Научная статья на тему 'Эконометрическое моделирование и анализ объема инновационных работ, товаров и услуг регионов России'

Эконометрическое моделирование и анализ объема инновационных работ, товаров и услуг регионов России Текст научной статьи по специальности «Экономика и бизнес»

CC BY
216
38
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЭКОНОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ / ИННОВАЦИИ / ИННОВАЦИОННАЯ ДЕЯТЕЛЬНОСТЬ / ОБЪЕМ ИННОВАЦИОННЫХ ТОВАРОВ / РАБОТ И УСЛУГ / ЗАТРАТЫ НА ИННОВАЦИИ / АДЕКВАТНОСТЬ МОДЕЛИ / РЕГРЕССИОННЫЙ АНАЛИЗ / ECONOMETRIC MODELLING / INNOVATION / INNOVATION ACTIVITY / VOLUME OF INNOVATIVE GOODS / WORKS AND SERVICES / COST OF INNOVATION / MODEL ADEQUACY / REGRESSION ANALYSIS

Аннотация научной статьи по экономике и бизнесу, автор научной работы — Кулебякина Екатерина Александровна

В статье приведена эконометрическая модель, которая представляет обоснование объема инновационных товаров, работ и услуг в регионах Российской Федерации величиной затрат на технологические инновации по различным направлениям. В ходе эконометрического исследования были подтверждены качество спецификации модели и ее адекватность. Таким образом, модель может быть использована для определения и прогнозирования объема инновационных товаров, работ и услуг. В результате исследования модели были сделаны выводы о том, что увеличение затрат по конкретному направлению на 1% влечет за собой увеличение объема инновационных товаров, работ и услуг. В том числе в 2014 г. влияние на увеличение объема инновационных товаров, работ и услуг оказали затраты на приобретение машин и оборудования, связанных с технологическими инновациями, затраты на прочие технологические инновации, в 2015 г. затраты на другие виды подготовки производства для выпуска новых продуктов, внедрение новых услуг или методов их производства (передачи), затраты на прочие технологические инновации, в 2016 г. затраты на другие виды подготовки производства для выпуска новых продуктов, внедрение новых услуг или методов их производства (передачи), затраты на прочие технологические инновации, в 2017 г. этими факторами были затраты на исследования и разработку новых продуктов, услуг и методов их производства (передачи), новых производственных процессов и затраты на прочие технологические инновации.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по экономике и бизнесу , автор научной работы — Кулебякина Екатерина Александровна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Econometric Modelling and Analysis of Dynamicsof the Volume of Innovative Works, Goods,and Services by Regions of the Russian Federation

This article presents an econometric model explaining the volume of innovative goods, works and services in the regions of the Russian Federation by the amount of costs for technological innovations in various areas. An econometric study confirmed the quality of the model specification and its adequacy. Thus, the model can be used to determine and predict the volume of innovative goods, works and services. As a result of the study of the model, I concluded that an increase in costs in a specific direction by 1% entails an increase in the volume of innovative goods, works and services. Including in 2014, the increase in the volume of innovative goods, works and services was influenced by the Cost of acquiring machinery and equipment related to technological innovations (0.67%), costs of other technological innovations (0.21%), in 2015 d. costs of other types of production preparation for the release of new products, introduction of new services or methods of their production (transfer) (0.03%), costs of other technological innovations (0.01%), in 2016, costs of other types preparation of production for the release of new products, the introduction of new services or methods of their production (transfer) (0.48%), costs of other technological innovations (0.29%), in 2017, these factors were the costs of research and development of new products, services and methods of their production (transfer), new production processes (0.47%) and costs of other technological innovations (0.22%).

Текст научной работы на тему «Эконометрическое моделирование и анализ объема инновационных работ, товаров и услуг регионов России»

ПРОСТРАНСТВЕННАЯ ЭКОНОМИКА / SPATIAL ECONOMICS

УДК 330.43:001.895(045)

Эконометрическое моделирование и анализ объема инновационных работ, товаров и услуг регионов России

В статье приведена эконометрическая модель, которая представляет обоснование объема инновационных товаров, работ и услуг в регионах Российской Федерации величиной затрат на технологические инновации по различным направлениям. В ходе эконометрического исследования были подтверждены качество спецификации модели и ее адекватность. Таким образом, модель может быть использована для определения и прогнозирования объема инновационных товаров, работ и услуг. В результате исследования модели были сделаны выводы о том, что увеличение затрат по конкретному направлению на 1°% влечет за собой увеличение объема инновационных товаров, работ и услуг. В том числе в 2014 г. влияние на увеличение объема инновационных товаров, работ и услуг оказали затраты на приобретение машин и оборудования, связанных с технологическими инновациями, затраты на прочие технологические инновации, в 2015 г. - затраты на другие виды подготовки производства для выпуска новых продуктов, внедрение новых услуг или методов их производства (передачи), затраты на прочие технологические инновации, в 2016 г. - затраты на другие виды подготовки производства для выпуска новых продуктов, внедрение новых услуг или методов их производства (передачи), затраты на прочие технологические инновации, в 2017 г. этими факторами были затраты на исследования и разработку новых продуктов, услуг и методов их производства (передачи), новых производственных процессов и затраты на прочие технологические инновации.

Ключевые слова: эконометрическое моделирование; инновации; инновационная деятельность; объем инновационных товаров, работ и услуг; затраты на инновации; адекватность модели; регрессионный анализ

Для цитирования: Кулебякина Е. А. Эконометрическое моделирование и анализ объема инновационных работ, товаров и услуг регионов России. Научные записки молодых исследователей. 2019;7(6):15-22.

Научный руководитель: Михалева М.Ю., кандидат экономических наук, доцент Департамента анализа данных, принятия решений и финансовых технологий / Scientific supervisor: Mikhaleva M. Yu., Candidate of Economic Sciences, Associate Professor, Department of Data Analysis, Decision-making and Financial Technologies.

Екатерина Александровна Кулебякина, студентка факультета государственного управления и финансового контроля, Финансовый университет, Москва, Россия

Ekaterina A. Kulebiakina, student, Faculty of Public Administration and Financial

Control, Financial University, Moscow, Russia

[email protected]

АННОТАЦИЯ

пространственная экономика / spatial economics

original paper

Econometric Modelling and Analysis of Dynamics of the Volume of Innovative Works, Goods, and services by Regions of the Russian Federation

abstract

This article presents an econometric model explaining the volume of innovative goods, works and services in the regions of the Russian Federation by the amount of costs for technological innovations in various areas. An econometric study confirmed the quality of the model specification and its adequacy. Thus, the model can be used to determine and predict the volume of innovative goods, works and services. As a result of the study of the model, I concluded that an increase in costs in a specific direction by 1% entails an increase in the volume of innovative goods, works and services. Including in 2014, the increase in the volume of innovative goods, works and services was influenced by the Cost of acquiring machinery and equipment related to technological innovations (0.67%), costs of other technological innovations (0.21%), in 2015 d. costs of other types of production preparation for the release of new products, introduction of new services or methods of their production (transfer) (0.03%), costs of other technological innovations (0.01%), in 2016, costs of other types preparation of production for the release of new products, the introduction of new services or methods of their production (transfer) (0.48%), costs of other technological innovations (0.29%), in 2017, these factors were the costs of research and development of new products, services and methods of their production (transfer), new production processes (0.47%) and costs of other technological innovations (0.22%). Keywords: econometric modelling; innovation; innovation activity; volume of innovative goods; works and services; cost of innovation; model adequacy; regression analysis

For citation: Kulebiakina е. A. econometric modelling and analysis of dynamics of the volume of innovative works, goods, and services by regions of the Russian Federation. Научные записки молодых исследователей = Scientific notes of young researchers. 2019;7(6):15-22.

Введение

В современных условиях экономическое развитие регионов в большей степени зависит от их научно-инновационного потенциала [1]. Для того чтобы экономика нашей страны устойчиво развивалась, требуются меры по ее модернизации, что позволит обеспечить уход от сырьевой зависимости. Процесс модернизации должен быть основан на использовании современных технологий, научных достижений и разработок. Таким образом, существует необходимость осуществления затрат на инновации с целью создания потенциала для дальнейшего развития. Для сырьедобывающих регионов характерна низкая инновационная активность по причине гарантированной более высокой нормы прибыли в традиционных экспортно-сырьевых отраслях, а не в сфере инноваций [2]. Большинство промышленно развитых стран ориентированы на стабильный экономический рост в долгосрочной перспективе, который сопряжен с переходом к инновационному пути

развития. Вот почему повышение инновационной восприимчивости экономики - одна из главных задач современной России [3]. Инновации способствуют долгосрочному экономическому росту, организации новых производств, единого рыночного пространства, стимулированию и повышению конкурентоспособности индивидуальных предпринимателей, организаций и страны в целом. Инновации играют важную роль в современном мире. Но, несмотря на это, инновационная деятельность в нашей стране еще недостаточно развита. По оценкам аналитиков НИУ ВШЭ1, по расходам на НИОКР рейтинг возглавили такие страны, как США, Китай и Япония. Россия в 2016 г. заняла 10-е место в мире. Доля же затрат на науку в ВВП в России составила 1,1% (34-е место в мире), что существенно ниже, чем в странах-

1 Газета «Коммерсантъ». 25.07.2018. № 130. URL: https:// www.kommersant.ru/doc/3695542 (дата обращения: 10.02.2019).

лидерах: Израиле, Южной Корее, Швейцарии и Швеции, где она составляет 3-4%, в США и Китае - 2-3%. Россия не входит в 20 самых инновационных развитых стран мира и занимает 27-е место, опустившись на 2 позиции в сравнении с 2018 г.2 Сокращение госрасходов на науку в РФ произошло после 2013 г. Многие экономические показатели в 2013 г. оказались существенно ниже ожидаемых. Также имело место падение стоимости национальной валюты. Сокращение расходной части бюджета подразумевало сокращение расходов на НИОКР. В 2019 г. прогноз на 20192020 гг. также предполагает их незначительное уменьшение3. В 2017 г. расходы на НИОКР составили в США около 2,5% ВВП, в КНР - около 1,6%, в России - около 1%4.

Существует мнение, что Правительство осуществляет недостаточный контроль над деятельностью государственных заказчиков, не обеспечивает массовое применение рыночных механизмов в поддержку науки и ее развития, мало уделяет внимания практическому применению полученных результатов НИОКР. В инновационных затратах предприятий часть бюджетных средств составляет не более 5% [3].

Теоретические и практические вопросы формирования инновационного потенциала, оценки его величины, определения инновационной активности регионов разработаны не в полной мере [4, с. 296]. В частности, актуальными являются вопросы измерения отдачи затрат на инновации и разработки эконометрического инструментария, который позволил бы оценить влияние затрат на инновации, объем инновационных товаров, работ и услуг в разрезе регионов Российской Федерации. Таким образом, целью исследования является разработка эконометрической модели, позволяющей объяснять уровень инновационных работ, товаров и услуг затратами на технологические инновации в краткосрочном периоде по направлениям, представленным в табл. 1.

2 Газета «Коммерсантъ». 25.07.2018. № 130. URL: https:// www.kommersant.ru/doc/3695542 (дата обращения: 10.02.2019).

3 Ceoworld Magazine. Here are the 60 most innovative countries in the world for 2019. URL: https://ceoworld. biz/2019/01/23/here-are-the-60-most-innovative-countries-in-the-world-for-2019/ (дата обращения: 20.05.2019).

4 Россия входит в Топ-10 стран по расходам на НИОКР.

17.07.2018. URL: https://www.sularu.com/theme/10512 (дата обращения: 01.03.2019).

Объектом анализа являются регионы РФ. Информационная база - открытые данные Федеральной службы государственной статистики5.

Выбор спецификации модели и проверка предпосылок Гаусса-Маркова

В качестве исходной спецификации эконометрической модели в работе рассматривается уравнение регрессии:

Yu = ао • • • Х12,и • • • • • Хм • еи, (1)

где / - индекс наблюдения (региона) Российской Федерации, изменяется от 1 до п; г - год (2014-2017 гг.); к - количество объясняющих переменных (соответствует количеству затрат на инновации, оказавших значимое влияние на объем инновационных товаров, работ и услуг);

Ytl - объем инновационных товаров, работ и услуг по /-му региону за год г;

Переменные Х1, Х2, ... Хк , к = 10 , имеют смысл затрат на инновации:

Х1и - затраты на технологические инновации, а также исследования и разработку новых продуктов, услуг и методов их производства (передачи), новых производственных процессов по /-му региону за год г;

Х2 а - затраты на производственное проектирование, дизайн и другие разработки (не связанные с научными исследованиями и разработками) новых продуктов, услуг и методов их производства (передачи), новых производственных процессов по /-му региону за год г;

Хъи - затраты на приобретение машин и оборудования, связанных с технологическими инновациями по /-му региону за год г;

Х4и - затраты на приобретение новых технологий по /-му региону за год г;

Х5и - затраты на приобретение прав на патенты, лицензий на использование изобретений, промышленных образцов, полезных моделей по /-му региону за год г;

Х6 и - затраты на приобретение программных средств по /-му региону за год г;

5 Сайт Федеральной службы государственной статистики (РОССТАТ). URL: http://www.gks.ru/bgd/regl/b18_14p/Main. htm (дата обращения: 10.01.2019).

пространственная экономика / spatial economics

Таблица 1

направления затрат на технологические инновации

направления,связанные с разработкой и производством направления, связанные с приобретением другие направления

Исследование и разработка новых продуктов, услуг и методов их производства (передачи), новых производственных процессов Приобретение машин и оборудования,связанных с технологическими инновациями Обучение и подготовка персонала,связанного с инновациями

Производственное проектирование, дизайн и другие разработки (не связанные с научными исследованиями и разработками) новых продуктов, услуг и методов их производства (передачи), новых производственных процессов Приобретение новых технологий Маркетинговые исследования

Другие виды подготовки производства для выпуска новых продуктов, внедрения новых услуг или методов их производства(передачи) Приобретение программных средств Прочие затраты на технологические инновации

Права на патенты, лицензии на использование изобретений, промышленных образцов, полезных моделей

Источник: составлено автором на основе данных сайта Федеральной службы государственной статистики (РОССТАТ).

Х7 и - затраты на другие виды подготовки производства для выпуска новых продуктов, внедрения новых услуг или методов их производства (передачи) по /-му региону за год г;

Х8и - затраты на обучение и подготовку персонала, связанные с инновациями по /-му региону за год г;

Х9и - затраты на маркетинговые исследования по /-му региону за год г;

X10 й - прочие затраты на технологические инновации по /-му региону за год г.

Параметры а1, а2..... ак модели (1) представляют собой коэффициенты эластичности выпуска инновационных товаров, работ и услуг по затратам на инновации. Например, коэффициент а2 показывает, на сколько процентов в среднем увеличится объем инновационных товаров, работ и услуг при увеличении затрат на производственное проектирование, дизайн и другие разработки на 1% при неизменных прочих факторах.

Для оценивания параметров модели (1) предварительно была проведена ее линеаризация:

1п) = 1п(<о) + <01 ■ 1п(Х1 )+а2 • 1п(Х2 ,„) + ■■ • • +

+ <к ■ 1п(Хк „) + 1п(в,). (2)

Исследование модели (2) было осуществлено по стандартной схеме:

1) протестированы предпосылки теоремы Гаусса-Маркова;

2) протестирована значимость полученных оценок параметров и оцененной модели в целом на основе г-теста и Г-теста соответственно;

3) проведена проверка адекватности модели на данных, не включенных в выборку наблюдений (построены доверительные интервалы эндогенной переменной; фактические значения эндогенной переменной сопоставлены с ее оцененными значениями).

Проверка предпосылок теоремы Гаусса-Маркова и настройка модели (2) проводилась с использованием языка программирования R в среде RStudio. Тестирование случайных остатков модели на автокорреляцию с помощью теста Дарбина-Уотсона подтвердило ее отсутствие. Тестирование остатков на гетероскедастичность с применением

Таблица 2

результаты теста Голдфелда-Кванта

t GQ GQ-1

2014 0,772 1,294 0,690

2015 0,268 3,727 0,052

2016 0,485 2,061 0,251

2017 0,767 1,304 0,640

Источник: составлено автором на основе данных сайта Федеральной службы государственной статистики (РОССТАТ).

Таблица 3

результаты Я-теста

t Я2 Г факт Г крит

2014 0,74 40,38 3,34

2015 0,58 19,37 3,34

2016 0,74 46,4 3,39

2017 0,72 46,3 3,26

Источник: составлено автором на основе данных сайта Федеральной службы государственной статистики (РОССТАТ).

теста Голдфелда-Квандта также привело к удовлетворительным результатам, подтверждающим возможность применения метода наименьших квадратов (МНК) для оценивания параметров модели. Случайные остатки модели (2) оказались гомоскедастичными. Результаты тестирования модели по годам представлены в табл. 2.

Во всех случаях р-уа1ие > 0,05, что позволяет принять как справедливую гипотезу о гомоске-дастичности случайных остатков модели (2).

Проверка значимости модели (2) с привязкой к конкретным годам показала, что все оцененные модели для г = 2014,2015,2016,2017 в целом значимы. Оценки коэффициентов детерминации Я2 не случайно отличаются от нуля. Модели обладают объясняющей способностью. Данный факт подтверждается в рамках Г-теста (см. табл. 3). Так как во всех случаях Гфакг > Fкрит, то оцененные модели в целом статистически значимы, и качество оцененных моделей (по годам) следует признать удовлетворительным.

Полученные оценки коэффициентов детерминации показывают, что построенная для:

• 2014 г. модель (2) объясняет фактическую зависимость эндогенной переменной Уг от экзогенных переменных Х-и на 74%; (0 08) (0,72)

• 2015 г. модель (2) объясняет фактическую зависимость эндогенной переменной Уи от экзогенных переменных Х]и на 58%;

• 2016 г. модель (2) объясняет фактическую зависимость эндогенной переменной Уи от экзогенных переменных Х]и на 74%;

• 2017 г. модель (2) объясняет фактическую зависимость эндогенной переменной Уи от экзогенных переменных Х] г на 72%.

В среднем за четыре года, с 2014 по 2017 г., дисперсия эндогенной переменной, объема выпуска инновационных товаров, работ и услуг, объясняется 69,5%. Набор объясняющих переменных по годам в модели (2) оказался различным. Оказавшиеся незначимыми регрессоры были из модели удалены (по результатам г-теста). В итоге получены следующие оценки параметров модели (2) (табл. 4).

Символ «—» означает, что в ходе исследования была выявлена незначимость соответствующей оценки параметров.

Таким образом, были получены следующие модели:

1П(У,2014 ) = 4,56 + 0,67- 1П(Хз,2014) +

(Ш) (°дз) (3.1)

+ °,21-1п(Х10,,2014 ) + 1п (в2014 )

ПРОСТРАНСТВЕННАЯ ЭКОНОМИКА / SPATIAL ECONOMICS

Таблица 4

Оценки параметров уравнений моделей

Оценки параметров модели (2) Модель (2), t = 2014 Модель (2), t = 2015 Модель (2), t = 2016 Модель (2), t = 2017

а0 4,56 (1,61) 2,2 (0,08) 12,78 ^,54 ) 5,39 (0,58)

а1 - - - 0,47 (0,8)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

а2 - - - -

аз 0,67 i0,13 ) - - -

а4 - - - -

а5 - - - -

а6 - - - -

а7 - 0,03 (0,01) 0,48 (0,09) -

а8 - - - -

а9 - - - -

а10 0,21 (0,08) 0,01 (0,004) 0,29 (0,06) 0,22 (0,06)

Источник: составлено автором на основе данных сайта Федеральной службы государственной статистики (РОССТАТ).

ln (Y ,2015 )= 2,2 + 0,01- 1п(Х7,Ж5) +

(0,08) (0,004) (3 2)

+ 0,°3-ln(X10,;-2015) +ln (%015 )

(0,01) (0,05)

ln (Y ,2016 ) = 12,78 + 0,48 - ln( X^) +

(0,54) (0,09)

+ 0,29 - ln(X7,2016) + ln (e;.2016 ), (3.3)

(0,06) (0,75)

1п^>2017) = 5,39 + 0,47 • 1п(Х1;.2017) +

4 7 (0,58) (0,8)

+ 0,22 • 1п(Х10,Ш17) + 1п (6,2017 ). (5Л)

(0,0Й) (0,7)

В ходе сравнения фактических и оцененных значений эндогенной переменной все представленные модели (3.1)-(3.4) подтвердили свою адек-

ватность. Результаты проверки адекватности представлены в табл. 5.

Все фактические значения эндогенной переменной У1{ попадают в соответствующие доверительные интервалы (Уа-;Уи +) , следовательно модели (3) можно признать адекватными фактическим (истинным) зависимостям объема инновационных товаров, работ и услуг от затрат на инновации. Следовательно, данные модели могут быть использованы для объяснения и прогнозирования выпуска инновационных товаров, работ и услуг в зависимости от уровня затрат на инновации в рамках моделей (3.1)-(3.4).

Заключение

Россия в настоящее время тратит чуть более 1% своего ВВП на исследования и разработки (НИОКР), при этом 70% финансирования поступает из госу-

Таблица 5

Результаты проверки адекватности модели (3)

1 ^ - ^ +

2014 16,22 16,61 15,11 18,12

15,63 17,01 15,45 18,57

2015 2,76 2,83 2,71 2,95

2,72 2,74 2,63 2,86

2016 17,06 15,78 14,19 17,38

17,7 17,72 16,19 19,26

2017 9,59 9,85 8,38 11,33

8,93 9,53 7,96 11,09

Источник: составлено автором на основе данных сайта Федеральной службы государственной статистики (РОССТАТ).

дарственных источников и значительная часть его используется государственными исследовательскими институтами. Крупные корпорации проводят сравнительно мало исследований, а участие университетов минимально, особенно в последующих исследованиях и разработках. Для страны с сильной научной традицией и многими прошлыми изобретениями, заслуживающими ее признания, недавние результаты ее научно-технического сектора скудны.

Следует отметить, что набор эндогенных переменных, объясняющих выпуск инновационных товаров, работ и услуг не является одинаковым для каждого года из рассмотренных 2014-2017 гг. Однако в каждой модели в качестве объясняющей переменной присутствует фактор «прочие затраты на технологические инновации». Дополнительными объясняющим факторами по годам выступили: в 2014 г.- «затраты на приобретение машин и оборудования, связанных с технологическими инновациями»; в 2015 и 2016 гг.- «затраты на другие виды подготовки производства для выпуска новых продуктов, внедрения новых услуг или методов их производства (передачи)»; в 2017 г.- «затраты на технологические инновации, а также исследование и разработка новых продуктов, услуг и методов их производства (передачи), новых производственных процессов». Результаты исследования представлены в табл. 6.

Соответственно по результатам исследования можно сделать следующие выводы:

1. В модели 2014 г. оценка а3 = 0,67 показывает, что увеличение затрат в среднем по реги-

онам Российской Федерации на приобретение машин и оборудования, связанных с технологическими инновациям, на 1% означает более высокий объем инновационных работ, товаров и услуг на 0,67% при неизменных прочих факторах, а оценка а10 = 0,21 означает, что при увеличении прочих затрат на технологические инновации на 1% будет иметь место рост выпуска инновационных товаров, работ и услуг на 0,21%.

2. Оценка параметра а7 = 0,01 в модели для 2015 г. показывает, что увеличение затрат на другие виды подготовки производства для выпуска новых продуктов, внедрения новых услуг или методов их производства (передачи) на 1% сопряжено с увеличением объема инновационных товаров, работ и услуг на 0,03%. Увеличение прочих затрат на технологические инновации на 1% влечет за собой увеличение объема инновационных товаров, работ и услуг на 0,01%.

3. Для модели 2016 г. увеличение затрат на другие виды подготовки производства для выпуска новых продуктов, внедрения новых услуг или методов их производства (передачи) на 1% означает более высокий объем инновационных товаров, работ и услуг на 0,48%. Рост прочих затрат на технологические инновации на 1% приведет к увеличению объема инновационных товаров, работ и услуг на 0,29%.

4. В 2017 г. увеличение затрат на исследования и разработку новых продуктов, услуг и методов их производства (передачи), новых производственных процессов на 1% сопряжено

Таблица 6

Влияние роста затрат на технологические инновации на увеличение объема инновационных работ, товаров и услуг

Год Затраты на приобретение машин и оборудования, связанных с технологическими инновациями, % Затраты на другие виды подготовки производства для выпуска новых продуктов, внедрение новых услуг или методов их производства (передачи), % Затраты на исследования и разработку новых продуктов, услуг и методов их производства (передачи), новых производственных процессов, % Затраты на прочие технологические инновации,%

2014 0,67 0,21

2015 0,03 0,01

2016 0,48 0,29

2017 0,47 0,22

Источник: составлено автором на основе данных сайта Федеральной службы государственной статистики (РОССТАТ).

с увеличением объема инновационных товаров, работ и услуг на 0,47%. Прирост прочих затрат на технологические инновации приведет к более высокому объему инновационных товаров, работ и услуг на 0,22%.

5. Следует также отметить, что коэффициенты полной эластичности, полученные путем суммирования коэффициентов эластичности, в каждой модели меньше единицы. Это означает, что с увеличением затрат на инновации объем

выпуска также будет возрастать, но с меньшей скоростью.

6. Полученные оценки эластичности характеризуют реакцию выпуска объема инновационных товаров, работ и услуг в краткосрочном периоде. Для оценки реакций эндогенной переменной на затраты на инновации в долгосрочном периоде в модель должны быть включены лаговые переменные. Рассмотрение данной задачи автором планируется в дополнительном исследовании.

Список источников

1. Худеева В. В., Колесниченко Е. А. Социально-экономические явления и процессы. Специфика инновационной деятельности в регионе. 2012;(5-6):144-147.

2. Саблин К. С. Сравнительная характеристика расходов на НИОКР в регионах Сибири и административно-территориальных единиц зарубежных стран. Journal of economic regulation (Вопросы регулирования экономики). 2014;5(3):74-87.

3. Долженкова О. В., Горшенина М. В., Ковалева А. М. Проблемы внедрения инноваций в России. Пути их решения. Молодой ученый. 2012;(12):208-210. URL: https://moLuch.ru/archive/47/5919/ (дата обращения: 10.02.2019).

4. Герасимов А. В. Бизнес в законе. Инновационный потенциал как основа развития регионов России. 2011:296.

References

1. Khudeeva V. V., KoLesnichenko E. A. Socio-economic phenomena and processes, Spetsifika innovatsionnoi deyatel'nosti v regione. 2012;(5-6):144-147. (In Russ.).

2. SabLin K. S. Comparative characteristics of R&D expenditures in the regions of Siberia and administrative-territorial units of foreign countries. Voprosy reguLirovaniya ekonomiki). 2014;5(3):74-87. (In Russ.).

3. DoLzhenkova O. V., Gorshenina M. V., KovaLeva A. M. Problems of the introduction of innovations in Russia. Ways to soLve them. Molodoi uchenyi. 2012;12:208-210. URL: https://moLuch.ru/archive/47/5919/ (accessed on 10.02.2019). (In Russ.).

4. Gerasimov A. Innovation potentiaL as a basis for the deveLopment of Russian regions. Biznes v zakone. Ekonomiko-yuridicheskii zhurnal. 2011:296. (In Russ.).

i Надоели баннеры? Вы всегда можете отключить рекламу.