ANALYSIS OF THE OPERATING LOGIC OF AN EDUCATIONAL SIMULATOR
BASED ON VIRTUAL LABORATORY Rakhmonov I.U.1, Saidkhodzhaev A.G.2, Kurbonov N.N.3, Kurbonova R.Sh.4
(Republic of Uzbekistan)
1Rakhmonov Ikromzhon Usmonovich - Doctor of Technical Sciences, head of the department, 2Saidkhodzhaev Anvar Gulyamovich - Doctor of Technical Sciences, 3Kurbonov Nurbek Nurullo coals - PhD, associate professor, DEPARTMENT OF ELECTRICAL SUPPLY, TASHKENT STATE TECHNICAL UNIVERSITY, 4Raikhona Shakhobiddinovna Kurbonova - assistant, DEPARTMENT OF WESTERN LANGUAGES TASHKENT EASTERN UNIVERSITY, TASHKENT, REPUBLIC OF UZBEKISTAN
Abstract: this study explores the operational dynamics of educational simulators based on virtual laboratories, with a focus on their structural design, functionality, and educational impacts within the technical and engineering disciplines. Virtual laboratories, powered by virtual reality (VR) and simulation technologies, offer an innovative platform for learners to engage with complex scientific concepts and processes in a risk-free, controlled environment. Through a comparative analysis of existing virtual laboratory simulators—specifically, the High Voltage Electrical Substation VR Training by Digital Engineering and Magic and the Avangrid Substation Walkthrough by VR Vision Inc—this paper identifies key aspects of their operational logic, including the acceptance, specific, and control logics that guide user interaction and learning outcomes. The research highlights the importance of intuitive design in facilitating user engagement, the role of interactive elements in enhancing comprehension, and the implementation of algorithms to prevent element overlap, thereby improving the virtual learning experience. The findings contribute to the understanding of how virtual laboratories can be optimized to support educational goals, offering insights into best practices for their development and use.
Keywords: virtual laboratories, educational simulators, virtual reality, simulation technologies, engineering education, interactive learning, user interface design, programmable logic controllers, high voltage electrical substation, avangrid substation walkthrough.
АНАЛИЗ ЛОГИКИ РАБОТЫ ОБРАЗОВАТЕЛЬНОГО СИМУЛЯТОРА НА ОСНОВЕ
ВИРТУАЛЬНОЙ ЛАБОРАТОРИИ Рахмонов И.У.1, Саидходжаев А.Г.2, Курбонов Н.Н.3, Курбонова Р.Ш.4
(Республика Узбекистан)
1Рахмонов Икромжон Усмонович - доктор технических наук, заведующий кафедрой, 2Саидходжаев Анвар Гулямович - доктор технических наук, 3Курбонов Нурбек Нурулло угли - PhD, доцент, кафедра электроснабжения, Ташкентский государственный технический университет, 4Курбонова Райхона Шахобиддиновна - ассистент, кафедра западных языков Ташкентский восточный университет, г. Ташкент, Республика Узбекистан
Аннотация: данное исследование изучает операционную динамику образовательных симуляторов на основе виртуальных лабораторий, с акцентом на их структурном дизайне, функциональности и образовательном воздействии в технических и инженерных дисциплинах. Виртуальные лаборатории, работающие на основе технологий виртуальной реальности (VR) и симуляции, предлагают инновационную платформу для обучающихся, позволяя им взаимодействовать со сложными научными концепциями и процессами в безопасной, контролируемой среде. Посредством сравнительного анализа существующих симуляторов виртуальных лабораторий — в частности, тренировочного симулятора высоковольтной электрической подстанции VR от Digital Engineering and Magic и обхода подстанции Avangrid от VR Vision Inc — в данной работе выявляются ключевые аспекты их операционной логики, включая логики принятия, спецификации и контроля, которые направляют взаимодействие пользователя и результаты обучения. Исследование подчеркивает важность интуитивного дизайна для обеспечения вовлеченности пользователя, роль интерактивных элементов в улучшении понимания и реализацию алгоритмов для предотвращения перекрытия элементов, тем самым улучшая виртуальный образовательный опыт. Находки способствуют пониманию того, как виртуальные лаборатории могут быть оптимизированы для поддержки образовательных целей, предлагая взгляды на лучшие практики их разработки и использования. Ключевые слова: виртуальные лаборатории, образовательные симуляторы, виртуальная реальность, технологии симуляции, инженерное образование, интерактивное обучение, дизайн пользовательского
интерфейса, программируемые логические контроллеры, высоковольтная электрическая подстанция, обход подстанции Avangrid
The integration of virtual reality (VR) and simulation technologies into the educational landscape has significantly enhanced the learning experience across various disciplines, particularly in technical and engineering fields [1, 2]. These advancements have led to the development of virtual laboratories, which serve as sophisticated educational simulators, enabling students to gain practical experience in a safe, controlled, and replicable environment. The purpose of this study is to delve into the operating logic of an educational simulator based on a virtual laboratory, focusing on its design, functionality, and the educational benefits it offers. Virtual laboratories represent a leap forward in educational technology, providing an interactive platform for learners to explore complex concepts and processes without the constraints of physical lab resources or the risks associated with real-life experiments [3]. This analysis aims to uncover the underlying mechanisms that make these simulators effective educational tools, examining how they simulate real-world conditions, facilitate learning through interactive engagement, and adapt to diverse educational needs [4].
Fig. 1. The main stages of the virtual simulator.
A virtual simulator in the field of engineering primarily consists of three sections (Figure 1): 1. Introduction. 2. Specifics. 3. Results.
The acceptance logic of the virtual simulator involves providing the necessary settings for performing the laboratory work. The specific logic is determined by the content of the virtual simulator, outlining the sequence and stages of its execution. The control logic encompasses the responses to the actions of the student operating the simulator during its use. To date, several virtual laboratories based on programmable logic controllers have been developed in the field of engineering [5, 6]. Although their acceptance and control logics share similar structures, the specifics of their logic may differ based on the content presented in the simulator, yet their general principles are considered similar. This similarity allows for their comparison. For comparison purposes, the High Voltage Electrical Substation VR Training by Digital Engineering and Magic (Figure 2), and the Avangrid Substation Walkthrough by VR Vision Inc virtual laboratories were selected.
Fig. 2. The High Voltage Electrical Substation VR Training virtual laboratory by Digital Engineering and Magic.
The main distinction of the virtual laboratory developed in this research work from other virtual laboratories lies in the logic of selecting virtual devices, presenting them, the processes of their use, and the interaction with instructions.
Fig. 3. The interface for interacting with elements and instructions in existing virtual laboratories: a) High Voltage Electrical Substation VR Training, b) Avangrid Substation Walkthrough virtual laboratory..
In Figure 3, the interfaces for interacting with elements and instructions in the High Voltage Electrical Substation VR Training and Avangrid Substation Walkthrough virtual laboratories are presented. Here, it is possible to identify several shortcomings in the logic of the virtual laboratory:
1. Constant intersection of virtual laboratory elements, which may hinder the formation of a comprehensive understanding of the selected laboratory element for the student.
2. Instructions and tasks are presented in only one direction, making it inconvenient for the student executing the virtual laboratory and complicating the step-by-step execution of the laboratory work.
3. The presentation of diagrams in a small and fixed scale, making it difficult for the student to see and understand the concepts depicted in the object during the execution of the virtual laboratory.
If the additional function of the hand is not used in controlling the element, only the device itself is depicted; otherwise, the hand is also displayed alongside the element. In Figure 4, due to the absence of additional tasks performed by hand when using a "screwdriver" in the logic of selecting laboratory elements, only the chosen element itself is reflected in the working window (4-a), or the state after the element has been installed is shown (4-b). These conditions enable a better formation of concepts for each element for the student.
a 6
Fig. 4. The logic of selecting laboratory elements in the laboratory developed during the research: a) selection without using
hands, b) selection using hands.
Thus, the student can perform the virtual laboratory without changing the main working window throughout the execution. However, in the examples of the High Voltage Electrical Substation VR Training and Avangrid Substation Walkthrough virtual laboratories, instructions cover a large screen and are only displayed in one direction. This situation creates inconvenience for the student performing the virtual laboratory, negatively affecting the efficiency of performing and understanding the laboratory work.
In Figure 4, related to the Avangrid Substation Walkthrough virtual laboratory, it is possible to see that diagrams are provided in a small and unchangeable scale. During the execution of the laboratory, such presentation of diagrams leads to a poor formation of concepts regarding the ongoing process for the student. The research resulted in a virtual laboratory where laboratory information is presented in a segmented manner.
References / Список литературы
1. Рахмонов И.У., Ниёзов Н.Н., Махмутхонов С.К. Эффективная архитектура симулятора для беспроводных устройств industry 4.0 // «European science» ISSN 2541-786Х, № 2 (64), 2022. 9-12 с.
2. Ушаков В.Я., Рахмонов И.У., Жалилова Д.А. Прогнозирование электропотребления текстильными предприятиями на основе метода главных компонент // «Проблемы науки» ISSN 2542-078Х, №2 5 (73), 2022. 22-26 с.
3. Rakhmonov I. U., Kurbonov N.N., Bijanov A.K. Types of simulators and their efficient architectures // "Вестник науки и образования" ISSN 2312-8089. № 9 (129). 2022 PP. 13-19.
4. Рахмонов И.У., Ушаков В.Я., Ниёзов Н.Н. Определение факторы, влияющие на потребления электроэнергии предприятиями машиностроения при прогнозирование // «Проблемы современной науки и образования» ISSN 2413-4635, № 8 (177), 2022. 19-24 с.
5. Alphonse J., Medini C., Nair B., & Diwakar S. (2017). An open-source computational neuroscience virtual laboratory tool for simulating spiking neurons and circuits. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 527-532.
6. Oestergaard J., Bjerrum F., MaagaardM., Winkel P., Larsen C.R., Ringsted C., Gluud C., Grantcharov T., Ottesen B., & Soerensen J.L. (2012). Instructor feedback versus no instructor feedback on performance in a laparoscopic virtual reality simulator: a randomized educational trial. BMC Medical Education, 12, Article 7. https://doi.org/10.1186/1472-6920-12-7.