Научная статья на тему 'EXTRACTION OF HUMIC ACIDS FROM SHUBARKOL BROAD COAL BY PROBABILISTIC PLANNING METHOD'

EXTRACTION OF HUMIC ACIDS FROM SHUBARKOL BROAD COAL BY PROBABILISTIC PLANNING METHOD Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
54
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
HUMIC ACID / COAL / SHUBARKOL DEPOSIT / EXTRACTION / PROBABILITY PLANNING METHOD / STRUCTURING / SEPARATION / GRINDING

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Bekturganova N.Ye., Yeshova Zh.T., Kerimkulova M.Zh., Orazkhanov E.E.

In the presented work, an attempt was made to extract humic acids from the Shubarkol field to create environmentally safe structural meliorants for the prevention and/or restoration of eroded soils of the Republic. The choice of domestic lignite and humic acid as structural components has taken into account their naturalness and safety for the environment. The influence of five factors (extraction temperature and time, alkali concentration, ratio of coal to alkaline solution and mechanical grinding time of coal) on the extraction of humic acids by probability planning method was studied. The IR spectroscopy method showed that humic acids have more active acid groups than primary coal.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «EXTRACTION OF HUMIC ACIDS FROM SHUBARKOL BROAD COAL BY PROBABILISTIC PLANNING METHOD»

ХИМИЧЕСКИЕ НАУКИ

EXTRACTION OF HUMIC ACIDS FROM SHUBARKOL BROAD COAL BY PROBABILISTIC

PLANNING METHOD

Bekturganova N. Ye.1, Yeshova Zh.T.2, Kerimkulova M.Zh.3, Orazkhanov E.E.4

1Candidate of Chemical Sciences, Director of the Center for Post graduated Education, International

Educational Corporation, Almaty,Kazakhstan 2'Associate professor, Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National

University, Almaty, Kazakhstan

3'Associate professor, Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National

University, Almaty, Kazakhstan

4Masters student, Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National

University, Almaty, Kazakhstan

Abstract. In the presented work, an attempt was made to extract humic acids from the Shubarkol field to create environmentally safe structural meliorants for the prevention and/or restoration of eroded soils of the Republic. The choice of domestic lignite and humic acid as structural components has taken into account their naturalness and safety for the environment. The influence of five factors (extraction temperature and time, alkali concentration, ratio of coal to alkaline solution and mechanical grinding time of coal) on the extraction of humic acids by probability planning method was studied. The IR spectroscopy method showed that humic acids have more active acid groups than primary coal.

Keywords: humic acid, coal, Shubarkol deposit, extraction, probability planning method, structuring, separation, grinding.

The environmental safety of any state as a component of national security becomes a prerequisite for Sustainable Development and is the basis for preserving natural systems and maintaining the proper quality of the environment. Desertification and land degradation are global and environmental problems of our republic. In Kazakhstan, significant areas (more than 70% of the territory) are subject to some degree of desertification and degradation processes, which leads to the withdrawal of land from agricultural turnover. This is due to extensive agricultural activities, contamination of mineral deposit development territories, areas of transportation and processing of hydrocarbon raw materials, including with petroleum products and radioactive compounds [1-2]. Among the main tasks to prevent these processes are the restoration of degraded land and soil fertility. This process can be carried out by various methods [3 -6].

As shown in the literature, humic acids are a complex mixture of high-molecular natural organic compounds formed by the decomposition of dead plants and their subsequent humification (biochemical transformation of decomposition products of organic residues into humus in the presence of microorganisms, water and oxygen). A special feature of humic acids is the saturation of their molecule with amino, Amido, methoxyl, carboxylic, phenolic and alcohol hydroxyls, quinoid groups [4-8].

The importance of humic compounds is explained by their physical and chemical properties (sorption, ion exchange, hydrophilic). Salts of alkali metals of water-soluble humic acids are able to adsobate on the surface of phase separation by hydrophilic and hydrophobic particles. Therefore, the study of the structure and composition of humic acids, structural properties in the process of restoration of eroded soils is one of the problems that requires in-depth examination [6-13].

The purpose of this work is to determine the optimal conditions for the extraction of humic acids from the coal of the domestic Shubarkol field and to study the content of the released humic acids by physical and chemical methods and use them as a strong natural structure safe for ecollogy in the future for the restoration of degraded deposits.

Materials and methods of practice. Experiments [14] were carried out on the unit with a periodic mixing mode at atmospheric pressure according to the methodology. The temperature of the process was changed from 20 to 80 °C, and the concentration of Alkali was changed from 0.5 to 2.0%. The extraction of humic acids was studied at intervals of 15 to 60 Minutes. Mechanical grinding of coal was carried out from 10 to 40 minutes. The results of the experiments were evaluated by the yield of humic acids.

Results and discussion. In this work, optimization of the process of separation of humic acids from brown coal of the Shubarkol field was carried out. [15] in the work, the yield of the product depended on many factors, the most important of which were temperature, concentration of reactive substances, exposure time, and other factors. It has been shown that the simultaneous influence of several factors on the technological process at certain values can give a real and repeated result. Thus, it is established that the technological process can be optimized using rational planning methods for multi-factor experiments. To determine the optimal parameters for obtaining humic acids, laboratory experiments were conducted using the method of experimental probabilistic-deterministic planning. To this end, we studied the effect of five factors on the output of humic

acids (Table 1). At four levels, a Five-Factor experience planning Matrix was created and studies were conducted.

Table 1

Factors under study and their levels

Factors Levels

1 2 3 4

X1- separation temperature, °C 20 40 60 80

X2- extraction duration, min 15 30 45 60

X3- alkaline concentration, % 0,5 1,0 1,5 2,0

X4- ratio of coal and alkali solution 1:25 1:50 1:75 1:100

X5- mechanical coal grinding time, min 10 20 30 40

The total number of experiments was determined by squaring the number of levels to 16 (Table 2). As can be seen from Table 2, each row of the Matrix corresponds to the conditions of the experiment. The matrix structure assumes that each level of any factor meets each level of all other factors once. To do this, each level of each factor is set several times, just like the accepted levels. This provides an average effect of any factor when selecting the results of any factor at any level of any factor, which makes it easier to find optimal conditions for the process even for a relatively small number of experiments using the laws of Mathematical Statistics.

Table 2

5-Factor planning matrix for a 24-level experience

№ X1 X2 X3 X4 X5 Yexperience,% Ycalculation,%

1 20 15 0,5 25 10 35,9 62,1

2 40 30 1,0 50 10 36,8 53,7

3 60 45 1,5 75 10 56,3 51,8

4 80 60 2,0 100 10 71,2 56,4

5 20 30 1,5 100 20 70,4 41,8

6 40 15 2,0 75 20 54,0 35,2

7 60 60 0,5 50 20 73,4 65,6

8 80 45 1,0 25 20 82,4 84,3

9 20 45 2,0 50 30 39,6 44,4

10 40 60 1,5 25 30 39,3 74,1

11 60 15 1,0 100 30 69,4 44,2

12 80 30 0,5 75 30 54,4 55,9

13 20 60 1,0 75 40 55,5 53,1

14 40 45 0,5 100 40 73,4 53,2

15 60 30 2,0 25 40 39,3 59,8

16 80 15 1,5 50 40 38,3 48,2

The quantitative results of experiments, such as the yield of humic acids from coal, are presented in the matrix in the form of measurement, measurement functions, where measurement - corresponds to the results of the experiment, measurement-is calculated according to the generalized equation obtained after processing the results of the experiment. Using experimental values of individual functions, their sampling was carried out by levels (Table 3).

Table 3

Experimental values of independent functions

Factor 1 2 3 4 Yopra

Y1 50,4 50,9 59,6 61,6 55,6

Y2 49,4 50,2 62,9 59,8 55,6

Y3 59,3 61,0 51,1 51,0 55,6

Y4 49,2 47,0 55,1 71,1 55,6

Y5 50,1 70,1 50,7 51,6 55,6

For this purpose, the sum of the results of the first four experiments is divided into four, the same calculations are made with the sum of the next four experiments, and so on. the method of sampling the remaining functions remained unchanged, but at the same levels, the following scattering of values was observed.

The values in Tables 1 and 3 are drawn on graphs (Figure 1). The selection and calculation of empirical formulas for describing a curve using the least squares method was carried out [13]. The calculated values for all individual dependencies and dependencies are shown in Table 4.

Table 4

Calculated values of individual functions

Function 1 2 3 4 5

Yi = 0,2115x + 45,05 49,1 53,5 57,6 62,1 55,6

Y2 = -0,0043x2 + 0,6177x + 39,725 48,0 54,1 58,5 61,3 55,5

Y3 = -1,8x2 - 2,46x + 62,05 60,5 57,8 54,3 49,8 55,6

Y4 = 6959,2x2 + 436,29x + 42,599 47,5 49,2 54,0 71,6 55,6

Y5 = -0,0478x2 + 2,2385x + 35,475 53,6 61,1 59,5 48,7 55,7

The significance of each function was checked using a non - linear generalized correlation coefficient (formulas 1, 2).

R =

1 -■

(N -1)2Y - YT )2

_1_

N

(N - K -1)2 (Ys - Ycp )

;(1)

ÎR =

R^N - K - 1

1 - R

> 2, (2)

where, R - generalized correlation coefficient; N - number of points to describe; K - number of factors taken for the study; Yt- results of the experiment (Table 2); Ye - calculated results (Table 2); Yop. - experimental average values (Table 3).

Since the influence of only one factor is taken into account, YopTa - for the studied case, N=4, k=1 coincided with the overall average. The results of calculating the multiple nonlinear correlation coefficient and its significance are shown in Table 5. As can be seen from Table 5, individual dependencies: extraction temperature, extraction duration, alkali concentration, coal-alkali solution ratio are important, and the time of mechanical grinding of coal is not important. Therefore, the change in function 5 is not included in the area of the limit deviation of the results of the experiment.

Table 5

Function R tR The importance of the function

1 0,90 9,47 > 2 Important

2 0,82 5,01 > 2 Important

3 0,76 3,59 > 2 Important

4 0,98 49,49 > 2 Important

5 0,21 0,43 > 1 2 It doesn't matter

2

Graphs of the dependence of humic acid output on temperature (A), extraction time (B), alkaline concentration (B), coal:alkaline ratio (C), mechanical grinding time (D) of coal (Fig. 1 A-G)

G

After determining the significance of individual functions, the Protodiakonov equation for each optimization parameter was developed:

Yn =

1 D "HE :{ + 15 05' I 0 DlUajr2 +: £177x+ 39.725) (i-Bar2 (ww.lje2 +436,19.1+4:!,5»)

55 63

Substituting the levels of factors for each of the 16 Matrix experiments in the equation, Table 2 shows that for each experiment, the sum of Yесептеу,% calculated.

Thus, we found optimal conditions for the release of humic acids from the coal of the shubarkol deposit, which are: extraction temperature - 80; duration of the experiment - 45 minutes; concentration of alkali - 1.0 %; ratio of coal and alkali solution-1:25. The duration of mechanical processing of coal is 20 minutes. The composition of primary coal and humic acids separated from coal by IR spectroscopy was studied.

In the extraction of humic acids from coal, alkali solutions are considered the main reagents. This is because humic acids in alkaline solutions are converted to Salts with a higher degree of ionization in aqueous solutions than acids:

(НСООН)пИиш + nNaOH (NanOOC)Hum + nHzO

Table 6

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Characteristics of IR spectra of coal and humic acids

(s.-strong bands, mb. - medium bands, wb-weak bands)

Absorption Frequency, см-1

Primary coal Humic acid

Voh 3300 (s.) 3390 (s.)

Vch 2922 (s.) 2922 (s.)

Vc-h - 2824 (mb.)

Vc=o - 1730(s.)

Vc=c 1625 (s.) 1599 (s.)

5c-o 1399 (mb.) 1374 (mb.)

Vcoc 1270 (wb.) 1250 (wb.)

Vc-o 1230-1150(mb.) 1230-1150(mb.)

In the IR spectra of humic acids, absorption bands were observed in the zone 2824 cm-1, which belongs to carboxyl groups that differ from the primary coal, and in the zone 1730 cm-1, which belongs to the arena groups. Additional characteristics of the IR spectra of the resulting humic acids are presented in Table 7.

Table 7

Nature of oscillation Compound type Frequency, cm-1 Pace

□ с-о phenols 1230-1140 average

□ с-о phenols 1310-1410 average

□ с-о primary alcohols 1075-1000 weak

□ с-о primary, secondary alcohols 1350-1260 weak

С он(байл.) alcohols 3440-3550 average

С он(байл.) phenols 2500-3200 average

□ сос aromatic and arylalkil esters 1230 average

□ с=о carboxylic acids 1700 KYmri

□ с=с arenes 1580 average

□ с-н arenes 3030 average

□ сн methylene groups in the benzene ring 2975-2950 average

□nh secondary amines 1650 weak

□ c-н purine cycles 1000-960, 825-775 weak

□ =сн diene hydrocarbons 640 strong

As shown by the results of the IR spectrum, it was found that humic acids contain different functional groups with high reactivity. It is proved that there are electron - donor functional groups such as >S=O, -Soon,-s-on, Ar-on, =N-N, =N, etc. (Table 7).

Thus, the optimal conditions for the separation of humic acids from the lignite of the domestic Shubarkol deposit were determined and the composition of the separated humic acids was studied by IR spectroscopy and shown to be an important raw material for obtaining interpolimeric complexes.

Список литературы:

1. О проекте распоряжения президента Республики Казахстан «О концепции экологической безопасности Республики Казахстан»// https://adilet.zan.kz/rus/docs/P030000772_(дата обращения 07.09.2022).

2. Концепция экологической безопасности и развитие экологической политики республики Казахстан // https://articlekz.com/article/19152 (дата обращения 07.09.2022).

3. Mussabayeva B.Kh., Kassymova Zh.S. Aldabergenova M.A Interpolymer complex of biopolymers as a soil structure-forming agent. Вестник Карагандинского университета. 2020. №1(93). С. 22-29.

4. Mamedov A. I., Wagner L. E., Huang CNorton., L. D., Levy G. J. Polyacrylamide Effects on Aggregate and Structure Stability of Soils with Different Clay Mineralogy // Soil & Water Management & Conservation. 2010. №74. С.5.

5. Sharipova A., Akbarov H., and Andriyko L. A Method of obtaining the soil amendment // International Journal of Recent Scientific Research. 2020. Вып.П. №05 (B). С.38633-38640.

6. Бектурганова Н.Е. Структурирование эрозионноопасных почв водорастворимыми полиэлектролитами и их интерполимерными комплексами 26.10.2006 диссер. на соискание ученой степени: к.х.н. 104 с.

7. Википедия. Гуминовые кислоты https://ru.wikipedia.org/wiki/%D0%93%D1%83%D0%BC%D0%B8%D0%BD%D0%BE%D0%B2%D1%8B% D0%B5_%D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D1%82%D1%8B (дата обращения 07.09.2022).

8. Aubakirov E.A., Kairbekov Z.K. Chemical properties of humic acids // Proc. VII Int. Beremzhanov Congr. Chem. Chem. Technol. 2011. Vol. 8. P.114-117.

9. Бектурганова Н.Е. Современное состояние проблемы охраны почвы и перспективы применения гуминовых кислот // Комплексное использование минерального сырья. 2020. №1 (316). С.69-81.

10. Noskova L.P. Humic Substances of Brown Coal from the Sergeyevo Coalfield // Chem. for Sustain. Develop. 2019. №17. Р. 61-65.

11. Y. Guo, C. Ma, F. Hui, L. Wang. Humic acid extraction from weathered coal and its properties characterization // Chinese Journal of Environmental Engineering. 2017. № 11(5). С. 3153-3160.

12. Mikos-Szymanska M. et al. Preliminary Study of a Method for Obtaining Brown Coal and Biochar Based Granular Compound Fertilizer // Waste and Biomass Valorization. Springer Netherlands. 2019. Vol. 10. № 12. P. 3673-3685.

13. Каирбеков Ж.К., Жумабаева Г.К., Голодов В.А., Турдыкулова А.К. Использование гуминовых (фульво-) кислот в качестве катализаторов восстановительных реакций // Вестник КазНУ, серия химическая. 2005. Т. 39. № 3. С. 59-63.

14. Kairbekov Z., Eshova Z.T. Optimization of the process of extraction of humic acids from the coal of the Oi-Karagay deposit // Kazn. Bull. Chem. Ser. 2012. Vol. 4. P. 79-83.

15. Малышев В.П. Математическое планирование металлургического и химического эксперимента. Алма-Ата: Наука, 1977. 37 с.

References

1. On the draft decree of the President of the Republic of Kazakhstan "On the concept of environmental safety of the Republic of Kazakhstan" https://adilet.zan.kz/rus/docs/P030000772_ (date of access 07.09.22). (In Russian).

2. The concept of environmental safety and the development of environmental policy of the Republic of Kazakhstan https://articlekz.com/article/19152 (date of access 07.09.22). (In Russian).

3. Mussabayeva B.Kh., Kassymova Zh.S. Aldabergenova M.A Interpolymer complex of biopolymers as a soil structure-forming agent. Bulletin of Karaganda University. 2020. No.1 (316), pp. 69-81.

4. Mamedov A. I., Wagner L. E., Huang CNorton., L. D., Levy G. J. Polyacrylamide Effects on Aggregate and Structure Stability of Soils with Different Clay Mineralogy. Soil & Water Management & Conservation. 2010, No.74,pp. 5.

5. Sharipova A., Akbarov H., and Andriyko L. A Method of obtaining the soil amendment. International Journal of Recent Scientific Research. 2020, No.11, 05 (B), pp. 38633-38640.

6. Bekturganova N. Ye. Struktuuroobrazovanie erozionnoopasnyx pochv vodorastvorimymi polielectrolitami I ix interpolimernymi komplexsami [Structuring of erosion-hazardous soils with water-soluble polyelectrolytes and their interpolymer complexes]. Dissertatsiya = Dissertation. 104. (in Russan).

7. Wikipedia. Humic acids https://ru.wikipedia.org/wiki/%D0%93%D1%83%D0%BC%D0%B8%D0%BD%D0%BE%D0%B2%D1%8B% D0%B5_%D0%BA%D0%B8%D1%81%D0%BB%D0%BE%D1%82%D1%8B (date of access 07.09.22).

(In Russian).

8. Aubakirov E.A., Kairbekov Z.K. Chemical properties of humic acids // Proc. VII Int. Beremzhanov Congr. Chem. Chem. Technol. 2011. Vol. 8, pp. 114-117.

9. Бектурганова Н.Е. Современное состояние проблемы охраны почвы и перспективы применения гуминовых кислот // Комплексное использование минерального сырья. 2020. No.1 (316), pp. 69-81.

10. Noskova L.P. Humic Substances of Brown Coal from the Sergeyevo Coalfield. Chem. for Sustain. Develop. 2019. No.17, pp. 61-65.

11. Y. Guo, C. Ma, F. Hui, L. Wang. Humic acid extraction from weathered coal and its properties characterization. Chinese Journal of Environmental Engineering. 2017. No.11(5), pp. 3153-3160.

12. Mikos-Szymanska M. et al. Preliminary Study of a Method for Obtaining Brown Coal and Biochar Based Granular Compound Fertilizer. Waste and Biomass Valorization. Springer Netherlands. 2019. Vol. 10, No.12, pp. 3673-3685.

13. Kairbekov Zh.K., Zhumabayeva G.K., Golodov V.A., Turdykulova A.K. The use of humic (fulvic) acids as catalysts of reducing reactions. Bulletin of KazNU, chemical series. 2005. Т. 39, No.3, pp. 59-63.

14. Kairbekov Z.., Eshova Z.T. Optimization of the process of extraction of humic acids from the coal of the Oi-Karagay deposit. Kazn. Bull. Chem. Ser. 2012. Vol. 4, pp. 79-83.

15. Malyshev V.P. Mathematical planning of metallurgical and chemical experiment. Alma-Ata: Science. 1977, 37p.

АЛКАЛОИДЫ КУЛЬТИВИРОВАННОГО BERBERIS OBLONGA SCHNEID

Хомидов Иномидин Илмидинович

кандидат химических наук доцент

Андижанский государственный медицинский институт

Узбекистан, г. Андижан

ALKALOIDS OF CULTIVATED BERBERIS OBLONGA SCHNEID

Khamidov Inomidin

PhD of Chemistry, Andijan Region State Medical Institute,

Uzbekistan, Andijan

Аннотация. В данной статье проанализировано алкалоидный состав B.oblonga Schneid культивированного в ботаническом саду Республики Казахстан. Выделено и сравнительно изучено строения, свойства алкалоидов с алкалоидами дикорастущего вида данного растения. А также, рассмотрено установления структуры некоторых алкалоидов с помощью физико-химических методов анализа.

Abstract. This article analyzes the alkaloid composition of B.oblonga Schneid cultivated in the Botanical garden of the Republic of Kazakhstan. The structures and properties of alkaloids with alkaloids of the wild species of this plant have been isolated and comparatively studied. And also, the establishment of the structure of some alkaloids using physico-chemical methods of analysis is considered.

Ключевые слова: химия, вещество, физиологически активные, алкалоиды, растения, бензилизохинолины, семейство, Berberidaceae, Papaveraceae, масс-спектр, ПМР-спектр, мультиплет, слабое поле.

Key words: Chemistry, compounds, alkaloids, plants, physiologically active, amines, pseudobenzilizohinoline, family, berberidaceae, papaveraceae, mass-spectrum, PMR-spectrum, multiplet, weak field.

Berberís L. растения этого рода являются богатым источником алкалоидов изохинолинового типа с разнообразной химической структурой и высокой биологической активностью.

Растения Berberís и алкалоиды, выделенные из тех растений, широко используются в народной и в современной медицине. Подтверждением того считаются данные о использовании плодов барбариса в качестве кровоочистителя на керамических сосудах около 650 году до нашей эры, а также тот факт, что алкалоид берберин, извлеченный из коры корня и стеблей этого растения, в настоящее время используется в качестве желчегонного средства при лечении гепатита и других заболеваний печени.

B.oblonga Schneid - кустарник высотой 4 метра с плодами от черного до фиолетового оттенка. В природе распространен в Центральной Азии, в том числе в горах Ферганы, на склонах горных хребтов Чаткала и Туркестана.

Ранее были изучены алкалоиды, дикорастущих видов барбариса произрастающие в Центральной Азии и были выделены ряд изохинолиновые алкалоиды [1,2,3]. В конце вегетационного периода сумма алкалоидов в корне растения достигает 6,6 %. В молодых побегах и листьях в период цветения наблюдается повышенное накопление алкалоидов (1,49% и 0,39 %).

В целях сравнения с данными, представленных в литературе по алкалоидному составу дикорастущих видов барбариса, нами были изучены алкалоидный состав молодых побегов и листьев Berberís oblonga культивированного в Ботаническом саду Академии Наук Республики Казахстан.

Экстракцией метанолом молодых побегов культивированного B.oblonga (0,8 кг), собранных в начале периода плодоношения, мы получили 0,40% суммы алкалоидов. 0,11% его составляет главный алкалоид - берберин. Путем разделения полученной суммы методом колоночной хроматографии мы выделили, кроме берберина, алкалоиды основания I, основания II, оксиакантин, бербамин, таликмидин, изокоридин, пальматин, ятрорицин и колумбамин.

Экстракцией хлороформом листьев культивированного B.oblonga (300 г), получено 0,15% суммы алкалоидов. Его 0,05% составляет главный алкалоид - таликмидин. Путем разделения полученной суммы алкалоидов с помощью колоночной хроматографии нами выделено алкалоиды таликмидин, изокоридин, глауцин, оксиакатин и бербамин.

i Надоели баннеры? Вы всегда можете отключить рекламу.