. Студенты и аспиранты кафедры получили за последние пять лет более 20 дипломов конференций и сертификатов выставок по кибернетике и робототехнике.

От всей души поздравляем Владимира Андреевича Якубовича с юбилеем, желаем ему крепкого здоровья и творческого долголетия, новых радостей от успехов учеников.

А. Х. Гелиг, С. М. Ермаков, И. А. Ибрагимов, Г. А. Леонов, Н. Ф. Морозов, В. А. Плисс, П. Е. Товстик, Н. Н. Уральцева, М. К. Чирков, А. И. Шепелявый,

А. Л. Фрадков

i Надоели баннеры? Вы всегда можете отключить рекламу.