Научная статья на тему 'Инвариантные связности с кручением на трехмерной сфере'

Инвариантные связности с кручением на трехмерной сфере Текст научной статьи по специальности «Математика»

CC BY
130
18
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
РИМАНОВО МНОГООБРАЗИЕ / ЛИНЕЙНАЯ СВЯЗНОСТЬ / КРУЧЕНИЕ / ГРУППА АВТОМОРФИЗМОВ

Аннотация научной статьи по математике, автор научной работы — Климова Татьяна Романовна, Сорокина Марина Валерьевна

В геометрии Картана связность Леви-Чивита заменяется метрической связностью с кручением. В результате пространственно-временное многообразие наделяется и кривизной и кручением. В дальнейшем этот подход привел к созданию теории Эйнштейна-Картана. Многочисленные варианты геометризации физических теорий, объединяющих различные виды взаимодействий, приводят к учету кручения. В настоящей работе на трехмерной сфере находятся все метрические связности с кручением, инвариантные относительно группы движений сферы.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Инвариантные связности с кручением на трехмерной сфере»

УДК 514.764.227

Т. Р. Климова, М. В. Сорокина

ИНВАРИАНТНЫЕ СВЯЗНОСТИ С КРУЧЕНИЕМ НА ТРЕХМЕРНОЙ СФЕРЕ

Аннотация. В геометрии Картана связность Леви-Чивита заменяется метрической связностью с кручением. В результате пространственно-временное многообразие наделяется и кривизной и кручением. В дальнейшем этот подход привел к созданию теории Эйнштейна-Картана. Многочисленные варианты геометризации физических теорий, объединяющих различные виды взаимодействий, приводят к учету кручения. В настоящей работе на трехмерной сфере находятся все метрические связности с кручением, инвариантные относительно группы движений сферы.

Ключевые слова: риманово многообразие, линейная связность, кручение, группа автоморфизмов.

Впервые метрическая связность с кручением была построена Э. Картаном на двумерной сфере в рамках предлагаемой им геометризации единой теории гравитации и электромагнетизма [1]. В настоящей работе на трехмерной сфере находятся все метрические связности с кручением, инвариантные относительно группы движений сферы.

1. Пусть М - гладкое л-мерное многообразие, (х1) - локальные координаты на М, д (д^) - риманова метрика на М , V (Г|) - связность Леви-Чивита, V(г* ) - метрическая связность с кручением 5 (Эк-) Ф о, Т(Т-) - тензор деформации связности V. Тогда

ек _ т^к т^к т^к _ т-к . гг,к . ок _ „

=1 а 1 п , га =1 а+ , + =0 •

Кроме того, согласованность связности V с метрикой д имеет место тогда и только тогда, когда компоненты Т^к = Т?дкр тензора деформации кососимметричны по последним двум индексам [2]. Действительно, в локальных координатах имеем

^д^ - дркг р - д]ргрк = 0 (1)

или

д{д]к - дркГр - д]рГ1к - дркТ-р - д]рТгк = 0,

откуда

дрТ+дрЧ = о,

т. е.

Тук + Тк = 0,

что и доказывает наше утверждение. Циклируя (1), получим еще два равенства

9 - др? рк- дркг р = 0 9 д - дР]г р - дрг р =

Складывая два первых равенства и вычитая последнее, получим

(д* + 9-) = дрк(гр + г+ дрк(грк -гр) д-р(гр* -гр),

или

9ри(Г? + Г? + 8?г) = (Э+ Эди - Эд) + д^? + д,

откуда

2др*гр = (Э + Эди -Эд) + д?к8? + д?8? + д^р,

поэтому

9ркГр = +8ук + 8кд + 8Щ )

и

г Р = гРр + А( 8? + 8? + 8?).

Отсюда получаем выражение тензора деформации через тензор кручения:

Тк = !(8к + 8^ + 8к )

и

Циклируя (2), получим

Тук = ~(8ук + 8ку + 8Щ ). (2)

Т]И = ~ (8к + 8Цк + 8Ид ).

Складывая последние два равенства и учитывая косую симметрию тензора кручения по первым двум индексам, получим выражение тензора кручения через тензор деформации:

8г]к = Тук + ТМ •

2. Векторное поле ) является инфинитезимальным движением риманова пространства V = (М, д) тогда и только тогда, когда производная Ли от метрического тензора вдоль £ равна нулю: Ь^д = О. Как следствие нетрудно получить [3], что и Ь^у = 0. Потребуем, чтобы любое движение сохраняло и связность V:Ь^Ч = О, что равносильно равенству Ь^Т = О или Ь^8 = О.

Уравнения движений (уравнения Киллинга) имеют вид [3]:

+ %>Л = О, (3)

где ^ = , Ц = 4-^. Равенство нулю производной Ли от тензора деформации запишем в ковариантных производных

^ ?Тт + Чг ^к + V ; +Чк %?Тъ = О

или

^?Тт + Ъ (Т^ + Щд^ + ^Ц? ) = О,

(4)

где 5г- - символ Кронекера; дг - контравариантные компоненты метрического тензора

д: дг^?д? = 5г.

Пусть Vп является римановым пространством постоянной секционной кривизны и,

п (п +1)

следовательно, допускает группу движений О размерности г = -

2

■. Тогда равенства

(4) должны выполняться при любых и ^, удовлетворяющих (з). Поэтому из (4) следует

= О (5)

и

(6)

^д^к +5^^ +5^? -Цд?Тф-5)дгТк-51дг?Тф = О.

Умножая (6) на дгдтд и учитывая косую симметрию компонентов тензора деформации по последним двум индексам, получаем равносильные (6) соотношения:

дИТщк -д]1Т(кт + дк1Тут -дтТЦк + дтТк1 -дктТу1 = О (7)

Из (7) следует [4], что если риманово пространство V11, п Ф 3, допускает группу движений максимальной размерности, то оно не имеет инвариантного кручения.

3. Рассмотрим случай п = 3 . Классическим представителем риманова пространства постоянной кривизны является сфера. Существует система координат, в которой метрика 8 3 имеет вид

с1з2 =-

Сх12 + Сх22 + Сх32

1 + -(х12 + х22 + х32

(8)

где к = —, Я - радиус сферы. Подставим компоненты метрического тензора Я

дц =

1 + -(х12 + х22 + х32

в (7), получим

5йТщк-5]1Ткт + 5к1Тут -5тТЦк + 5тТШ-5ктТу1 =

(9)

(1О)

Условия (1О) должны выполняться тождественно. Непосредственной проверкой для различных серий индексов получаем, что тензор деформации в этом случае кососиммет-ричен по всем индексам. Следовательно, тензор деформации связности V имеет только одну существенную компоненту .

Далее, интегрируя уравнения движений

I?д p9ij + ¿11 P9pi + ¿ j I P9ip = 0,

Pi j' yp

(11)

находим базисные векторные поля алгебры Ли инфинитезимальных движений метрики (8). Они имеют вид

X = Г1 - к (-х12 + х 22 + х32) 1Э1 + —х1 х 2Э2 + —х1 х 3Э3, 1 ^ 4 ) 1 2 2 2 3

X2 = 2x2x 1Э1 + ^ 1 -4(x12 - x22 + x32)j¿2 + kx3x%,

X3 = 2x3x 1Э1Э3 + kx3x2Э2 + ^ 1 -4(x12 + x22 - x32) j,

X12 = x 2Э1 - x 1Э2, X13 = x 3Э1 - x 1Э 3,

X23 — x ¿2 x д 3 •

(12)

Запишем условия инвариантности тензора Т относительно группы движений в координатах:

£lBlTijk +di llTjk +д j llTilk +дк — о.

(13)

С учетом косой симметрии тензора Т , по всем индексам распишем уравнения (13) для операторов (12). Получим систему уравнений в частных производных

1 + 4(x12 - x22 - x32) jd1T123 + 2x1 x2d2T123 + 2x1 x3d3T123 + 3kx 1T123 — о 2x1 x2d1T123 + ^ 1 + 4(-x12 + x22 -x32)jd2T123 + 2x2x3d3T123 + 3kx2T123 — о 2x1 x3d1T123 + 2x2x3d2T123 + ^ 1 + 4(-x12 -x22 + x32) jd3T123 + 3kx3T123 — о

x ¿1^123 x ¿2^123 — о

x ¿1^123 x д3T123 — о x ¿2^123 x ¿3T123 — о

(14)

Интегрируя последние три уравнения системы (14), находим, что

T123 — T123 (x + x + x ) .

(15)

Подставляя (15) в первые три уравнения системы (14), находим общее решение системы (14):

T —

123

123

(1+4(

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

—I x12 + x22 + x32

3

где c — const .

Поднимая последний индекс, получаем

c3

T2 = ь Cl2-(17)

1 + —(х12 + X22 + X3

4 (х12 + X22 + х32)

Коэффициенты связности Леви-Чивита на сфере имеют вид

к((-8kXj j

2^ 1 + 4(х12 + X22 + X32 ))

Гк -—-• (18)

Следовательно, компоненты метрической связности с кручением, инвариантной относительно группы движений на трехмерной сфере, согласно (17) и (18), определяются формулами:

г к =

У

к(хк - bkXj - §кX,) + 2сшЬ1к

2 ^ 1 + 4 (x 12 + x22 + x32 ))

Таким образом, полученная нами связность однозначно определяется двумя постоянными - кривизной к = Я- и кручением К= с.

Список литературы

1. Гордеева, И. А. Многообразия Римана-Картмана / И. А. Гордеева, В. И. Паньженский, С. Е. Степанов // Итоги науки и техники. Сер.: Современная математика и ее приложения. Тематические обзоры. - 2ОО9. - Вып. 123. - С. 11О-141.

2. Яно, К. Кривизна и числа Бетти / К. Яно, С. Бохнер. - М. : ИЛ, 1957. - 152 с.

3. Эйзенхарт, Л. П. Непрерывные группы преобразований / Л. П. Эйзенхарт. - М. : ИЛ, 1947. -359 с.

4. Паньженский, В. И. Максимально подвижные римановы пространства с кручением / В. И. Паньженский // Математические заметки. - 2ОО9. - Т. 85, № 5. - С. 754-757.

Климова Татьяна Романовна

студентка,

Пензенский государственный университет E-mail: tvoechudo94 @gmail.com

Сорокина Марина Валерьевна

кандидат физико-математических наук, доцент, кафедра математического образования, Пензенский государственный университет E-mail: sorokina_m@list.ru

Klimova Tat'yana Romanovna

student,

Penza State University

Sorokina Marina Valer'evna

candidate of phisical and mathematical sciences, associate professor,

sub-department of mathematical education, Penza State University

УДК 514.764.227 Климова, Т. Р.

Инвариантные связности с кручением на трехмерной сфере / Т. Р. Климова, М. В. Сорокина // Вестник Пензенского государственного университета. - 2016. - № 2 (14). - С. 91-95.

i Надоели баннеры? Вы всегда можете отключить рекламу.