Научная статья на тему 'INTEGRAL BELGI OSTIDA ARALASH MAKSIMUMLI DIFFERENSIAL TENGLAMALAR UCHUN SHARTLI BOSHLANG’ICH MASALA'

INTEGRAL BELGI OSTIDA ARALASH MAKSIMUMLI DIFFERENSIAL TENGLAMALAR UCHUN SHARTLI BOSHLANG’ICH MASALA Текст научной статьи по специальности «Гуманитарные науки»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Boshlang’ich shart / vector funksiyasi / cheklangn yopiq to’plam / differensial tenglama / yevklid normasi / matematik induksiya metodi. / Initial condition / vector function / finite closed set / differential equation / Euclidean norm / mathematical induction method.

Аннотация научной статьи по Гуманитарные науки, автор научной работы — Uzoqbayev A.H.

Ushbu maqolada quyidagi chiziqli bo’lmagan maksimumli differensial tenglama uchun boshlang’ich masala ,Chiziqli bo’lmagan filtrlash masalasini sonli yechib cho’kmaning oshib borishi ham monoton ortib borishi ko’rsatildi., integral belgi ostida aralash maksimumli differensial tenglamalar uchun ulash shartli boshlang’ich masala, o’rganilgan.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

AN INITIAL PROBLEM WITH A CONNECTION CONDITION FOR MIXED MAXIMAL DIFFERENTIAL EQUATIONS UNDER THE INTEGRAL SIGN

In this article, the initial problem for the following nonlinear maximum differential equation is 3. By numerically solving the nonlinear filtering problem, it was shown that the increase in precipitation also increases monotonically. initial issue, studied.

Текст научной работы на тему «INTEGRAL BELGI OSTIDA ARALASH MAKSIMUMLI DIFFERENSIAL TENGLAMALAR UCHUN SHARTLI BOSHLANG’ICH MASALA»

Uzoqbayev A.H. Assistent.Jizzax Politexnika institute

INTEGRAL BELGI OSTIDA ARALASH MAKSIMUMLI DIFFERENSIAL TENGLAMALAR UCHUN SHARTLI BOSHLANG'ICH MASALA

Annotatsiya: Ushbu maqolada quyidagi chiziqli bo'lmagan maksimumli differensial tenglama uchun boshlang'ich masala ,Chiziqli bo'lmagan filtrlash masalasini sonli yechib cho 'kmaning oshib borishi ham monoton ortib borishi ko'rsatildi., integral belgi ostida aralash maksimumli differensial tenglamalar uchun ulash shartli boshlang'ich masala, o'rganilgan.

Kalit so'zlar: Boshlang'ich shart, vector funksiyasi, cheklangn yopiq to 'plam, differensial tenglama, yevklid normasi, matematik induksiya metodi.

Uzokbayev A.H. Assistant. Jizzakh Polytechnic Institute

AN INITIAL PROBLEM WITH A CONNECTION CONDITION FOR MIXED MAXIMAL DIFFERENTIAL EQUATIONS UNDER THE

INTEGRAL SIGN

Abstract: In this article, the initial problem for the following nonlinear maximum differential equation is 3. By numerically solving the nonlinear filtering problem, it was shown that the increase in precipitation also increases monotonically. initial issue, studied.

Keywords: Initial condition, vector function, finite closed set, differential equation, Euclidean norm, mathematical induction method.

x'(t) = F(t, x(t), max {x(r) | r e[ f | g]}), t e [0; T]

Bizga quyidagicha boshlang'ich shart berilgan

x(0) = p0<(x>

Bu yerda x e X ^ Rn noma'lum vector funksiyasi, X -cheklangn yopiq to'plam

0 < f = f ^t, J K(t, x(s))ds j < T 0 < g = g ^t, J Q(t, s, x(s))ds

t

x(1) (t) = A + J F(s, x(1) (s), max {x(1) (r) | r e [ f(1), g(1) ]})ds, t e T(1), 0

t

x(2) (t) = B + JF(s, x(2) (s), max {x(2) (r) | r e [g(2), f(2) ]})ds, t e T(2),

< T

(1) Boshlang'ich shartdan foydalanib, (3) quydagicha ko'rinishga keltiramiz

мЭкономнка h ^uyM" №9(124) 2024

www.iupr.ru

392

x(1)(t) = I (x(1); t) = % +

t

-J F(s, x(1) (s), max {x(1) (r) | r e [f(1), g(1) ]})ds, t e T(1),

t

+JF (s,x'''(s),max{x(1)(r) | r e I

0

(4) differensial tenglamada B koeffesentni topish uchun qo'shimcha shart kiritib olamiz

x(2) (+1) = ax(1) (-1), a - const.

(3) Va (6) asosida (4) ni quyidagicha yozamiz

*

x(2) (t) = J (x(2); x(1); t) = ax(r> (t) + t

+J F (s, xw(s),max {x(2)(r)| r e|

0

Keling isbotlaylik.

Lemma . Quyidagilar o'rinli bo'lsin

1. 0 < f(t, y) < g(t, y) < T, t e T(1), y = 0

2. F(t, x, z) e C(T(1) x X x X) nBnd(Mx) nLip(L1|x z)

t

-JF(s, x(2)(s),max {x(2)(r) | r e [g(2), f(2) ]})ds, t e T(2),

-(i).

3. f(t, y) e C (T(1) x Rn) nLip(L2y);

4. g(t, y) e C(T(1) x Rn) n Lip(L3|y);

5. K(t, s, x) e C(T(1) x T(1) x X ) n Lip(px (t, s));

6. Q(t, s, x) e C(T(1) x T(1) x X) n Lip(P2|x(t, s)); Bu yerda || yevkelid normasi Rn sohada.

T(1) segmentda (5) differensial tenglamaning yagona yechimi mavjud.

Isbot. T(1) segmentda (5) differensial tenglama uchun integral jarayon

quyidagicha tuziladi.

x0(1)(t) = x0, xk) = I(xk+1(1);t), k e N0

Bu yerda N = u{0}, N -natural sonlar to'plami.

x-,

(1)

(t), k e N ketma-ketlik X ^ Rn sohaga tegishli.

Biz quyidagicha belgilashlarni olamiz

PiU1(t) = \\xt0)(t)-x,.-1(j)(t)|, fkU) = f ft, jK(t,s,xku)(s))ds ,

V 0 J

f t \ qk(j)(t) = qI t, JQ(t,s,xk(j)(s))ds I, k = 1,2,.....

pir(j) (t) = ||max {x(j) (r) | r e fj) | q(j) ]} - max {x') (r) | r e [f-/j) | qjj) ]} Pi[i]( j) (t) = 11max {x(j) (r) | r e fj) | q(j) ]} - max {x^ j) (r) | r e fj) | q(j) ]}|

(8) shartdan foydalanib, (14) ni k = 1 uchun quyidagicha olamiz

t

P2(1)(t) < L J[p1(1)(s) + Pr(1)(s)>, t e T(1) 0

Chunki

'^KOHOMHKa h соцнумм №9(124) 2024

www.iupr.ru

393

p(1)(t) < max {p(1)(t) \ t e T(1)} < Mt

U holda (15) quyidagicha ko'rinishga ega bo'ladi

Pz(1)(t) < 2MlLl -, t e T(1)

Xuddi shunday (15) ni (14) da к = 2 dan kelib chiqib quyidagicha olamiz

t

P3(1)(t) < L j[pz(1)(s) + Pzr(1)(s)]ds, t e T(1)

g

(17) ning o'ng tomonidagi ifoda uchun ikkinchi shart asosida quyidagicha baho o'rinli

P2r(1)(t) <

P

(1)

2r [2]

(t ) + Pzr [l](1)(t) _

t eT

(l)

(17) ni hisobga olgan holda , (18) ning o'ng tomonini birinchi shart asosida quyidagicha baholaylik

Pzr[2](1)(t) < 2MlLl -, t e T(1)

(9)-(13) va (17) hisobga olgan holda, (18) ning o'ng tomonini ikkinchi shart asosida quyidagicha baholaylik

(1)- ?l(1)

P r[2](1)(t ) < Ml [| fz(1) - fl(1) I +

t

< Ml j [L, IIP (t, s)|| + L31P2 (t, s)||]P2(1) (s)ds

G

< Mßß max {p(1)(t)\ t e T(1) }<

<

12

< 2M2 L-, t e T(1) 1 1 2

(18) ga (19) va (20) almashtirishlarni olib, quyidagini hosil qilaylik

12

P2r(1)(t) < 2MlLl(1 +Mlß)-, t e T(1)

U holda (17) quyidagicha ko'rinishga keladi

13

P3r(1)(t) < 2MlLl(2 + Mlß)-, t e T(1)

Xuddi shunday (17)-(21) к = 3 uchun olamiz .

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

P4

(1)

I

(t ) < Li j

2 max P (1)(s)

G < s < t < t ! +

+M1ß max ^p3 r (1)(s)

G < s < t < t !

ds <

< 2M1L31(2 + Mß)2 —, t e T(1)

Ushbu jarayonni davom ettirib, V, e uchun to'liq matematik induksiya

metodidan foydalanib, quyidagini olamiz

^+1

pk+l(1)(t ) < IM1L 1(2 + Mlß)

к-1

(к + l)!

t eT(1)

2

2

G

4

"Экономика и социум" №9(124) 2024

www.iupr.ru

394

(22) da {xk(1)(t)} ketma-ketlik t da bir xilda yaqinlashishini ko'ramiz. Bundan

kelib chiqadiki, {xk(1)(tx(1)(t) uchun k ^«bo'lsa, x(1)(t) (5) tenglamaning

yechimi, demak, (5) sistemaning yechimi mavjudligini isbotladik. Endi biz bu yechimning yagona ekanligini isbotlaylik. Xuddi shunday (5) differensial tenglama boshlang'ich shartga ko'ra T(1) segmentda boshqa y(t) e X1 yechimga ega bo'lsin. y(t) va ketma-ketlik x(1)(t), k e N0 larni farqini ko'raylik, ular uchun quyidagicha baho o'rinli

tk+1

||y(t) - xk(1)(t)|| < 2MlLkl(2 + M^)k-1 ^^, t e T(1)

(23) da quyidagicha ko'rinishga keladi ||y(t) - xk(1)(t)||

k da teng ravishda t e T(1). T(1) segmentda (5) differensial tenglama yagona yechimga ega bo'ladi.

ADABIYOTLAR;

1. Uzoqboyev, Azizbek, Sarvar Abdullayev, and Nematillo Abriyev. "ROBOTOTEXNIK MEXANIZMLARNING MAXSUSLIKLARINI IZLASHDA MATRITSAVIY USULNING QO'LLANISHI." Eurasian Journal of Mathematical Theory and Computer Sciences 3.1 (2023): 92-100.

2. Uzoqbayev, Azizbek, Abbos Samandarov, and Kamoliddin Ne'matov. "ROBOTOTEXNIK MEXANIZMLARNING MAXSUSlKLARINI TOPISH ALGORITMI." Eurasian Journal of Academic Research 3.1 Part 6 (2023): 150153..

'^KOHOMHKa h ^uyMM №9(124) 2024

www.iupr.ru

395

i Надоели баннеры? Вы всегда можете отключить рекламу.