Научная статья на тему 'INFRASPECIES COMPLEX OF THALASSIOSIRA INCERTA (BACILLARIOPHYTA) FROM HOLOCENE DEPOSITS OF TAGANROG BAY (SEA OF AZOV): THALASSIOSIRA INCERTA VAR. STRELNIKOVAE VAR. NOV. AND THALASSIOSIRA INCERTA VAR. FLUVIALIS VAR. NOV'

INFRASPECIES COMPLEX OF THALASSIOSIRA INCERTA (BACILLARIOPHYTA) FROM HOLOCENE DEPOSITS OF TAGANROG BAY (SEA OF AZOV): THALASSIOSIRA INCERTA VAR. STRELNIKOVAE VAR. NOV. AND THALASSIOSIRA INCERTA VAR. FLUVIALIS VAR. NOV Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
35
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ALGAE / DIATOMS / HOLOCENE / MORPHOLOGY / TAXONOMY / RUSSIA

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Kovaleva G.V., Gogorev R.M., Nazarenko A.V.

New data on the morphology of Thalassiosira incerta, one of the most abundant species of the genus Thalassiosira in the Holocene deposits of the Sea of Azov, are presented. New varieties, T. in-certa var. strelnikovae Kovaleva et Gogorev, var. nov. and T. incerta var. fluvialis Gogorev et Kovaleva, var. nov., are described. They are morphologically similar to the type and differ mainly by the presence of a rosette of large areolae around the central fultoportulae and the areolae density on a valve.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «INFRASPECIES COMPLEX OF THALASSIOSIRA INCERTA (BACILLARIOPHYTA) FROM HOLOCENE DEPOSITS OF TAGANROG BAY (SEA OF AZOV): THALASSIOSIRA INCERTA VAR. STRELNIKOVAE VAR. NOV. AND THALASSIOSIRA INCERTA VAR. FLUVIALIS VAR. NOV»

Infraspecies complex of Thalassiosira incerta (Bacillariophyta) from Holocene deposits of Taganrog Bay (Sea of Azov): Thalassiosira incerta var. strelnikovae var. nov. and Thalassiosira incerta var. fluvialis var. nov.

G. V. Kovaleva1, R. M. Gogorev2, A. V. Nazarenko1

'Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, Russia 2Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia Corresponding author. G. V. Kovaleva, kovaleva_galina@mail.ru

Abstract. New data on the morphology of Thalassiosira incerta, one of the most abundant species of the genus Thalassiosira in the Holocene deposits of the Sea of Azov, are presented. New varieties, T. incerta var. strelnikovae Kovaleva et Gogorev, var. nov. and T. incerta var. fluvialis Gogorev et Kovaleva, var. nov., are described. They are morphologically similar to the type and differ mainly by the presence of a rosette of large areolae around the central fultoportulae and the areolae density on a valve.

Keywords: Thalassiosira, algae, diatoms, Holocene, morphology, taxonomy, Russia.

Внутривидовой комплекс Thalassiosira incerta (Bacillariophyta) из голоценовых отложений Таганрогского залива (Азовское море): Thalassiosira incerta var. strelnikovae var. nov. и Thalassiosira incerta var. fluvialis var. nov.

Г. В. Ковалева1, P. M. Гогорев2, А. В. Назаренко1

'Южный научный центра РАН, Ростов-на-Дону, Россия

2Ботанический институт им. В. Л. Комарова РАН, Россия Автор для переписки. Г. В. Ковалева, kovaleva_galina@mail.ru

Резюме. Представлены новые данные о морфологии Thalassiosira incerta, одного из наиболее массовых видов рода Thalassiosira в голоценовых осадках Азовского моря. Описаны новые для науки разновидности T. incerta var. strelnikovae Kovaleva et Gogorev и T. incerta var. fluvialis Gogorev et Kovaleva, морфологически сходные с типовой и отличающиеся, главным образом, присутствием на створке розетки крупных ареол вокруг центральных выростов и частотой ареол.

Ключевые слова: Thalassiosira, диатомовые водоросли, голоцен, морфология, таксономия, Россия.

The geological history of the Sea of Azov as an independent marine basin began in the first half of the Holocene (approximately 6.5-7.0 thousand years ago). During its entire existence, significant fluctuations of climate and hydrological-hydrochemical conditions (transgressive-regressive phases) occurred repeatedly in the Sea of Azov. The changes affected the diatom taxonomic composition. During the last decade, researchers have accumulated new data on biostratigraphy (diatoms and pollen) and

https://doi.org/10.31111/nsnr/2021.55.135

35

the absolute age of the Sea of Azov sediments (Kovaleva, 2007; Matishov et al., 2007, 2016; Kovaleva, Zolotareva, 2013; Kovaleva et al., 2015, 2017).

Previously published data focus only on the open sea; however, recently, new data on diatoms of the Taganrog Bay bottom sediments have been obtained (Kovaleva, Naza-renko, 2019). The study of these deposits (with ages from the present to 5.5 thousand years ago) has resulted in the identification of 55 species and 5 varieties from 29 diatom genera. Additionally, dinoflagellate cysts, chrysophycean stomatocysts and the ebriid Ebria tripartita (Schum.) Lemmerm. were observed in several layers of the core.

Overall, the diatom species composition in the axial part of the Taganrog Bay and registered in Tz-VII core is similar to the previously studied flora from the cores sampled from the open sea (Kovaleva, Nazarenko, 2019). We determined significant differences between the open sea and the bay in the distribution of the dominant diatom species. While the layers with different varieties of Actinocyclus octonarius Ehrenb. dominate in the New Azov sediments of the open sea, there are only single valves of the mentioned species in the bay (mainly, the valve fragments). Unlike in the cores from the open sea, we registered varieties of A. octonarius in the bay only in the Ancient Azov layers.

Two species of the genus Thalassiosira, T. incerta I. V. Makarova and T. decipiens (Grunow) E. G. Jorg., were the most abundant in core Tz-VII. We relate the abundance maxima of these two species to transgressive stages (Kovaleva, Nazarenko, 2019).

The ecology of Thalassiosira incerta in the recent reservoirs has been rather well studied (Okhapkin et al., 2016). It is a brackish-water species that inhabits both marine and estuarine waters, although the ecosystem optimum of T. incerta is related to the purely fluvial conditions of large non-regulated rivers with mineralization of >500 mg/l. According to published data (Okhapkin et al., 2016), the intensive decrease in water exchange and current velocity (in the case of similar hydrochemical parameters) leads to a decrease in biomass and the replacement of T. incerta with other planktonic species. This allows us to suggest that the layers with high abundances of T. incerta were accumulated during the period when the reservoir, located on the territory of the current Taganrog Bay, was a full-water running water body with high current velocity (Kovaleva, Nazarenko, 2019).

The second important indicator group in core Tz-VII is the Chaetoceros Ehrenb. resting spores. We reliably identified only two species: C. lorenzianus Grunow and C. rigidus Ostenf., the spores of which have specific diagnostic features. We identified other Chaetoceros spores only to the genus level, and we consider them as a single indicator group (Kovaleva, Nazarenko, 2019).

Apart from the taxa described above, core Tz-VII often contains the pennate diatom species of Navicula Bory, Nitzschia Hassall, Tryblionella W. Sm., etc., typical of benthos and periphytic biotopes. We relate this fact to the shallowness of the bay and the proximity of the coast with substrates suitable for the development of these ecological groups. As the occurrence of pennate diatoms in the bottom sediments is low and they reached noticeable abundance only in the upper layers, we do not consider them a significant indicator group (Kovaleva, Nazarenko, 2019).

We traced several stages of the sea level rise and fall during the last 6000 years in the Sea of Azov region that influenced changes in microalgal species composition (Kovaleva et al, 2015, 2017). Diatom distribution along core Tz-VII indicated rather frequent alterations of both the dominant species and four layers (26-45 cm; 110-126 cm; 170-190 cm; 200-220 cm), in which the occurrence of valves was either extremely low or they were absent altogether. In our opinion, these layers correlate to the regression periods and probably indicate the sub-aerial conditions of sedimentation. We correlate the deposits with registered high abundances (more than 60% of the total amount of valves) of Thalassiosira incerta to the transgression periods (Kovaleva, Nazarenko, 2019).

The present study contains data on the morphology, descriptions and illustrations of Thalassiosira incerta and its two varieties, T. incerta var. strelnikovae Kovaleva et Gogorev and T. incerta var. fluvialis Gogorev et Kovaleva, from the New and Ancient Azov layers of the Taganrog Bay deposits, obtained using a scanning electronic microscope (SEM).

Material and Methods

The present study reviews the data on diatom analysis from the bottom sediment core Tz-VII (47°04'24.8"N, 38°28'30.1"E), sampled in the axial part of the Taganrog Bay (Fig. 1) in July 2013, applying a gravity corer from RV The Deneb. The thickness of the studied core was 2.2 m. Diatoms were sampled every 2-5 cm.

35°E 36°E 3 T°E 3t I °E 39 °E

■4 1 I ' Ь v

Tz-VII -4/

S-> 11 7 \ •

0 10 20 40 60 80 j ^л о ¡w. -4b

-1--1-1—' "T ^ 1 35°E 36° E 37° E 38 E 39 - °E

Fig. 1. Location of the bottom sediment core Tz-VII in Taganrog Bay.

We applied traditional methods of diatom analysis to extract the valves from the ground (Jouse, 1953; Diatomovye..., 1974). To identify the diatom species using a light microscope Leica DME (Leica Microsystems, Germany) (x1000), we made the permanent slides with Naphrax medium (refractive index of 1.73). In addition, a Carl Zeiss EVO 40 XVP SEM was used (covered Au/Pd; accelerating voltage 15-25 kV; working distance 7.5-10.5 mm).

Overall, we studied 45 specimens. The results of the analysis, lithology and data of radiocarbon dating of core Tz-VII have been published earlier (Kovaleva, Nazarenko, 2019). The New Azov layer deposits in core Tz-VII are partially washed, which is typical of the Taganrog Bay, as they are usually not thick there (20 to 45 cm) (Fig. 2). Deposits from the Ancient Azov layers, on the contrary, are thick (approximately 1.5 m). The comparison of results of the diatom analysis with the data on radiocarbon dating allowed separating specific Ancient Azov layers and distinguishing several eco-strati-graphic subzones, which had not been determined before in cores from the open sea. In particular, we separated specific Aa2, Aa3, and Aa4 zones for the first time, which we relate to the stages of the Khadzhibeian Regression and the New Black Sea Transgression (Fig. 2).

The age of the studied material is from 5510 ± 180 to 2950 ± 80 years BP (Table 1); it allows us to relate these deposits to the New and Ancient Azov layers (Stratigra-fiya..., 1984).

The names of taxa of higher rank are according to Round et al. (1990) and Cox (2015).

Table 1

Results of radiocarbon dating of core Tz-VII from the Taganrog Bay

Laboratory code Depth Radiocarbon years, BP* Calendar years, BP Stratigraphy

LU-7389 25-45 cm 2830±60 2950±80 The New Azov layers

LU-7391 70-90 cm 3810±70 4210±110

LU-7392 95-105 cm 3880±80 4300±120 The Ancient Azov layers

LU-7393 105-125 cm 4040±60 4550±110

LU-7394 125-155 cm 4070±110 4590±160

LU-7395 210-220 cm 4870±130 5510±180

Note: * — BP — before present.

Results and Discussion

Beginning in the mid-1950s, the frustule morphology of Thalassiosira incerta has been studied in detail (Table 2). The main taxonomic features, such as the presence and the number of central fultoportulae, density of marginal fultoportulae and the number of satellite pores they possess, are constant. The other characteristics, such as

Fig. 2. Diatoms' diagram (indicative species) of core Tz-VII from Taganrog Bay. Legend: khj — the Khadzhibeian Regression; nch (dz) — the New Black Sea (the Dzhemetinian) Transgression; ph — the Phanagorian Regression; nf — the Nymphaean Transgression; Aa — the Ancient Azov layers; Na — the New Azov layers.

References

Number of satellite pores CF/MF

Number of MF in 10 |im

Number of CF

Areolae pattern

|

0

u N

mantle

margin

center

Valve diameter, |m

a d al

in igi

ri

С

LC

tc

0

ce

m

CN

0

7

ОС

00

œ

ce

a d al

in igi

ri

с

LC

•5t

L/C

се

0

ce

7

7

CN

tc

ce

a d al

in igi

ri

с

«с •t

LC

ce

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0

ce

CN CN

0

гс

«с œ

a v o r a

^

a

'—i «

a

v

o

r

a te

^

a

Ma œ

te

7

CN

0

7

œ

rc rc

te

e rc

Й Й ^

oc œ

a

X

ce

LC

rc

oc oc œ

a v o r a

^

a

0 n le

Л

lo

01

о

^ я

о

Й ^ e,

О £

rc

ce

LC

LC

ce

a

i=

-ö щ

>> щ W d

n

e

ata

tn aa

.a ^

c

a

00 0

^t CN CN

m о te

ce 1

0

CN

te

7

CN

OC oc

CN CN

0

CN

te

te

7

oc

a

0 0

CN

a

^

n

e

С

LC

a

te 7 * CN * 0

0 0

ce ce CN

ce CN CN

LC 0

1 1 CN

b

0 0

CN

a

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

n

e

С

ce

te

ce

g

n

a

ce œ

a

v

^ «

I ^

S îo

^ -S

S ^

> ъ

£ ^

1S • ss

S <a

•S 'S

^ ^ g

л Щ > «

ta g

о

USA

M îh" l-J

I .g

T. parva

13-25 18-32

17

14-33 [9-34]**

26-29(30)

10-19 (12-14*)

8-10*

16*

10-12 [10-19]**

10-15

15-28

10-14 [10-20]**

16-28 [15-28]**

tangential* tangential* tangential*

linear-tangen-tial, radial

3-6

3-5 5

4-5* [3-6]**

4-6

3-6 4 6

4-5 [3-6]**

3 / usually 5

4-5 3-4/4

Kiss et ah, 2012

Genkal, Okhapkin,

2013

Genkal, Terenko,

2014

(2)3-4 Okhapkin et ah, /4 2016

Gogorev, Kovaleva,

2017

15-30

13-15

12-37

(12)14-16 18-20

12

16

12-16 18-20

30-32

tangential, rarely radial and fasciculated

tangential, rarely radial and fasciculated

tangential, rarely radial and fasciculated

5-6

5-6

5-6

5-6

5-6

Proschkina-Lavren-ko, 1955

Proschkina-Lavren-ko, Makarova, 1968

Makarova, 1988

Note: CF —central fultoportulae; MF —marginal fultoportulae; * —from illustration; ** —emended description.

the pattern and density of areolae, are rather changeable. The protologue of the species (Makarova, 1961) gives the approximate areolation when compared to subsequent publications, including articles by the author of the taxon. As for the areolae pattern on the valves, we suppose that there are both subjective perceptions of areolation patterns by different authors as well as the variability of the specific feature, which we can easily trace studying the type material. The presence and density of occluded processes of fossil T. incerta also remain open for further studies. Based on our material, these processes are rarely reported, and they are usually located irregularly and are rarer than reported in the literature (1.5-3.0 in 10 pm instead of 4-8).

The emended diagnosis proposed by Okhapkin et al. (2016) does not appear to solve the problem of species volume, as the range of areolae is so wide that such a description may include several taxa. For example, the Black Sea species Thalassio-sira parva Proshk.-Lavr. is similar to T. incerta in morphology and main diagnostic features, as well as in ecology and occurrence in the southern Russian seas. Although studied using a SEM (Makarova, 1988: Plate 29: 9, 12, 13), the quality of illustrations is insufficient to solve the issues of conspecificity or separation of the species, and in recent publications the species name is listed without any description and illustrations. In case of species separation, we suggest that some records of T. incerta in the Black Sea (e.g., Genkal, Terenko, 2014) may be referred to as T. parva.

The data by Kiss et al. (2012) on the range of areolae of T. incerta (Table 2) undoubtedly surpass all published data, and our calculations of areolae density in illustrations in the above-mentioned article indicate a similar density of 12-14 areolae in 10 pm. Moreover, the authors provide data on the presence of "usually" 5 satellite pores of marginal fultopor-tulae, which may indicate inaccuracies in calculations or misidentifications.

The analysis of both original and published data on Thalassiosira incerta indicating rather distinct differences in the areolae density on a valve and its mantle, as well as the presence of a distinct central rosette of areolae, allow us to separate new varieties. Their description is given below. We note that we ascribe the type habitat and some our findings to the type variety, the majority of freshwater records and the major part of our findings to var. fluvialis and our findings from the Ancient Azov layers of the Taganrog Bay deposits (the Sea of Azov) to var. strelnikovae.

Phylum BACILLARIOPHYTA Class MEDIOPHYCEAE Medlin et Kaczmarska Order THALASSIOSIRALES Glezer et I. V. Makarova Family Thalassiosiraceae M. Lebour

Thalassiosira incerta I. V. Makarova, 1961, Bot. Mater. Otd. Sporov. Rast. Bot. Inst. Komarova Akad. Nauk S.S.S.R., 14: 50.

Frustules disc-like, lens-like, 8-14 pm high. Valves flat or slightly concave, with moderately low mantle. Foramens of areolae large, rarely small, rounded, elliptical, or

irregularly shaped, cribrum large, irregular-rounded; areolae on valve mantle smaller, often vertically elongated, in vertical rows. Central fultoportulae with 3-4 satellite pores usually in the middle part of radius of small annulus, around the central areola, which usually smaller than areolae on valve face; externally, the processes as circular aperture. Marginal fultoportulae with 4 satellite pores, with short external tubes and small short internal tubes. Single rimoportula, located a little off the ring of marginal processes, with long external tube, 0.7-1.5 |im long, and internal short thickened or flattened tube located on small tubercle, slit of process oriented radially, rarely tan-gentially. Occluded processes rare, unevenly distributed, sometimes broadened at end, 1.5-3 in 10 |im. Girdle of 2-6 open copulas, 0.7-4.7 |im wide, single row of pores near valvocopula margin, 50-70 pores in 10 |im.

Var. incerta Plate I

Valves 25-39 |im in diam. Areolae pattern tangential-radial, (7)8-9 areolae in 10 ^m in centre, 8-10 areolae in 10 |im near margin, 25-30 areolae in 10 |im on mantle and 16-17 cribrum pores in 1 |im. Central areola occluded; 4-6 central fultoportulae, 4-5 marginal fultoportulae in 10 |im.

Locality: Black Sea (?), Sea of Azov, Caspian Sea, Aral Sea, New and Ancient Azov layers of the Sea of Azov deposits, rarely.

Var. fluvialis Gogorev et Kovaleva, var. nov. Plate II

Valves 19-36 |im in diam. Areolae pattern tangential-radial and indistinctly fasciculated, 12-14 areolae in 10 |im in center, 14-16 areolae in 10 |im near margin, 3035 areolae in 10 |im on mantle and 14-18 cribrum pores in 1 |im. Central areola usually open and through; 4-6 central fultoportulae, 4-5 marginal fultoportulae in 10 |im.

Diagnosis. Thalassiosira incerta var. fluvialis is similar to T. incerta var. incerta and T. incerta var. strelnikovae in the size of valves and the number of central and marginal fultoportulae, and it differs from them by the areolae density, especially on a mantle. The variety is similar to T. parva in valve size, the areolae density in the center and on a mantle and the number of central fultoportulae; it differs from it by the density of areolae near the margin (Table 2).

Holotype: The specimen on brass stub TZ-VII_155-160_2013 stored at the Southern Scientific Centre RAS, Rostov-on-Don, illustrated in Plate II: 2. Isotypes: slide No. 8 stored at the Southern Scientific Centre RAS, Rostov-on-Don, slide LE A0000297 (No. 717).

Type locality: Russia, Sea of Azov, 47°04'24.8"N, 38°28'30.1"E, the Holocene deposits, the Ancient Azov layers, 4590+160 calendar years BP, core Tz-VII (155160 cm), VII 2013, coll. G. V. Kovaleva.

Distribution. Recent surface sediments of the Sea of Azov, recorded in the Holocene deposits from the sediment cores of the Ancient and New Azov layers (the Taganrog Bay of the Sea of Azov), reported from rare (Ancient Azov) to frequent (New Azov).

Locality: rivers, lakes, water storage reservoirs, estuarine freshened areas, surface deposits in the Taganrog Bay (Sea of Azov), the New and Ancient Azov layers in the Sea of Azov deposits, rare to frequent in abundance.

Etymology: An infraspecific epithet refers to the freshwater location, especially in rivers.

Var. strelnikovae Gogorev et Kovaleva, var. nov. Plates III-VI

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Valves 14-30(31) pm in diam. Areolae pattern radial-tangential, rarely fasciculated, 11-16 areolae in 10 pm in center, 14-19 areolae in 10 pm near margin and 22-30 areolae in 10 pm on mantle. Central areola usually open and through, rarely absent; 3-5 central fultoportulae, with rosette of large, usually elongated areolae around them; 4-6 marginal fultoportulae in 10 pm..

Diagnosis. Thalassiosira incerta var. strelnikovae is similar to T. incerta var. in-certa and T. incerta var. fluvialis in valve size and the number of central and marginal fultoportulae, to T. incerta var. fluvialis in the density of areolae on the valve face and to T. incerta var. incerta — in the density of areolae on a mantle. The variety differs from T. incerta var. incerta by the areolae density on the valve face, from T. incerta var. fluvialis by the areolae density on the mantle. The variety is morphologically similar to T. parva in valve size, the areolae density in the center and the number of marginal ful-toportulae and differs from it by the areolae density near the margin and on the mantle and by the number of central fultoportulae (Table 2).

Holotype: The specimen on brass stub TZ-VII_190-195_2013 stored at the Southern Scientific Centre RAS, Rostov-on-Don, illustrated in Plate III: 3. Isotypes: slide No. 9 stored at the Southern Scientific Centre RAS, Rostov-on-Don, slide LE A0000298 (No. 718).

Type locality: Russia, Sea of Azov, 47°04'24.8"N, 38°28'30.1"E, the Holocene deposits, the Ancient Azov layer deposits (from 5510+180 to 4590+180 calendar years BP), core Tz-VII (190-195 cm), VII 2013, coll. G. V. Kovaleva.

D i s t r i b u t i o n . Fossil variety, recorded only in the Holocene deposits from the sediment cores of the Ancient and New Azov layers (the Taganrog Bay of the Sea of Azov), reported from frequent to very frequent.

E t y m o l o g y : An infraspecific epithet is in honour of the famous Russian diato-mologist, Nina Ivanovna Strelnikova (28 May 1933 — 7 December 2020), who studied fossil diatoms for many years.

Acknowledgments

We express our gratitude to Roman G. Mikhalyuk (Rostov-on-Don, Russia), Yuri B. Okolodkov (Veracruz, Ver., Mexico) and Marcia M. Gowing (Seattle, WA, USA) for the English language assistance and improving the style. We are grateful to Ale-xey D. Potemkin (St. Petersburg, Russia) and Maria A. Gololobova (Moscow, Russia) for their useful comments on and improvements to the text of the manuscript. Data collection and sampling, laboratory analysis, microphotograph preparation, primary

Plate I. Thalassiosira incerta var. incerta, SEM. 1, 2 — external valve surface; 3-7 — internal valve surface: 4 — valve margin, cribrum of areolae, rimoportula, 6 — valve center, central fultoportulae (1, 2 — the Ancient Azov layer deposits, Taganrog Bay; 3, 4 — surface sediments of the Sea of Azov; 5-7 — surface sediments, Taganrog Bay,

Sea of Azov).

Scale bars: 1, 3, 5 — 10 |m; 2 — 2 |m; 4, 6, 7 — 1 |m.

Plate II. Thalassiosira incerta oar. fluvialis, SEM. 1 — frustule; 2, 9 — external (left) and internal (right) valve surfaces: 2 — holotype of T. incerta var. fluvialis, brass stub TZ-VII_155-160_2013, (left valve); 3-5 — external valve surface; 6-8 — internal valve surface: 7 — valve part, marginal fultoportulae, central fultoportulae and rimoportula (1 — recent surface sediments, Taganrog Bay; 2-4 — the Ancient Azov layer deposits, Taganrog Bay; 5-9 — the New Azov layer deposits, Taganrog Bay). Scale bars: 1-6, 8, 9 — 10 |m; 7 — 2 |m.

Plate III. Thalassiosira incerta var. strelnikovae, SEM. 1, 2, 4, 5 — external valve surface; 3 — holotype of T. incerta var. strelnikovae, brass stub TZ-VII_190-195_2013, (left valve) (the Ancient Azov layer deposits, Taganrog Bay).

Scale bars: 1, 3, 4 — 10 |im; 2, 5 — 2 |im.

Plate IV. Thalassiosira incerta var. strelnikovae, SEM. 1-6 — external valve surface, rosette of central elongated areolae, occluded processes: 2, 4, 6 — center and margin of valve, central fultoportulae (the Ancient Azov layer deposits, Taganrog Bay). Scale bars: 1, 3, 5 — 10 |im; 2, 4, 6 — 2 |im.

Plate V. Thalassiosira incerta var. strelnikovae, SEM. 1-9 — external valve surface: 4, 7, 9 — part of valve, magrinal fultoportulae, 6 — center of valve (the Ancient Azov layer deposits, Taganrog Bay). Scale bars: 1-3 — 10 |im; 4, 5, 7-9 — 5 |im; 6 — 2 |im.

Plate VI. Thalassiosira incerta var. strelnikovae, SEM. 1, 2 — external valve surface, marginal fultoportulae, rimoportula; 3-6 — internal valve surface, central fultoportulae (the Ancient Azov layer deposits, Taganrog Bay). Scale bars: 1, 3, 5 — 10 |im; 2, 4, 6 — 5 |im.

analysis of diatom morphology are by G. V. Kovaleva and A. V. Nazarenko (at the Southern Scientific Centre RAS with the financial support from the Russian Science Foundation (Grant No. 16-17-10170-P). During the study, we used the logistic support of the Centre of Collective Usage of Facilities of the Southern Scientific Centre RAS, No. 501994 (SEM, etc.). The analysis of morphology and taxa description were carried out by R. M. Gogorev within the framework of the institutional research project "Flora and taxonomy of algae, lichens and bryophytes in Russia and phytogeo-graphically important regions of the world" (No. 121021600184-6) of the Komarov Botanical Institute of the Russian Academy of Sciences.

References

Cox E. J. 2015. Coscinodiscophyceae, Mediophyceae, Fragilariophyceae, Bacillariophyceae (Diatoms). Syllabus of plant families. Adolf Engler's Syllabus der Pflanzenfamilien. Part 2/1. Photo-autotrophic eukaryotic algae: Glaucocystophyta, Cryptophyta, Dinophyta/Dinozoa, Haptophyta, Heterokontophyta/Ochrophyta, Chlorarachniophyta/Cercozoa, Euglenophyta/Euglenozoa, Chlo-rophyta, Streptophyta p. p. Berlin: 64-103. Diatomovye vodorosli SSSR: iskopaemye i sovremennye. T. 1 [The diatoms of the USSR. Fossil and

recent. Vol. 1]. 1974. Leningrad: 403 p. (In Russ.). Genkal S. I., Babanazarova O. V., Haffner G. D. 2009a. New data on the flora of diatoms (Cent-rophyceae) in Lake Erie (Canada, USA). International Journal on Algae 11(4): 337-350. https://doi.org/10.1615/InterJAlgae.v11.i4.30 Genkal S. I., Golokolenova T. B. 2008. Centric diatom algae of the Tsimlyansk Reservoir. Povolzhskii

ekologicheskii zhurnal 3: 178-189. (In Russ. with Engl. abstract). Genkal S. I., Okhapkin A. G. 2013. Centric diatoms (Centrophyceae) of the lower reaches of the Oka River (Russian Federation). Hydrobiological Journal 49(3): 41-57. https://doi.org/10.1615/HydrobJ.v49.i3.40 Genkal S. I., Terenko L. M. 2014. New data on the flora of Centrophyceae (Bacillariophyta) of the

Black Sea. HydrobiologicalJournal 50(4): 37-48. https://doi.org/10.1615/HydrobJ.v50.i4.40 Genkal S. I., Terenko L. M., Nesterova D. A. 2009b. New data on the centric diatoms (Centrophyceae, Bacillariophyta) of the Danube Region of the Black Sea. Hydrobiological Journal 45(6): 51-69. https://doi.org/10.1615/HydrobJ.v45.i6.40

Gogorev R. M., Kovaleva G. V. 2017. Thalassiosira azovica sp. nov. and other species of the genus Thalassiosira (Bacillariophyta) from the Holocene deposits of the Sea of Azov Novosti sistematiki nizshikh rastenii 51: 37-56. (In Russ. with Engl. abstract). https://doi.org/10.31111 /nsnr/2017.51.37 Hasle G. R. 1978. Some freshwater and brackish water species of the diatom genus Thalassiosira Cleve. Phycologia 17(3): 263-292. https://doi.org/10.2216/i0031-8884-17-3-263.!

Jouse A. P. 1953. About the methods of the technical processing of the rocks in case of the diatom analysis. Diatomovyi sbornik. Leningrad: 206-220. (In Russ.).

Kiss K. T., Klee R., Ector L., Acs E. 2012. Centric diatoms of large rivers and tributaries in Hungary: morphology and biogeographic distribution. Acta Botanica Croatica 71(2): 311-363. https://doi.org/10.2478/v10184-011-0067-0 Kovaleva G. V. 2007. Detection of layers with Actinocyclus octonarius Ehr. and Actinoptychussena-rius (Ehr.) Ehr. in the Late Quaternary sediments of the Gulf of Temryuk (the Sea of Azov). Paleontologiya, paleobiogeografiya i paleoekologiya: Materialy LII sessii Paleontologicheskogo obshchestva Rossiiskoi akademii nauk [Paleontology, paleobiogeography and paleoecology: Proceedings of the LII session of the Paleontological Society of the Russian Academy of Sciences]. St. Petersburg: 68-70. (In Russ.).

Kovaleva G. V., Dyuzhova K. V., Zolotareva A. E. 2017. Diatom algae of the Sea of Azov late Holo-cene sediments as an indicator of the sea-level fluctuations. Nauka yuga Rossii 13(4): 83-92. (In Russ. with Engl. abstract). https://doi.org/10.23885/2500-0640-2017-3-4-83-92

Kovaleva G. V., Izmailov Ya. A., Zolotareva A. E. 2015. Diatom algae of the Sea of Azov Late Holo-cene sediments as an indicator of the sea level fluctuations. Vestnik Yuzhnogo Nauchnogo Tsent-ra 11(1): 53-62. (In Russ. with Engl. abstract).

Kovaleva G. V., Nazarenko A. V. 2019. The diatoms analysis of Holocene deposits of Taganrog Bay. Nauka yuga Rossii 15(2): 53-66. (In Russ. with Engl. abstract). https://doi.org/10.7868/S25000640190206

Kovaleva G. V., Zolotareva A. E. 2013. Transgressive-regressive stages of the Sea of Azov development (based on the results of diatoms analysis of the New Azov layer deposits). Fundamental'nye problemy kvartera, itogi izucheniya i osnovnye napravleniya dal'neishikh issledovanii [Fundamental problems of the Quarter, results of the study and the main directions of further research]. Rostov-on-Don: 280-283. (In Russ.).

Makarova I. V. 1961. New species of diatoms of the Coscinodiscaceae family from the Northern Caspian Sea. Botanicheskie materialy otdela sporovykh rastenii Botanicheskogo Instituta imeni V. L. Komarova Akademii Nauk SSSR 14: 49-52. (In Russ.).

Makarova I. V. 1988. Diatomovye vodorosli morei SSSR: rod Thalassiosira CI. [The diatoms of seas of the USSR: the genus Thalassiosira Cl.]. Leningrad: 117 p. (In Russ.).

Makarova I. V., Kuzmin G. V., Ryabkova L. P. 1976. New data on the thin structure of frustule of the Th. incerta Makar. and Stephanodiscus tenuis Hust. (Bacillariophyta). Novosti sistematiki nizshikh rastenii 13: 28-31. (In Russ.).

Matishov G. G., Dyuzhova K. V., Kovaleva G. V., Pol'shin V. V. 2016. New data on sedimentation and biostratigraphy of ancient and New Azov deposits (Sea of Azov). Doklady Earth Sciences 467(2): 371-375. https://doi.org/10.1134/S1028334X16040048

Matishov G. G., Kovaleva G. V., Novenko E. Yu. 2007. Results of spore-and-pollen and diatom analyses of columns on the shelf of the Sea of Azov. Doklady Earth Sciences 416(7): 1079-1084. https://doi.org/10.1134/S1028334X07070227

Okhapkin A. G., Genkal S. I., Vodeneeva E. L., Sharagina E. M., Bondarev O. O. 2016. To ecology and morphology of Thalassiosira incerta Makarova (Bacillariophyta). Inland Water Biology 9(2): 126-134. https://doi.org/10.1134/S1995082916020139

Proschkina-Lavrenko A. I. 1955. Relict diatoms in the plankton of the Black Sea. Botanicheskie materialy otdela sporovykh rastenii Botanicheskogo Instituta imeni V. L. Komarova Akademii Nauk SSSR 10: 45-54. (In Russ.).

Proschkina-Lavrenko A. I., Makarova I. V. 1968. Vodorosliplanktona Kaspiiskogo morya [Plankton algae of the Caspian Sea]. Moscow; Leningrad: 293 p. (In Russ.).

Round F. E., Crawford R. M., Mann D. G. 1990. The diatoms. Biology and morphology of the genera. Cambridge: 747 p.

Stratigrafiya SSSR. Chetvertichnaya sistema. T. 2 [Stratigraphy of the USSR. Quaternary system. Vol. 2]. 1984. Moscow: 556 p. (In Russ.).

Литература

Cox E. J. 2015. Coscinodiscophyceae, Mediophyceae, Fragilariophyceae, Bacillariophyceae (Diatoms). Syllabus of Plant Families. Adolf Engler's Syllabus der Pflanzenfamilien. Part 2/1. Photo-autotrophic eukaryotic Algae: Glaucocystophyta, Cryptophyta, Dinophyta/Dinozoa, Haptophyta, Heterokontophyta/Ochrophyta, Chlorarachniophyta/Cercozoa, Euglenophyta/Euglenozoa, Chlo-rophyta, Streptophyta p. p. Berlin: 64-103.

[Diatomovye ...] Диатомовые водоросли СССР (ископаемые и современные). Т. 1. 1974. Л.: 403 с.

Genkal S. I., Babanazarova O. V., Haffner G. D. 2009a. New data on the flora of diatoms (Centrophy-ceae) in Lake Erie (Canada, USA). International Journal on Algae 11(4): 337-350.

https://doi.org/10.1615/InterJAlgae.v11.i4.30

[Genkal, Golokolenova] Генкал С. И., Голоколенова Т. Б. 2008. Центрические диатомовые водоросли Цимлянского водохранилища. Поволжский экологический журнал 3: 178-189.

Genkal S. I., Okhapkin A. G. 2013. Centric diatoms (Centrophyceae) of the lower reaches of the Oka River (Russian Federation). Hydrobiological Journal 49(3): 41-57. https://doi.org/10.1615/HydrobJ.v49.i3.40

Genkal S. I., Terenko L. M. 2014. New data on the flora of Centrophyceae (Bacillariophyta) of the Black Sea. HydrobiologicalJournal 50(4): 37-48. https://doi.org/10.1615/HydrobJ.v50.i4.40

Genkal S. I., Terenko L. M., Nesterova D. A. 2009b. New data on the centric diatoms (Centrophyceae, Bacillariophyta) of the Danube Region of the Black Sea. Hydrobiological Journal 45(6): 51-69. https://doi.org/10.1615/HydrobJ.v45.i6.40

[Gogorev, Kovaleva] Гогорев P. M., Ковалева Г. В. 2017. Thalassiosira azovica sp. nov. и другие виды рода Thalassiosira (Bacillariophyta) из голоценовых отложений Азовского моря. Новости систематики низших растений 51: 37-56. https://doi.org/10.31111/nsnr/2017.51.37

Hasle G. R. 1978. Some freshwater and brackish water species of the diatom genus Thalassiosira Cleve. Phycologia 17(3): 263-292. https://doi.org/10.2216/i0031-8884-17-3-263.!

[Jouse] Жузе А. П. 1953. К методике технической обработки горных пород в целях диатомового анализа. Диатомовый сборник. Л.: 206-220.

Kiss K. T., Klee R., Ector L., Acs E. 2012. Centric diatoms of large rivers and tributaries in Hungary: morphology and biogeographic distribution. Acta Botanica Croatica 71(2): 311-363. https://doi.org/10.2478/v10184-011-0067-0

[Kovaleva] Ковалева Г. В. 2007. Обнаружение слоев с Actinocyclus octonarius Ehr. и Actinoptychus senarius (Ehr.) Ehr. в позднечетвертичных осадках Темрюкского залива (Азовское море). Палеонтология, палеобиогеография и палеоэкология: Материалы LII сессии Палеонтологического общества РАН. СПб.: 68-70.

[Kovaleva et al.] Ковалева Г. В., Дюжова К. В., Золотарева А. Е. 2017. Диатомовые водоросли из средне- и позднеголоценовых отложений Азовского моря как индикаторы колебаний уровня водоема. Наука юга России 13(4): 83-92. https://doi.org/10.23885/2500-0640-2017-3-4-83-92

[Kovaleva et al.] Ковалева Г. В., Измайлов Я. А., Золотарева А. Е. 2015. Диатомовые водоросли из позднеголоценовых отложений Азовского моря как индикаторы колебаний уровня водоема. Вестник Южного научного центра 11(1): 53-62.

[Kovaleva, Nazarenko] Ковалева Г. В., Назаренко А. В. 2019. Диатомовый анализ голоценовых отложений таганрогского залива. Наука юга России 15(2): 53-66. https://doi.org/10.7868/S25000640190206

[Kovaleva, Zolotareva] Ковалева Г. В., Золотарева А. Е. 2013. Трансгрессивно-регрессивные этапы развития Азовского моря (по результатам диатомового анализа новоазовских отложений). Фундаментальные проблемы квартера, итоги изучения и основные направления дальнейших исследований. Ростов-на-Дону: 280-283.

[Makarova] Макарова И. В. 1961. Новые виды диатомовых водорослей сем. Coscinodiscaceae из Северного Каспия. Ботанические материалы отдела споровых растений Ботанического института имени В. Л. Комарова Академии наук СССР 14: 49-52.

[Makarova] Макарова И. В. 1988. Диатомовые водоросли морей СССР: Род Thalassiosira Cl. Л.: 117 с.

[Makarova et al.] Макарова И. В., Кузьмин Г. В., Рябкова Л. П. 1976. Новые данные о тонкой структуре панциря Th. incerta Makar. и Stephanodiscus tenuis Hust. (Bacillariophyta). Новости систематики низших растений 13: 28-31.

Matishov G. G., Dyuzhova K. V., Kovaleva G. V., Pol'shin V. V. 2016. New data on sedimentation and biostratigraphy of ancient and New Azov deposits (Sea of Azov). Doklady Earth Sciences 467(2): 371-375. https://doi.org/10.1134/S1028334X16040048

Matishov G. G., Kovaleva G. V., Novenko E. Yu. 2007. Results of spore-and-pollen and diatom analyses of columns on the shelf of the Sea of Azov. Doklady Earth Sciences 416(7): 1079-1084. https://doi.org/10.1134/S1028334X07070227

Okhapkin A. G., Genkal S. I., Vodeneeva E. L., Sharagina E. M., Bondarev O. O. 2016. To ecology and morphology of Thalassiosira incerta Makarova (Bacillariophyta). Inland Water Biology 9(2): 126-134. https://doi.org/10.1134/S1995082916020139

[Proschkina-Lavrenko] Прошкина-Лавренко А. И. 1955. Реликтовые диатомовые в планктоне Черного моря. Ботанические материалы отдела споровых растений Ботанического института имени В. Л. Комарова Академии наук СССР 10: 45-54.

[Proschkina-Lavrenko, Makarova] Прошкина-Лавренко А. И., Макарова И. В. 1968. Водоросли планктона Каспийского моря. М.; Л.: 293 с.

Round F. E., Crawford R. M., Mann D. G. 1990. The diatoms. Biology and morphology of the genera. Cambridge: 747 p.

[Stratigrafiya...] Стратиграфия СССР. Четвертичная система (полутом 2). 1984. М.: 556 с.

i Надоели баннеры? Вы всегда можете отключить рекламу.