ФИЗИКА
Соловьев В.Г., Ванин А.И., Вейсман В.Л., Гращенков С.И., Иванова М.С., Марков В.Н., Панькова С.В., Трифонов С.В., Яников М.В., Балабинская А.С.,
Бондаренко И.К., Ганго С.Е., Иванова Е.Н., Лукин А.Е.
ИЗУЧЕНИЕ ФИЗИЧЕСКИХ СВОЙСТВ НАНОКОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ РЕГУЛЯРНЫХ ПОРИСТЫХ ДИЭЛЕКТРИЧЕСКИХ МАТРИЦ ЦЕОЛИТОВ И ОПАЛОВ
В последнее время объектом пристального внимания во всем мире становятся нанотехнологии. Свойства наночастиц - малых агрегаций атомов с размерами ~1 ^ 100 нм - являются промежуточными между свойствами отдельных атомов и массивных твердых тел. Мезоскопические эффекты, возникающие при таком переходе от микроуровня к макроуровню, имеют фундаментальное научное значение и представляют большой прикладной интерес. Исследование сложных систем наночастиц (наноструктур) и создание новых нанокомпозицион-ных материалов относится к числу важнейших, наиболее актуальных и приоритетных магистральных направлений развития современной физики конденсированного состояния.
В настоящей работе представлены результаты изучения физических свойств нанокомпозитов на основе регулярных пористых диэлектрических матриц. В развитии данного научного направления, созданного профессором Физико-технического института им. А.Ф. Иоффе РАН В.Н. Богомоловым [1], на протяжении двух десятилетий принимают участие и сотрудники кафедры физики Псковского государственного педагогического университета им. С.М. Кирова [2-5]. В настоящее время эти исследования продолжаются в рамках совместной научноучебной лаборатории физики нанокомпозиционных материалов ПГПУ им. С.М. Кирова и ФТИ им. А.Ф. Иоффе РАН. В качестве регулярных пористых диэлектрических матриц для создания нанокомпозиционных материалов и исследования физических свойств наноструктур используются цеолиты и опалы.
Цеолиты представляют собой алюмосиликаты, кристаллическая структура которых образована тетраэдрами 8Ю4 и А104, объединёнными общими вершинами в трёхмерный каркас, пронизанный полостями и каналами. В качестве примера на рис. 1 представлен фрагмент каркаса цеолита типа №А, имеющего идеализированный состав элементарной ячейки
Nau(Л1и&'12048)• 27Н20 , параметр элементарной ячейки 1,23 нм и диаметры больших и
малых полостей 1,14 нм и 0,66 нм соответственно. В полостях и каналах цеолитов обычно находятся молекулы воды и катионы металлов, компенсирующие отрицательный заряд тетраэдрических групп Л104 и затрудняющие введение наночастиц в полости и каналы цеолитной матрицы. От этого недостатка свободны цеолитоподобные алюмофосфаты типа АБ1 (Л1Р0 4 — 5), поскольку состав их элементарной ячейки (Л/12 Р12 048) обеспечивает компенсацию трехвалентного алюминия пятивалентным фосфором, благодаря чему их одномерные каналы нанометровых размеров не содержат дополнительных катионов. Эти параллельные каналы с внутренним диаметром 0,73 нм образованы 12-членными кольцами, состоящими из
тетраэдров (Л/, Р)04, и ориентированы вдоль оси с кристалла. Структура матрицы АР1 (рис.
2) моделировалась нами с помощью компьютерной программы СЬиСа1с с использованием справочных данных, взятых из работ [6,7].
Рис. 1. Фрагмент каркаса цеолита типа А.
Рис. 2. Модель структуры матрицы АЫ.
Физические характеристики нанокомпозитов изучались нами с применением разнообразных физических методов, в том числе - оптической спектроскопии, сканирующей туннельной микроскопии, а также электрических измерений, позволявших исследовать свойства микрообразцов с размерами до 20 мкм с помощью измерительных ячеек, описанных в работах [8 -11]. Вещества-“гости” вводились в полости и каналы пористой диэлектрической матрицы-“хо-зяина” по методу В.Н.Богомолова [1], в основном, двумя способами: из расплава или раствора, либо посредством адсорбции из газовой фазы. Первый из этих способов применялся при получении наночастиц легкоплавких металлов (In,Pb) или ионных соединений (NaNO2,NaNO3), а второй использовался при диспергировании халькогенов (Se, Te [3, 12-14]) или галогенов (I [15]), имеющих высокое давление паров при температурах, далеких от температур разрушения диэлектрических матриц.
Синтез цеолитоподобных матриц типа AFI проводился методом гидротермальной кристаллизации [16] с введенными нами технологическими изменениями, важнейшим из которых было использование триэтаноламина в качестве "структурообразующего шаблона" (template) [17]. В результате удалось получить оптически чистые гексагональные монокристаллы фосфата алюминия с размерами до 2 мм и исследовать их инфракрасные спектры, а также обнаружить влияние термообработки и введения йода на их механические свойства и электропроводность в области температур от 300 до 450 К.
Экспериментальное изучение процессов электропереноса в диэлектрических алюмоси-ликатных цеолитных матрицах [18, 19] подтверждает вывод о существовании сквозной ионной проводимости исходных монокристаллов цеолитов, обусловленной движением катионов металлов по цеолитным каналам. С другой стороны, получение регулярных ансамблей наночастиц полупроводников (CdS, Se, Te) в полостях диэлектрических матриц цеолитов позволяет наблюдать также электронный перенос и квантовые размерные эффекты: “синий” сдвиг спектров оптического поглощения и фотопроводимости [2, 3, 5, 12-14, 20].
В качестве другого примера проявления размерных эффектов в наноструктурах, полученных на основе регулярных пористых матриц цеолитов, рассмотрим обнаруженное нами размерное квантование электронных состояний наночастиц нитрита натрия в цеолитах типа NaA. Спектры оптического поглощения исходного цеолита NaA, “массивного” NaNO2 и нанокомпозита NaA -NaNO2, вычисленные по формуле Гуревича-Кубелки-Мунка [21, 22] на основе измеренных экспериментально спектров диффузного отражения, представлены на рис. 3. Как показывает кривая 1, цеолитная матрица практически полностью прозрачна в исследованном спектральном диапазоне. Край поглощения “массивного” нитрита натрия вблизи 3 эВ (кривая 2) согласуется со значениями ширины электронной запрещенной зоны NaNO2 [23]. С другой стороны, спектр поглощения полученного нами образца цеолита NaA, выдержанного в водном растворе NaNO2 (кривая 3), демонстрирует сдвиг края поглощения ~ 2 эВ в ультрафиолетовую область. Этот значительный “синий” сдвиг края поглощения можно рассматривать как следствие квантового размерного эффекта в электронном спектре [24].
Упорядоченная гранецентрированная кубическая (ГЦК) структура (рис. 4) благородного опала образована плотно упакованными сферами с радиусами ~ 100 нм [25]. Поэтому в видимой области спектра опалы могут выступать в роли фотонных кристаллов (ФК) - периодических ансамблей наноструктур, обладающих развитой системой фотонных энергетических зон, в которых запрещено существование электромагнитного (ЭМ) излучения с длинами волн, соизмеримыми с периодом структуры [26-29]. Формирование зонной структуры в ЭМ спектре ФК отражает известную аналогию в поведении фотонов в таких системах и электронов в кристаллических твердых телах и открывает широкие перспективы применения ФК на практике. Развитие современных фотонных технологий позволяет рассматривать фотонику как реальную альтернативу электронике и надеяться, что в недалеком будущем свет придет на смену потоку электронов в коммуникационных и информационных системах.
Энергия фотона (эВ)
Рис. 3. Графики функции Гуревича-Кубелки-Мунка
F(Rd) - (1 Rd )2
2 Rd
построенные на основе
спектров диффузного отражения цеолита МаЛ (кривая 1), "массивного” МаМ02 (кривая 2) и нанокомпозита ЫаЛ — ЫаЫ02 (кривая 3).
Рис. 4. Гранецентрированная кубическая структура.
В идеальном ФК образование фотонных запрещенных зон приводит к появлению узких максимумов в спектрах брэгговского отражения и соответствующих им минимумов в спектрах пропускания света, смещающихся в область коротких волн при увеличении угла падения
в в соответствии с формулой 12 = 4a2n2 — 4a2 sin2 в, которую можно получить, используя законы Брэгга-Вульфа (2a cosb = kl /n) и Снеллиуса (n sin b = sin в ). При этом введены следующие обозначения: b - угол преломления света в опале, a = 0,816.0 - меж-
плоскостное расстояние для плоскостей (111) ГЦК структуры опала, Б - диаметр сфер, к -порядок максимума, п - эффективный показатель преломления исследуемого ФК. Результаты наших экспериментов (рис. 5 и 6) подтверждают это для достаточно совершенных тонких пленок опалов, полученных в результате самоорганизации полимерных шариков на стеклянной подложке, но не для массивных образцов, использование которых в технологии создания ФК осложняется из-за структурных нарушений.
550 600 650
Рис. 5. Нормированные спектры отражения ) и пропускания Т (1) фк на основе плёнки
опала при указанных углах падения света 0 на образец.
Рис. 6. Угловая дисперсия брэгговского резонанса первого порядка ФК.
При изучении температурной зависимости е' (Т) диэлектрической проницаемости нанокомпозитов о-№М02, о-№М03 и о-AgI полученных диспергированием указанных ионных соединений в матрице опала, нами обнаружены аномально высокие значения действительной части диэлектрической проницаемости е'[30] в области плавления наночастиц вещества-“го-стя” (рис. 7). Опыты по дифракции нейтронов на системе наночастиц №М02 в пористом стекле [31] позволили подтвердить связь аномального поведения е' с “предплавлением” малых частиц, проявляющимся в резком возрастании амплитуд тепловых колебаний ионов и “размягчении” кристаллической решётки. Мы полагаем, что это “предплавление” может наблюдаться в наночастицах не только сегнетоэлектриков (№М02), но и других твердых электролитов (например, №М03 и AgI) ниже точки плавления “массивного” вещества-“гостя”.
Диспергирование полупроводников в упорядоченной системе полостей диэлектрических матриц опалов приводит к значительной модификации их электрических свойств [32, 33]. Теоретический анализ результатов измерений температурной зависимости проводимости полупроводников, диспергированных в полостях диэлектрической матрицы опала, показывает, что наблюдаемая экспоненциальная температурная зависимость проводимости может быть обусловлена прохождением носителей через потенциальные барьеры, возникающие вследствие неоднородности кристаллической решетки вещества-“гостя” в области минимального сечения токоведущего пути.
Т (К)
Рис. 7. Температурные зависимости действительной части диэлектрической проницаемости нанокомпозитов о-МаМ02 (1), о-МаМ03 (2) и о-AgI (3) на частоте 1 кГц. Стрелками указаны температуры плавления соответствующих "массивных" ионных соединений.
Все исследованные нами образцы нанокомпозиционных материалов на основе опалов (о-1п8Ь, о-Ш, о-РЬ - см. рис. 8) демонстрировали знак термо-э.д.с., характерный для соответствующего полупроводника, полуметалла или металла, диспергированного в полостях матрицы опала, и слабую температурную зависимость удельной термо-э.д.с. S (Т) в интервале 290
- 360 К (рис. 9). С другой стороны, абсолютные значения коэффициентов Зеебека нанокомпозитов о-РЬ и о-Ш примерно вдвое превышают соответствующие значения для веществ в “массивном” состоянии: 50_рь » 2,3 5РЬ, 50_т » 1,5 5^ (в предположении, что по отношению
1 24
к золоту 5РЬ » —2,9 мкВ/К , » _70 мкВ/К). Аналогичное “удвоение” коэффициента
Зеебека наблюдалось и для системы о-1п8Ь. Установленный нами размерный эффект может быть интерпретирован с точки зрения модельных представлений о перестройке спектра электронных состояний в квантово-ограниченных наноструктурах, развитых в теоретических работах [34].
Рис. 8. Электронная микрофотография нанокомпозита о-РЬ, полученного диспергированием свинца в матрице опала.
Т(К)
Рис. 9. Коэффициенты Зеебека нанокомпозиционных материалов о-Те (1), о-РЬ (2), о-1п5Ь (3) и о-Ы (4) при различных температурах.
В заключение отметим, что полученные в работе результаты могут быть использованы также в учебном процессе при подготовке студентов и аспирантов в области физики конденсированного состояния и физики наноструктур [35-37].
Авторы признательны Ю.А. Кумзерову, В.В. Поборчему, С.Г Романову, В.П. Петрановс-кому и С.В. Холодкевичу за предоставление образцов для исследования и помощь в работе, С. Д. Ханину за полезное обсуждение результатов, Ю.Б. Романенко за участие в приготовлении образцов нанокомпозитов, А.А. Гоняну, К.В. Гусеву, Е.Б. Ильиной, Д.А. Петрову, Д.С. Спиридонову и Г.Н. Щесняку за выполнение отдельных экспериментов. Работа поддержана целевой программой "Развитие научного потенциала высшей школы" Федерального агентства образования Российской Федерации.
Литература
1. Богомолов В.Н. Жидкости в ультратонких каналах (Нитяные и кластерные кристаллы) // Успехи физических наук. - 1978. - Т. 124. - № 1. - С. 171-182.
2. Соловьёв В.Г. Исследование оптических, электрических и фотоэлектрических свойств кластерных систем на основе индия и сульфида кадмия в матрицах цеолитов // Автореферат диссертации на соискание ученой степени кандидата физико-математических наук. - Л., 1991. - 14 с.
3. Иванова М.С. Оптические исследования микрокристаллов цеолитов, содержащих одномерные цепи и кластеры полупроводников // Автореферат диссертации на соискание ученой степени кандидата физико-математических наук. - СПб., 1994. - 19 с.
4. Панькова С.В. Создание композиционных материалов на основе регулярных пористых матриц опалов и цеолитов и исследование их диэлектрических и электрических свойств // Автореферат диссертации на соискание ученой степени кандидата физико-математических наук. - СПб., 1998. - 18 с.
5. Соловьёв В.Г. Экспериментальное исследование физических свойств регулярных матричных композитов и слоистых систем с наноструктурированными неорганическими и органическими веществами // Автореферат диссертации на соискание ученой степени доктора физико-математических наук. - СПб., 2005. - 36 с.
6. Bennett J.M., Cohen J.P., Flanigen E.M., Pluth J.J. and Smith J.V. // In "Intrazeolite Chemistry (ACS Symp. Ser. 218)" / Ed. G.D. Stucky, F.G. Dwyer. - American Chemical Society: Washington, DC, 1983. - P. 109118.
7. Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия. - М.: Химия, 2001.
8. Марков В.Н., Соловьёв В.Г. Ячейка для измерения электропроводности игольчатых микрокристаллов // Приборы и техника эксперимента. - 1988. - № 5. - С. 205-206.
9. Марков В.Н., Соловьёв В.Г. Ячейка для измерения электропроводности микрокристаллов цеолитов // Приборы и техника эксперимента. - 1990. - № 5. - С. 232-234.
10.Ганго С.Е., Марков В.Н., Соловьёв В.Г. Ячейка для измерения термо-э.д.с. микрообразцов импульсным методом // Приборы и техника эксперимента. - 1998. - № 6. - С. 123-124.
11.Бондаренко И. К., Марков В.Н., Соловьёв В.Г. Ячейка для исследования термоэлектрических и контактных явлений // Приборы и техника эксперимента. - 2002. - № 3. - С. 137-138.
12.Solov'ev V.G., Ivanova M.S., Ivanova E.N., Kodaira T., Kiyozumi Y. Optical and photoelectric properties of Se/AFI nanocomposite materials // Материаловедение. - 2001. - № 7. - С. 23-24.
13.Kodaira T., Ivanova M.S., Kiyozumi Y., Takeo H., Yamamoto T., Poborchii V.V. Study of polarized absorption spectra of Se chain incorporated into zeolite AFI // Transactions of the Materials Research Society of Japan. - 1996. - V. 20. - P. 470-473.
14.Poborchii V.V., Ivanova M.S., Petranovskii V.P., Barnakov Yu.A., Kasuya A., Nishina Y. Raman and absorption spectra of the zeolites A and X containing selenium and tellurium in the nanopores // Materials Science and Engineering. - 1996. - V. A 217/218. - P. 129-134.
15.Ye J.T., Tang Z.K., Siu G.G. Optical characterizations of iodine molecular wires formed inside the onedimensional channels of an AlPO4 — 5 single crystal // Applied Physics Letters. - 2006. - V. 88. - P. 073114 (1-3).
16.Finger G., Richter-Mendau J., Bulow M., Kornatowski J. On synthesis conditions for tailoring AlPO4 — 5 crystal dimensions // Zeolites. - 1991. - V. 11. - P. 443-448.
17. Trifonov S.V., Ivanova M.S., Markov V.N., Pan’kova S.V., Veisman V.L., Solov’ev V.G. Synthesis and physical properties of single crystals of zeolite-like aluminophosphates of the AFI type // Glass Physics and Chemistry. - 2007. - V. 33. - No. 3. - P. 259-261.
18. Вейсман В.Л., Марков В.Н., Николаева Л.В., Панькова С.В., Соловьёв В.Г. Проводимость монокристаллов цеолитов // Физика твердого тела. - 1993. - Т. 35. - № 5. - С. 1390-1393.
19. Соловьёв В.Г., Вейсман В.Л., Марков В.Н., Ганго С.Е., Иванова Е.Н., Панькова С.В., Сохарева О. Л. Процессы электропереноса в диэлектрических цеолитных матрицах // Материаловедение. - 2001. -№ 8. - С. 22-24.
20. Barnakov Yu.A., Ivanova M.S., Petranovskii V.P., Poborchii V.V., Soloviev V.G. Optical, electric and photoelectric properties of pure and CdS or CuCl cluster doped zeolite single crystals // Stud. Surf. Sci. Catal. -1994. - V.84. - P. 829-836.
21. Gurevk; M. Uber eine rationelle Klassifikation der Lichtstreuenden Medien // Phys. Zs. - 1930. -Bd.31. - S. 753-763.
22. Kubelka P., Munk F. Ein Beitrag zur Optik der Farbanstriche // Z. fur techn. Phys. - 1931. - Bd. 12. -Nr. 11a. - S. 593-601.
23. Ravindran, P., Delin, A., Johansson, B., Eriksson, O., Wills, J. M. Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric NaNO2 // Phys. Rev. B. - 1999. - V. 59. - No. 3. - P. 1776-1785.
24. Balabinskaya A.S., Ivanova E.N., Ivanova M.S., Kumzerov Yu.A., Pan’kova S.V., Poborchii V.V., Romanov S.G., Solov’ev V.G., Khanin S.D. Investigation into the electrical and optical properties of sodium nitrite and sodium nitrate nanoparticles in regular porous matrices // Glass Physics and Chemistry. - 2005. - V. 33. - No. 3. - P. 330-336.
25. Балакирев В.Г., Богомолов В.Н., Журавлёв В.В., Кумзеров Ю.А., Петрановский В.П., Романов С.Г., Самойлович Л.А. Трехмерные сверхрешетки в матрицах опалов // Кристаллография. - 1993. - Т. 38. - № 3. - С. 111-120.
26. Joannopoulos J.D., Meade R.D., Winn J.N. Photonic Crystals: Molding the Flow of Light. - Princeton University Press, 1995.
27. Photonic crystals: Advances in design, fabrication, and characterization / Ed. by K. Busch, S. Lolkes, R.B. Wehrspohn, H. Foll. - Wiley-VCH, 2004.
28. Шабанов В.Ф., Ветров С.Я., Шабанов А.В. Оптика реальных фотонных кристаллов. Жидкокристаллические дефекты, неоднородности.- Новосибирск: Изд-во СО РАН, 2005.
29. Соловьёв В.Г., Романов С.Г., Сотомайор Торрес К.М. Отражение, пропускание и рассеяние света фотонными кристаллами на основе пленок опалов // Известия высших учебных заведений. Физика. -2004. - Т. 47. - № 3. - С. 54-58.
30. Pan’kova S.V., Poborchii V.V., Solov’ev V.G. The giant dielectric constant of opal containing sodium nitrite nanoparticles // J. Phys.: Condens. Matter. - 1996. - V. 8. - No. 12. - L203 - L206.
31. Fokin A.V., Kumzerov Yu.A., Okuneva N.M., Naberezhnov A.A., Vakhrushev S.B., Golosovsky I.V., Kurbakov A.I. Temperature evolution of sodium nitrite structure in a restricted geometry // Phys. Rev. Lett. -2002. - V. 89. - No. 17. - P. 175503 (1-4).
32. Ганго С.Е., Романов С.Г., Соловьев В.Г., Ханин С.Д. Электропроводность регулярных матричных композиционных материалов на основе опалов с наноструктурированными полупроводниками и полуметаллами // Нанотехника. - 2005. - № 2. - С. 22-25.
33. Бондаренко И.К., Марков В.Н. Исследование электрических свойств ультрадисперсного оксида титана // Фундаментальные и прикладные проблемы физики: Тез. докл. III международной научно-технической конференции. - Саранск: Мордовский государственный педагогический институт, 2001. - С. 86.
34. Hicks L.D., Dresselhaus M.S. Effect of quantum-well structures on the thermoelectric figure of merit / / Phys. Rev. B. - 1993. - V. 47. - No. 19. - P. 12727-12731; Thermoelectric figure of merit of a one-dimensional conductor // Phys. Rev. B. - 1993. - V. 47. - No. 24. - P. 16631-16634.
35. Иванова М.С. Дифракция видимого света на трёхмерных периодических структурах // Учебная физика. - 2000. - №1. - С. 56-61.
36. Бершадская А.С., Иванова М.С., Соловьев В.Г. Экспериментальное изучение дифракции видимого света на трёхмерных периодических структурах в учебной физической лаборатории // В помощь учителю и студенту: Методические рекомендации по физике. - Вып. 8. - Псков: ПГПИ, 2001. - С. 49-56.
37. Иванова М.С. Наноструктуры: Учебное пособие. - Псков: ПГПИ, 2001.- 92 с.