Научная статья на тему 'MAKSIMUM BELGISI OSTIDA FUNKSIONAL PARAMETRNI O’Z ICHIGA OLGAN TENGLAMALAR SISTEMASI UCHUN BOSHLANG’ICH MASALA'

MAKSIMUM BELGISI OSTIDA FUNKSIONAL PARAMETRNI O’Z ICHIGA OLGAN TENGLAMALAR SISTEMASI UCHUN BOSHLANG’ICH MASALA Текст научной статьи по специальности «Математика»

CC BY
11
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
boshlang’ich shart / integro-defferensial tenglamalar tizimi / funksional parametr / Inter jarayonini / cheklangan yopiq ko’phadlar / segment / initial condition / system of integro-differential equations / functional parameter / Inter process / limited closed polynomials / segment

Аннотация научной статьи по математике, автор научной работы — Abdusaidov S.U., Abriyev N. T.

Ushbu maqolada turlarning chiziqli bo’lmagan integro-defferensial tenglamalar sistemasi ko’rib chiqiladi

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

AN INITIAL PROBLEM FOR A SYSTEM OF INTEGRODIFFERENTIAL EQUATIONS CONTAINING A FUNCTIONAL PARAMETER UNDER THE SIGN OF THE MAXIMUM

The system of non-linear integro-differential equations of species is considered in this article.

Текст научной работы на тему «MAKSIMUM BELGISI OSTIDA FUNKSIONAL PARAMETRNI O’Z ICHIGA OLGAN TENGLAMALAR SISTEMASI UCHUN BOSHLANG’ICH MASALA»

Abdusaidov S. U. Assistant Jizzax Politexnika instituti Abriyev N. T. Assistant Jizzax Politexnika institute

MAKSIMUM BELGISI OSTIDA FUNKSIONAL PARAMETRNI O'Z ICHIGA OLGAN TENGLAMALAR SISTEMASI UCHUN BOSHLANG'ICH MASALA

Annotatsiya : Ushbu maqolada turlarning chiziqli bo 'Imagan integro-defferensial tenglamalarsistemasi ko'rib chiqiladi

Kalit so'zlar boshlang'ich shart, integro-defferensial tenglamalar tizimi, funksional parametr, Inter jarayonini, cheklangan yopiq ko'phadlar, segment

Abdusaidov S.U. Assistant

Jizzakh Polytechnic Institute Abriyev N.T. Assistant

Jizzakh Polytechnic Institute

AN INITIAL PROBLEM FOR A SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS CONTAINING A FUNCTIONAL PARAMETER UNDER THE SIGN OF THE MAXIMUM

Abstract: The system of non-linear integro-differential equations of species is considered in this article.

Keywords: initial condition, system of integro-differential equations, functional parameter, Inter process, limited closed polynomials, segment

Ushbu maqolada turlarning chiziqli bo'lmagan integro-defferensial tenglamalar tizimi ko'rib chiqiladi.

i t \

x'(t) = F

t, x(t), J K (t, 0) max {x(r) | r e[0- h;0]} dd, u(t)

t > 0 (1)

Quydagicha boshlang'ich shart berilgan

x(t) = cp(t), t e E0 = [-a, 0] (2)

Bu yerda x e X c Rn vektor holati , u eU œ Rm funksional parameter X, U cheklangan yopiq ko'phadlar , h = h(t,x(t), u(t ) ) kechikish T vaqtiga bog'liq ,

kerakli x(t) funksiyadan va u (t) funksional parametrdan, K (t, 6) {0 < 6 < t < T} shu oraliqda uzluksiz n x n matrissali-funksiya, t - h(t, x, u) > -a0 = const,

maxsimum. Quydagi ifodani soddalashtirish uchun biz quydagi belgilashni qabul

qildik.

t

p = JK(t,6)max{x(r) | r e [6- h;6]}16,hm = h(6,xm (0),u(0)),

0

t t pm = J K (t, 6) max {xm (r) | r e [6 - hm; 6]} d6, J ||K (t, 6)\\l6 < a < « 0 0 Keling, nima sodir bo'lishini isbotlaylik Teorema. Quyidagilar o'rinli bo'lsin:

1 F(t,x,p) e C([0;T] x X x Rn x U) n Bnd(M) n Lip(LyXp); (3)

2 t - h (t, x, u )>-a0= const (4) Va h (t, x, u ) e C ([0; T ] x X x U) n Lip (L2/x ) (5) 3.^(t) e Lip (L3) (6) Bu yerda X = {x e Rn ||x - <p(0< r}, r = max {||p(t) - <p(0t e ^0}.

Keyin

0; t

, t < T segmentda (2) boshlang'ich shart bilan x(t) e Xfunksiyaning

yagona yechimi mavjud.

Isbot. Biz ketma-ket yondashuvlar yordamida (1) tenglamani (2) ga aylantiramiz.

x0(t) = p(t),t e E0,x0(t) = p(t),t > 0 xm+i(t) = p(t),t e E0,m = 0,1,2,...

x

m+1

t

(t) = <(t) + J F (6, xm (6), Pm (6), u(6)) d6, t > 0

(7)

Barcha yondashuvlar X t

0; t

da qolishiga ishonch hosil qilish qiyin emas.

Inter jarayonining farqini baholaymiz (7) da . x1(t) - x0(t) farqi uchun (3) hisobga olinsa , biz quydagicha baholaymiz.

(t) - x0 (t)|| < Mt, t

e

0; t

Bundan tashqari farq uchun x2 (t) - x1 (t) bizda bor

t

||x1(t) - x0(t < L1J (I x1(6) - x0(6)|| + ||p(6) - P0(6)||)d6.

(8)

(9)

0

Baholash uchun p (t) - p0 (t) biz bu faгqni quydagicha yozamiz

t

Pi(t ) - Po(t ) = J K ( t ,e)(max { Xi(r ) j r e[e - ^;в]]-

- max {X (r ) j r e[e - h0 ;в]]^в = J K ( t ,e)(max {x (r ) j r e[e - h ;в]]-

0

- max {x0 (r ) j r e[e - h ;в]]) - (max {x0 (r ) j r e[e - h ;в]] -

- max { x0 (r )j r e[e- ho;e]])de. (10)

(S) tenglikning biгinchi fa^i uchun (10) hisobga olinsa, quydagicha olish mumkin

max {X (r) j r e [t - h ; t ]]-max {x0 (r)j r e [t - h ; t ]] <

< I j max {( X (г) - х0 (r )) j r e[t - \ ; t ]] < Mt

max {X (г) j г e[t - h ; t]] = max {(x (г) - x0 (г) + x0 (г)) j г e[t - h0 ; t ]] <

< max {(x (r) - x0 (r))j r e[t - h ; t]] + max {x0 (r)j r e[t - h ; t ]] max {X (r) j r e [t - h ; t ]]-max {x0 (r) j r e [t - h ; t ]]<

< max {(X (r) - X0 (r)) j r e[t - h ; t]]<

< max {(X (r) - X0 (r)) j r e[t - h ; t]]

max {X0 (r) j r e [t - h ; t ]]-max {x (r) j r e [t - h ; t ]]<

< max {(Xq (r) - x (r)) j r e[t - \ ; t]], t > 0 Xuddi shunday, biz quyidagi natijani olamiz

max {x (r) j r e[t - h ; t]]- max {x (r) j r e[t - h ; t ]]<

< max {(Xq (r) - x (r)) j r e[t - \ ; t]], t > 0

Ushbu tengsizlikni chap va o'ng qismidan maksimum t ni olib , biz isbotlashni, istalgan tengsizlikni qo'lga kiritamiz. (4)-(6) ni hisobga olgan holda , o'ng tengsizlikdagi ikkinchi faгq uchun quyidagi fa^ni olamiz.

0

max Ix0 (r) I r g[í - \ ; t]}- max jx0 (r) | r g [t - h0 ; t]}||< < L \\h(t, X (t), u(t)) - h(t, x0 (t), u(t))|| < ML2 J x (t ) - x0 (t )|| < M2 L2t, M = max IM, L3} pl(t)p)|| < Ma(l+ML2)t

Shuning uchun

||Pl(t ) -PG« )|| < Ma(l+ML2)t

Keyin (9) quyidagicha yoziladi:

t

X (t ) — x (t )|| < L { M [l + a(l + ML2 )]вdв = LXM [l + a(l + ML2 )]

G t

X3(t) — x2(t)|| < A {(Ix2(в) — хв)! + p2 (в) — Pl(в)ув <

t_ 2!

< Ll

l + a(l +

Xl' (в)

L

t

{ LM [l + a(l + ML2 )

в dв = 2!

2 t З!

= L2 M [l + a(l + ML2 )

X3

(t) - X2(t ) farqni quydagicha olamiz

t

11X3 (t) — X2 (t)|| < Ll { (||X2 (в) — Xl (в)|| + P2 (в) — Pl (в)<

t в < Ll j(| X2(в) — Xl^l + {|| K (9¿)\

G G

[||maxIx2(r) I r g [^ — h2,— max (Xl(r)I r g [^ — h2,£]}|| +

max Ix (r)I r g [^ — h2, — max (x (r)I r g [^ — \, £]}||^^в <

+

= L2 M

l + a(l + ML2 )

21_

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

З!

Demak, ushbu baholashlardan m da ||z(t) - xm (t)|| ^ G manashu G; t segmentdagi t da teng ravishda ko'rinadi. Shundan kelib chiqadiki, Ixm (t)}

ketma-ketligini talab qiladigan (l) tenglamaning yechimi yagona.

G; t

segmentida

G

G

Teorema isbotlandi.

Adabiyotlar

1 . Efendiev M., Vougalter V. Solvability of some integro-differential equations with drift. Osaka J. Math. 2020. 57, 247-265.

2 El-Sayeda A.M.A., Aahmedb R.G., Solvability of the functional integro-differential equationwith self-reference and state-dependence. Journal of Nonlinear Sciences and Applications. 2020. 13. p. 1-8.

i Надоели баннеры? Вы всегда можете отключить рекламу.