DESIGN AND IMPLEMENTATION OF PROGRAMMABLE LOGIC EDUCATIONAL SIMULATORS FOR ENHANCING POWER SUPPLY SYSTEM LEARNING Rakhmonov I.U.1, Saidkhodzhaev A.G.2, Khakimov T.Kh.3, Niyozrv N.N.4
1Rakhmonov Ikromzhon Usmonovich - Doctor of Technical Sciences, head of the department, 2Saidkhodzhaev Anvar Gulyamovich - Doctor of Technical Sciences, 3Khakimov Turakul Khakimovich - Candidate of technical sciences, associate professor, 4Niyozov Numon Nizomiddinovich - Candidate of technical sciences, associate professor, DEPARTMENT OF ELECTRICAL POWER SUPPLY, TASHKENT STATE TECHNICAL UNIVERSITY, TASHKENT, REPUBLIC OF UZBEKISTAN
Abstract: this paper explores the integration of Programmable Logic Controller (PLC)-based educational simulators within the realm of engineering education, specifically focusing on electrical supply systems. It delves into the development, application, and impact of these simulators, highlighting their role in enhancing students' understanding of electrical supply from generation to consumption. The research outlines a systematic approach to designing these simulators, including system analysis, scenario development, programming challenges, and iterative testing for optimization. By providing a hands-on learning experience, PLC-based simulators serve as a bridge between theoretical knowledge and practical application, preparing students for real-world engineering challenges. The paper emphasizes the importance of these simulators in fostering a deeper understanding of electrical systems, enhancing problem-solving skills, and contributing to a more competent engineering workforce.
Keywords: programmable logic controllers, electrical supply systems, engineering education, educational simulators, hands-on learning, scenario development, system analysis, real-world application.
ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ ОБРАЗОВАТЕЛЬНЫХ СИМУЛЯТОРОВ НА ПРОГРАММИРУЕМЫХ ЛОГИЧЕСКИХ КОНТРОЛЛЕРАХ ДЛЯ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ОБУЧЕНИЯ СИСТЕМАМ ЭЛЕКТРОСНАБЖЕНИЯ Рахмонов И.У.1, Саидходжаев А.Г.2, Хакимов Т.Х.3, Ниёзрв Н.Н.4
1Рахмонов Икромжон Усмонович - доктор технических наук, заведующий кафедрой, 2Саидходжаев Анвар Гулямович - доктор технических наук, 3Хакимов Туракул Хакимович - кандидат технических наук, доцент, 4Ниёзов Нумон Низомиддинович - кандидат технических наук, доцент кафедра электроснабжения, Ташкентский государственный технический университет, г. Ташкент, Республика Узбекистан
Аннотация: данная статья исследует интеграцию образовательных симуляторов на основе программируемых логических контроллеров (ПЛК) в сферу инженерного образования, с особым акцентом на системах электроснабжения. В ней рассматривается разработка, применение и влияние этих симуляторов, подчеркивая их роль в улучшении понимания студентами электроснабжения от генерации до потребления. Исследование очерчивает систематический подход к проектированию этих симуляторов, включая анализ системы, разработку сценариев, проблемы программирования и итеративное тестирование для оптимизации. Предоставляя практический опыт обучения, симуляторы на базе ПЛК служат мостом между теоретическими знаниями и практическим применением, подготавливая студентов к реальным инженерным вызовам. В статье подчеркивается важность этих симуляторов в содействии глубокому пониманию электрических систем, улучшении навыков решения проблем и вкладе в формирование более компетентной инженерной рабочей силы.
Ключевые слова: программируемые логические контроллеры, системы электроснабжения, инженерное образование, образовательные симуляторы, практическое обучение, разработка сценариев, анализ систем, применение в реальных условиях.
In the evolving landscape of engineering education, the integration of advanced simulation technologies has emerged as a pivotal tool in bridging the gap between theoretical knowledge and practical application. Among these technologies, educational simulators based on Programmable Logic Controllers (PLCs) have gained significant attention for their ability to provide hands-on learning experiences in a controlled, virtual environment [1, 2]. This paper delves into the development and application of PLC-based educational simulators, with a particular focus on the domain of electrical supply systems. The aim is to explore how these simulators can enhance the understanding and skills of students in navigating the complexities of electrical supply, from generation and distribution to consumption.
The rationale behind focusing on PLC-based simulators stems from their versatility and real-world applicability in controlling and automating electrical systems. By simulating real-life scenarios, these educational tools not only facilitate a deeper understanding of electrical supply fundamentals but also equip students with the problem-solving skills necessary to address and mitigate potential issues within various supply systems [3]. The process of designing
the logic for these simulators requires a comprehensive understanding of electrical supply principles, as well as the ability to foresee and incorporate a range of potential scenarios that students might encounter in the field.
This paper outlines the systematic approach to creating effective educational simulators, including the analysis of electrical supply systems, the development of relevant and challenging scenarios, the programming of the PLC to respond appropriately to these scenarios, and the iterative process of testing and optimization to refine the learning experience. Through this exploration, the paper aims to underscore the importance of PLC-based simulators in enriching the engineering curriculum, highlighting their role in preparing students for the complexities of modern electrical supply systems and fostering a more engaged and competent future workforce in the engineering sector [4, 5].
Building upon the foundational aspects of creating the logic for an educational simulator based on a programmable logic controller (PLC) for the subject "Fundamentals of Electrical Supply," this paper further explores the intricacies involved in the design and implementation phases. The process not only demands a robust understanding of electrical supply systems but also the integration of complex scenarios that mirror the real-world challenges engineers face today. This section delves deeper into the methodology of developing these simulators and emphasizes their significance in engineering education.
Expanded Analysis and Development Process. Advanced System Analysis: Beyond identifying primary components and their interconnections, this stage involves a comprehensive review of the electrical supply system's operational dynamics, including power generation sources, transmission lines, distribution networks, and load management. Understanding these elements in detail enables the creation of a simulator that accurately reflects the complexities of real-world electrical supply systems [6, 7].
Enhanced Scenario Development: This phase is critical in challenging students beyond basic problem-solving. Scenarios are designed to simulate emergency situations, system failures, and efficiency optimization problems that require students to apply their theoretical knowledge creatively and practically. These scenarios may include fault analysis in transmission lines, blackout prevention strategies, and the integration of renewable energy sources into the grid.
Complex Programming Challenges: Programming the PLC involves not just simple task definition but also the incorporation of algorithms that can simulate dynamic and real-time changes within the electrical supply system. This may include the simulation of variable load demands, renewable energy input fluctuations, and automated system response to faults. The programming must be robust enough to handle these variables, providing a realistic and challenging learning environment for students. Iterative Testing and Optimization: After the initial testing phase, the simulator undergoes rigorous optimization to ensure its efficacy as an educational tool. This involves feedback loops from both students and educators to identify areas for improvement, whether in scenario realism, user interface design, or the accuracy of the system's response to inputs. Optimization also includes updating the simulator to reflect the latest advancements in electrical supply systems and technologies.
Application in Educational Settings. The application of PLC-based educational simulators in the curriculum of engineering students offers a multifaceted learning experience. By engaging with these simulators, students can better appreciate the complexity of electrical supply systems and the critical thinking required to maintain and improve these systems. Moreover, the hands-on experience prepares them for real-world engineering challenges, fostering a deep understanding of the subject matter that goes beyond traditional classroom learning. Conclusion
The development and implementation of educational simulators based on programmable logic controllers for teaching the fundamentals of electrical supply represent a significant advancement in engineering education. These simulators offer an interactive, immersive learning experience that prepares students for the complexities of modern electrical systems. By undergoing the process of system analysis, scenario development, complex programming, and continuous testing and optimization, educators can provide students with a realistic understanding of electrical supply systems. This not only enhances their learning experience but also equips them with the practical skills and problemsolving abilities needed in their future careers. As technology continues to evolve, so too will the scope and effectiveness of these educational tools, promising an exciting future for engineering education.
References / Список литературы
1. ArnaoutM., Chahine K., Mannah M., & Rammal R. (2016). An educational electric power simulator. In 2016 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA) (pp. 226230). IEEE.
2. Rakhmonov I. U., Kurbonov N.N., Bijanov A.K. Types of simulators and their efficient architectures // "Вестник науки и образования" ISSN 2312-8089. № 9 (129). 2022 PP. 13-19.
3. Рахмонов И.У., Ушаков В.Я., Ниёзов Н.Н. Определение факторы, влияющие на потребления электроэнергии предприятиями машиностроения при прогнозирование // «Проблемы современной науки и образования» ISSN 2413-4635, № 8 (177), 2022. 19-24 с.
4. Рахмонов И.У., Ниёзов Н.Н., Махмутхонов С.К. Эффективная архитектура симулятора для беспроводных устройств industry 4.0 // «European science» ISSN 2541-786Х, № 2 (64), 2022. 9-12 с.
5. Ушаков В.Я., Рахмонов И.У., Жалилова Д.А. Прогнозирование электропотребления текстильными предприятиями на основе метода главных компонент // «Проблемы науки» ISSN 2542-078Х, №2 5 (73), 2022. 22-26 с.
6. Takahashi D., Iizuka T., Nguyen NgocMai-Khanh, Nakura T., & Asada K. (2019). Fault detection of VLSI power supply network based on current estimation from surface magnetic field. IEEE Transactions on Instrumentation and Measurement, 68(7), 2519-2530. https://doi.org/10.1109/TIM.2018.2866300.
7. Lai J., MinX., Su J., Guo L., Guo S., YangX., & Shi Y. (2017). Harmonic generation for renewable energy converter test. In IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society (pp. 2516-2521). IEEE.