Научная статья на тему 'CATALYTIC TRANSFORMATION OF METHANOL ON H-ZSM-5 ZEOLITE UNDER MICROFLUIDIC FLOW CONDITIONS'

CATALYTIC TRANSFORMATION OF METHANOL ON H-ZSM-5 ZEOLITE UNDER MICROFLUIDIC FLOW CONDITIONS Текст научной статьи по специальности «Химические науки»

CC BY
50
6
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
РЕАКТОР С МИКРОСТРУКТУРИРОВАННЫМИ ПОТОКАМИ / МЕТАНОЛ / УГЛЕВОДОРОДЫ / ЦЕОЛИТ / HZSM-5

Аннотация научной статьи по химическим наукам, автор научной работы — Brovko Roman V., Mikhailov Stepan P., Mushinsky Lev S., Lakina Margarita E., Doluda Valentin Yu.

The article is devoted to the study of microstructured alumina monolith covered with H-ZSM-5 layer in methanol to hydrocarbons transformation process in microfluidic conditions. The monolithic catalyst for the microreactor was formed using 90 wt.% alumina and 10% zeolite H-ZSM-5 mixture. The composition was pressed into a mold followed by treatment in an aqueous solution of 0.1M sodium hydroxide for 3 h, drying at 105 °C for 2 h and calcination at 600 °C. The synthesized monolithic catalyst was characterized by a diameter of 20 mm and a length of 50 mm. The inner cylindrical channels had a diameter of 1 mm. Secondary growth of H-ZSM-5 zeolite was carried out on the surface of the monolith. The monolith was placed in 5 wt.% aqueous solution of tetrapropylammonium bromide and then the monolith was placed in an autoclave filled with a solution of precursors of the molar composition 7Na2O:0.25Al2O3:100SiO2:3500H2O for hydrothermal synthesis. The developed catalyst was analyzed by ammonia chemosorption, nitrogen physisorption, Si/Al ratio was determined gravimetrically. Methanol transformation reaction was performed in the following conditions: methanol weight hourly space velocity was 4 kg(MeOH)/((kg(Cat)×h), reactor temperature was 450 °C, overall pressure in the reactor was 0.11 MPa. Application of monolith microchannel catalyst showed a considerable increase in process selectivity to small olefins including ethylene and propylene. Methanol transformation rate rose from 2.8 kg(MeOH)/((kg(Cat)×h) to 3.3 kg(MeOH)/((kg(Cat)×h) and catalyst deactivation was not noticed for 24 h. The increase in methanol to hydrocarbons transformation process selectivity to olefins catalysts activity and stability can be subscribed to enhanced mass transfer of reaction substances, intermediates, and products.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «CATALYTIC TRANSFORMATION OF METHANOL ON H-ZSM-5 ZEOLITE UNDER MICROFLUIDIC FLOW CONDITIONS»

DOI: 10.6060/ivkkt.20226503.6492 УДК: 544.478.12

КАТАЛИТИЧЕСКАЯ ТРАНСФОРМАЦИЯ МЕТАНОЛА НА ЦЕОЛИТЕ H-ZSM-5 В УСЛОВИЯХ МИКРОСТРУКТУРИРОВАННЫХ ПОТОКОВ

Р.В. Бровко, С.П. Михайлов, Л.С. Мушинский, М.Е. Лакина, В.Ю. Долуда

Роман Викторович Бровко, Степан Петрович Михайлов, Лев Сергеевич Мушинский, Маргарита Евгеньевна Лакина, Валентин Юрьевич Долуда*

Кафедра Биотехнологии, химии и стандартизации, Тверской государственный технический университет, наб. А. Никитина, 22, Тверь, Российская Федерация, 170026

E-mail: RomanVictorovich69@mail.ru, stefan.oblivion@mail.ru, l18071998@rambler.ru, marusalew15@yan-dex.ru, doludav@yandex.ru*

Статья посвящена исследованию микроструктурированного монолитного катализатора, состоящего из основного слоя оксида алюминия, покрытого слоем H-ZSM-5, в реакции каталитического превращения метанола в углеводороды в условиях микроструктурированных потоков. Монолитный катализатор для микрореактора был сформирован из 90 мас. % оксида алюминия и 10% цеолита H-ZSM-5. Композицию прессовали в форме с последующей обработкой в водном растворе 0,1Мгидроксида натрия в течение 3-х ч, сушкой при 105 °С в течение 2-х ч и прокаливанием при 600 °С. Синтезированный монолитный катализатор характеризовался диаметром 20 мм и длиной 50 мм, внутренние цилиндрические каналы имели диаметр 1 мм. На поверхность монолита был проведен вторичный рост цеолита H-ZSM-5. Монолит был помещен в 5 мас.% водный раствор бромида тетрапропиламмония, и после чего монолит помещался в автоклав, заполненный раствором прекурсоров молярного состава 7Na2O:0,25Al2O3:100SiO2:3500H2O для гидротермального синтеза. Синтезированный катализатор был исследован методами хемосорбции аммиака, физической адсорбции азота, соотношение Si/Al было определено гравиметрическим методом. Каталитическое превращение метанола проводили в следующих условиях: массовая часовая объемная скорость метанола составляла 4 кг(МеОН)/(кг(Са^хч), температура реактора составляла 450 °C, общее давление в реакторе составляло 0,11 МПа. Применение монолитного микроструктурированного катализатора показал о значительное повышение селективности процесса по отношению к образованию малых олефинов, включая этилен и пропилен. Скорость превращения метанола увеличилась с 2,8 кг(МеОН)/(кг (Cat) х ч) до 3,3 кг (МеОН)/(кг(Са^хч), а дезактивация катализатора не наблюдалась в течение 24 ч. Повышение селективности процесса превращения метанола в углеводороды, а также увеличение активности и стабильности монолитного микроструктурированного катализатора может быть объяснено увеличением массопереноса исходныхреакционных веществ, промежуточных и конечных продуктов.

Ключевые слова: реактор с микроструктурированными потоками, метанол, углеводороды, цеолит, H-ZSM-5

CATALYTIC TRANSFORMATION OF METHANOL ON H-ZSM-5 ZEOLITE UNDER MICROFLUIDIC FLOW CONDITIONS

R.V. Brovko, S.P. Mikhailov, L.S. Mushinsky, M.E. Lakina, V.Yu. Doluda

Roman V. Brovko, Stepan P. Mikhailov, Lev S. Mushinsky, Margarita E. Lakina, Valentin Yu. Doluda*

Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A. Nikitina nab., 22, Tver, 170026, Russia

E-mail: RomanVictorovich69@mail.ru, stefan.oblivion@mail.ru, l18071998@rambler.ru, marusalew15@yan-dex.ru, doludav@yandex.ru*

The article is devoted to the study of microstructured alumina monolith covered with H-ZSM-5 layer in methanol to hydrocarbons transformation process in microfluidic conditions. The monolithic catalyst for the microreactor was formed using 90 wt.% alumina and 10% zeolite H-ZSM-5 mixture. The composition was pressed into a mold followed by treatment in an aqueous solution of 0.1M sodium hydroxide for 3 h, drying at 105 °Cfor 2 h and calcination at 600 °C. The synthesized monolithic catalyst was characterized by a diameter of 20 mm and a length of 50 mm. The inner cylindrical channels had a diameter of 1 mm. Secondary growth of H-ZSM-5 zeolite was carried out on the surface of the monolith. The monolith was placed in 5 wt.% aqueous solution of tetraprop-ylammonium bromide and then the monolith was placed in an autoclave filled with a solution of precursors of the molar composition 7Na20:0.25Al203:100Si02:3500H20 for hydrothermal synthesis. The developed catalyst was analyzed by ammonia chemosorption, nitrogen physisorption, Si/Al ratio was determined gravimetrically. Methanol transformation reaction was performed in the following conditions: methanol weight hourly space velocity was 4 kg(MeOH)/((kg(Cat)^h), reactor temperature was 450 °C, overall pressure in the reactor was 0.11 MPa. Application of monolith microchannel catalyst showed a considerable increase in process selectivity to small olefins including ethylene and propylene. Methanol transformation rate rose from 2.8 kg(MeOH)/((kg(Cat)*h) to 3.3 kg(MeOH)/((kg(Cat)*h) and catalyst deactivation was not noticed for 24 h. The increase in methanol to hydrocarbons transformation process selectivity to olefins catalysts activity and stability can be subscribed to enhanced mass transfer of reaction substances, intermediates, and products.

Key words: microfluidic reactor, methanol, hydrocarbons, zeolite, H-ZSM-5 Для цитирования:

Бровко Р.В., Михайлов С.П., Мушинский Л.С., Лакина М.Е., Долуда В.Ю. Каталитическая трансформация метанола на цеолите H-ZSM-5 в условиях микроструктурированных потоков. Изв. вузов. Химия и хим. технология. 2022. Т. 65. Вып. 3. С. 67-73

For citation:

Brovko R.V., Mikhailov S.P., Mushinsky L.S., Lakina M.E., Doluda V.Yu. Catalytic transformation of methanol on H-ZSM-5 zeolite under microfluidic flow conditions. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 3. P. 67-73

INTRODUCTION

Microfluidic chemistry is of particular interest for high-performance synthesis of valuable substances due to enhanced mass [1] and heat transfer [2] in small diameter channels [2, 3]. Different types of microfluidic reactors [4], including plate [5] and capillary [6, 7] microchannel reactors, were fabricated and tested in various processes, mainly in fine organic synthesis [8-11] showed a considerable increase in reaction rates and process selectivity [3, 7]. However, microreactor application for basic organic synthesis is controversial issue due to microreactor high cost and difficulties of its fabrication [10]. One possible solution to overcome these disadvantages is an application of microchannel monolith [12] reactor that can be easily fabricated compared to a staleness steal reactor [13] and applied in high throughput industrial production systems. Methanol [14] to hydrocarbons catalytic transformation is a

possible way for the production of synthetic hydrocarbons [15, 16], including aromatic hydrocarbons, olefins, and aliphatic hydrocarbons [17, 18]. Typically, methanol to hydrocarbons transformation process accompanies by rapid catalytic activity decrease due to active surface carbonization [19, 20]. However, this issue can be partly reduced by catalyst mass transfer intensification [21, 22] in the case of a thin catalyst layer in a microfluidic reactor [7, 21, 23]. The article is devoted to the study of methanol to hydrocarbons transformation process in microfluidic conditions.

MATERIALS AND METHODS

For providing experiments, chemical purity grade NaOH (99 wt.%), NH4NO3 (99 wt.%), SiO2 (99 wt.%), Al2O3 (99 wt.%), H-ZSM-5 (98 wt.%, CVM, Si/Al = 40, Nizhny Novgorod sorbents), tetraprop-ilammonium bromide (98 wt.%) were purchased from a local supplier and used without further purification. Monolith chip for microreactor was formed using

90 wt.% alumina powder mixed with 10 wt.% of H-ZSM-5 powder. The composition was pressed in a mold, followed by handling in water solution of 0.1M of sodium hydroxide for 3 h followed by drying at 105 °C for 2 h and calcination at 600 °C. Synthesized cylindrical monolith chip was 20 mm in diameter and 50 mm in length, internal cylindrical channels have 1 mm in diameter. Then, secondary growth of H-ZSM was performed on the monolith surface. Monolith was placed in 5 wt. % tetrapropilammonium bromide water solution and stored for half an hour than monolith was mounted in autoclave filled with precursors solution characterized by molar composition 7Na20:0.25Al203:100Si02:3500H20. The autoclave was heated up to 140 °C and monolith was stored in this solution for 65 h under soft stirring 120 rpm. Then monolith was washed with distillate water and placed in 1M solution of ammonia nitrate for 3 h, followed by washing with distillate water, filtration, drying, and calcination. Finally, after the H-ZSM-5 deposition process internal channels effective diameter was found to be 0.9 mm. For the determination of monolith surface acidity, ammonia chemosorption was performed using AutoChem HP 2950 analyzer. For analysis sample was placed in a quartz cuvette purged with helium under heating to 600 °C, cooled to ambient temperature, purged with ammonia (10 wt.%) mixture in helium for 1 h and then heated in helium to 600 °C. The internal and external surface area were determined using Beckman coulter SA 3100 nitrogen analyzer, and a t-plot model was applied. The Si and Al concentrations were analyzed gravimetrically according to ISO 2598-1:1992 standard method.

Methanol to hydrocarbons transformation reactor was studied in reactor set up showed on Fig. 1, consist of a flask with methanol, high-pressure pump for methanol supply, heater, microreactor for monolith catalyst and condenser.

In typical experiment, monolith catalysts placed in holder, methanol was pumped through the heater and reactor. Methanol weight hourly space velocity (WHSV) was 4 kg(MeOH)/((kg(Cat)xh), reactor temperature was 450 °C, overall pressure in the reactor was 0.11 MPa. Catalyst activation and regeneration process was performed in a muffle furnace in the air by heating monolith up to 600 °C for 3 h. After reaction catalyst samples were dried at 105 °C for 2 h and calcined in air at 600 °C for gravimetric carbon depositions determination.

RESULTS AND DISCUSSIONS

Determined physicochemical properties of produced catalysts are presented in table 1, Si/Al ratio values are close for both samples and typical for H-

ZSM-5 [17, 19]. Synthesized monolith sample characterized by higher acids sites concentration micro and mesopore surface area compare to powdered H-ZSM-5 sample, therefore monolith sample should have higher catalytic activity.

Fig. 1. Scheme of microfluidic set up for methanol to hydrocarbons catalytic transformation (1 - flask with methanol, 2 - high-pressure pump, 3 - microfluidic heater, 4 - microfluidic reactor for methanol to hydrocarbons transformation, 5 - condenser) Рис. 1. Схема каталитической микрофлюидной установки для проведения каталитического процесса трансформации метанола в углеводороды (1 - емкость для метанола, 2 - насос высокого давления, 3 - микрофлюидный подогреватель, 4 - микрофлюидный реактор трансформации метанола в углеводороды, 5 - конденсатор).

Table 1

Physicochemical properties of developed H-ZSM-5 catalyst Таблица 1. Физико-химические свойства синтезиро-_ванных катализаторов_

Sample Si NH3 t-plot surface area, m2/g

Al mmol/g micropores mesopores

Powder 40 1.2 218 41

Monolith 36 1.4 232 82

For comparison of methanol transformation in microchannel monolith reactor and fixed bed reactor experiments with powdered H-ZSM-5 diluted with silica was performed with WHSV equal to 4 kg(Me0H)/((kg(Cat)xh). The results of methanol conversion rate correlation on time on stream are presented in Fig. 2. The initial methanol transformation rate for reaction provided in microfluidic conditions is higher by 15% compared to reaction provided in fixed bed mode. Besides, drastic decrease in methanol transformation rate for 35% is noticeable for methanol transformation proses in fixed bed reactor to the end of 24 h on stream while for reaction provided in micro-flow conditions, there was not any decrease in catalytic activity.

Fig. 2. Dependence of methanol transformation rate on zeolite H-ZSM-5 on the time of catalyst use (1 - methanol transformation in microfluidic conditions, 2 - for methanol transformation with fixed bed catalyst layer) Рис. 2. Зависимость скорости трансформации метанола на цеолите H-ZSM-5 от времени использования катализатора (1-при проведении реакции в условиях микропотоков, 2 - при проведении реакции в закрепленном слое катализатора)

Alyph. Arorm. hydr. hydr.

Fig. 3. Hydrocarbons composition in methanol to hydrocarbons catalytic transformation process over H-ZSM-5 zeolite (1 - methanol transformation in microfluidic conditions, 2 - for methanol

transformation with fixed bed catalyst layer) Рис. 3. Зависимость состава углеводородов, образующихся в результате каталитической трансформации метанола на цеолите H-ZSM-5 (1-при проведении реакции в условиях микропотоков, 2 - при проведении реакции в закрепленном слое катализатора)

Identified reaction products include alkanes, olefins, and aromatic hydrocarbons. The considerable differences can be noticed in hydrocarbons composition for methanol to hydrocarbons transformation in microfluidic and fixed bed conditions in Fig. 3. Micro-fluidic conditions favor increase in ethylene and pro-pylene concentration up to 8 wt.% and 18 wt.% respectively, while for methanol transformation process in fixed bed conditions ethylene and propylene concentration was found to be only 0.5 wt.% and 1.6 wt.%. Besides, some increase in aliphatic hydrocarbons concentration for 5 wt.% and drastic decrease in aromatic hydrocarbons concentration for 18 wt.% is noticeable for the microfluidic catalytic process.

Difference in reaction mixture hydrocarbons composition can be subscribed to better reaction products and initial substances diffusion conditions and better release of light reaction products in case of microfluidic conditions. While for fixed bed process due to diffusion limitations, light olefins take part in series of consecutive reactions with the final formation of different aromatic hydrocarbons.

Carbon deposition is the main reason for zeolite deactivation during methanol to hydrocarbons transformation process [18]. Increasing in carbon concentration in zeolite results in an appropriate decrease in catalytic activity. In the case of methanol transformation in microflow conditions, carbon concentration increases much slowly compares to methanol transformation process in fixed bed conditions, Fig. 4.

Fig. 4. Changes in carbon concentration during the catalytic transformation of methanol into hydrocarbons on zeolite H-ZSM-5 (1 - methanol transformation in microfluidic conditions, 2 - for methanol transformation with fixed bed catalyst layer) Рис. 4. Изменение концентрации углерода в процессе каталитической трансформации метанола в углеводороды на цеолите H-ZSM-5 (1-при проведении реакции в условиях микропотоков, 2 - при проведении реакции в закрепленном слое катализатора)

Significant decrease in carbon deposits formation rate in case of microflow conditions can be subscribed to decrease in diffusion limitations, favor good transport of light hydrocarbons that slow down formation of heavy hydrocarbons responsible for carbon deposits formation and overall catalyst activity decrease.

Physicochemical properties of used H-ZSM-5 samples are presented in Table 2, Si/Al ratios values are close to initial samples values. Used powdered sample applied for methanol to hydrocarbons transfor-

mation in fixed bed reactor showed a considerable decrease in micropores surface area and zeolite acidity while mesopores surface area decrease not so with that can be explained by carbon deposition over catalysts surface, mainly in micropores of H-ZSM-5 zeolite. On the other side, monolith sample showed a decrease in acidity only for 15% and a decrease in micro and mes-opores surface area for 3% and 5%, which can be explained by better mass transfer of reaction substrates and products in microfluidic conditions.

Table 2

Physicochemical properties of developed H-ZSM-5 catalysts after methanol to hydrocarbons transformation process*

Таблица 2. Физико-химические свойства использо-

Note: * - reaction conditions WHSV - 4 kg(MeOH)/((kg(Cat)xh), reactor temperature - 450 °C, overall pressure in reactor was 0.11 MPa, time on stream 24 h

Примечание: * - условия реакции WHSV - 4 MTMeOH)/ /((ET(Cat)x4), температура реактора - 450 °С, общее давление в реакторе 0,11 МПа, время работы 24 ч.

CONCLUSION

Methanol to hydrocarbons transformation proses is a perspective method for obtaining synthetic hydrocarbons, including alkanes, olefins, and aromatic hydrocarbons as from traditional oil-based resources and from bio renewable resources. However, some technological issues, including low catalytic stability are still hindering the widespread application of this process in the industry. Methanol to hydrocarbons catalytic transformation in microfluidic conditions using

ЛИТЕРАТУРА

1. Bratsun D., Siraev R. Controlling mass transfer in a continuous-flow microreactor with a variable wall relief. Int. Commun. Heat Mass Transfer. 2020. V. 113. P. 104522. DOI: 10.1016/J.ICHEATMASSTRANSFER.2020.104522.

2. Ovchinnikova E.V., Vernikovskaya N.V., Gribovskii A.G., Chumachenko V.A. Multichannel microreactors for highly exothermic catalytic process: The influence of thermal conductivity of reactor material and of transport phenomena inside the channels on the process efficiency. Chem. Eng. J. 2020. V. 409. P. 128046. DOI: 10.1016/J.CEJ.2020.128046.

3. Okhlopkova L.B., Prosvirin LP., Kerzhentsev M.A., Ismagilov Z.R. Capillary microreactor with PdZn/(Ti, Ce)O2 coating for selective hydrogenation of 2-methyl-3-butyn-2-ol. Chem. Eng. Proc. Proc. Intens. 2021. V. 159. P. 108240. DOI: 10.1016/J.CEP.2020.108240.

monolith catalyst is a perspective way for solving these problems. Synthesis of monolith H-ZSM-5 on alumina support showed the possibility to obtain catalysts with practically the same physicochemical properties compare to powdered commercial H-ZSM-5 sample. Application of monolith microchannel catalyst showed a considerable increase in process selectivity to small olefins including ethylene and propylene. Besides, methanol transformation rate rose from 2.8 kg(MeOH)/((kg(Cat)xh) to 3.3 kg(MeOH)/((kg(Cat)xh) and catalyst deactivation was not noticed for 24 h on stream. Gravimetric determination of carbon depositions over H-ZSM-5 catalyst showed a decrease in carbon concentration from 9 wt.% down to 1.4 wt.% in case of methanol transformation in microfluidic operation mode. Physi-cochemical properties study monolith H-ZSM-5 zeolite showed a lower decrease in surface acidity and micropore surface area compared to the powdered sample. The increase in methanol to hydrocarbons transformation process selectivity to olefins catalysts activity and stability can be subscribed to enhanced mass transfer of reaction substances, intermediates, and products.

ACKNOWLEDGEMENTS

The study was funded by Russian Federation President council for the support of young scientists and leading scientific schools, grant MD- 903.2021.4.

The authors declare the absence a conflict of interest warranting disclosure in this article.

Работа выполнена при финансовой поддержке Совета при Президенте Российской Федерации по поддержке молодых ученых и ведущих научных школ, грант МД-903.2021.4.

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

REFERENCES

1. Bratsun D., Siraev R. Controlling mass transfer in a continuous-flow microreactor with a variable wall relief. Int. Commun. Heat Mass Transfer. 2020. V. 113. P. 104522. DOI: 10.1016/J.ICHEATMASSTRANSFER.2020.104522.

2. Ovchinnikova E.V., Vernikovskaya N.V., Gribovskii A.G., Chumachenko V.A. Multichannel microreactors for highly exothermic catalytic process: The influence of thermal conductivity of reactor material and of transport phenomena inside the channels on the process efficiency. Chem. Eng. J. 2020. V. 409. P. 128046. DOI: 10.1016/J.CEJ.2020.128046.

3. Okhlopkova L.B., Prosvirin LP., Kerzhentsev M.A., Ismagilov Z.R. Capillary microreactor with PdZn/(Ti, Ce)O2 coating for selective hydrogenation of 2-methyl-3-butyn-2-ol. Chem. Eng. Proc. Proc. Intens. 2021. V. 159. P. 108240. DOI: 10.1016/J. CEP .2020.108240.

ванных катализаторов

Sample Si NH3 t-plot surface area, m2/g

Al mmol/g micropores mesopores

Powder 38 0.6 114 36

Monolith 36 1.2 224 78

4. Proskurina O.V., Abiev R.S., Danilovich D.P., Panchuk V.V., Semenov V.G., Nevedomsky V.N., Gusarov V.V. Formation of nanocrystalline BiFeO3 during heat treatment of hydroxides co-precipitated in an impinging-jets microreactor. Chem. Eng. Proc. Proc. Intens. 2019. V. 143. P. 107598. DOI: 10.1016/J.CEP.2019.107598

5. Motin A.M., Haunold T., Bukhtiyarov A.V., Bera A., Rameshan C., Rupprechter G. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies. Appl. Surface Sci. 2018. V. 440. P. 680-687. DOI: 10.1016/J.APSUSC.2018.01.148.

6. Ebadi S., Ghasemipanah K., Alaie E., Rashidi A., Kha-taee A. COD removal from gasfield produced water using photoelectrocatalysis process on coil type microreactor. J. Indust. Eng. Chem. 2021. V. 98. P. 262-269. DOI: 10.1016/J.JIEC.2021.03.045.

7. Abiev R.S., Pavlyukova Y.N., Nesterova O.M., Svetlov S.D., Ostrovskii V.A. Mass transfer intensification of 2-me-thyl-5-nitrotetrazole synthesis in two-phase liquid-liquid Taylor flow in microreactor. Chem. Eng. Res. Design. 2019. V. 144. P. 444-458. DOI: 10.1016/J.CHERD.2019.01.033.

8. Ismagilov Z.R., Matus E.V., Yakutova A.M., Protasova L.N., Ismagilov I.Z., Kerzhentsev M.A., Schouten J.C. Design of Pt-Sn catalysts on mesoporous titania films for microre-actor application. Catalysis Today. 2009. V. 147. P. S81 -S86. DOI: 10.1016/J. CATTOD.2009 .07.046.

9. Protasova L.N., Rebrov E.V., Glazneva T.S., Berenguer-Murcia A., Ismagilov Z.R., Schouten J.C. Control of the thickness of mesoporous titania films for application in multiphase catalytic microreactors. J. Catal. 2010. V. 271. N 2. P.161-169. DOI 10.1016/J.JCAT.2009.07.013.

10. Cherkasov N., Al-Rawashdeh M., Ibhadon A.O., Rebrov E.V. Scale up study of capillary microreactors in solvent-free semihydrogenation of 2-methyl-3-butyn-2-ol. Catal. Today. 2016. V. 273. P. 205-212. DOI: 10.1016/J.CATTOD.2016.03.028.

11. Phan X.K., Walmsley J.C., Bakhtiary-Davijany H., Myr-stad R., Pfeifer P., Venvik H., Holmen A. Pd/CeO2 catalysts as powder in a fixed-bed reactor and as coating in a stacked foil microreactor for the methanol synthesis. Catal. Today. 2016. V. 273. P. 25-33. DOI: 10.1016/J.CAT-TOD.2016.02.047.

12. Delattre C., Vijayalakshmi M.A. Monolith enzymatic microreactor at the frontier of glycomic toward a new route for the production of bioactive oligosaccharides. J. Molec. Catal. B: Enzym. 2009. V. 60. N 3-4. P. 97-105. DOI: 10.1016/J.MOLCATB.2009.04.016.

13. Domínguez M.I., Centeno M.A., Martínez T.M., Boba-dilla L.F., Laguna Ó.H., Odriozola J.A. Current scenario and prospects in manufacture strategies for glass, quartz, polymers and metallic microreactors: A comprehensive review. Chem. Eng. Res. Design. 2021. V. 171. P. 13-35. DOI: 10.1016/J.CHERD.2021.05.001.

14. Румянцев Р.Н., Батанов А.А., Цымбалист И.Н., Ильин А.А., Гордина Н.Е., Гришин И.С. Исследование свойств CuO-ZnO-AhO3 катализаторов для синтеза метанола. Изв. вузов. Химия и хим. технология. 2021. Т. 64. Вып. 10. С. 56-64. DOI: 10.6060/ivkkt.20216410.6441.

15. Долуда В.Ю., Быков А.В., Сульман М.Г., Сидоров А.И., Лакина Н.В., Сульман Э.М. Особенности формирования малых напряженных алициклических соединений в процессе каталитической трансформации метанола на цеолите H-ZSM-5. Изв. вузов. Химия и хим. технология. 2018. Т. 61. Вып. 12. С. 74-80. DOI: 10.6060/ivkkt.20186112.5730.

4. Proskurina O.V., Abiev R.S., Danilovich D.P., Panchuk V.V., Semenov V.G., Nevedomsky V.N., Gusarov V.V. Formation of nanocrystalline BiFeÜ3 during heat treatment of hydroxides co-precipitated in an impinging-jets microreactor. Chem. Eng. Proc. Proc. Intens. 2019. V. 143. P. 107598. DOI: 10.1016/J.CEP.2019.107598

5. Motin A.M., Haunold T., Bukhtiyarov A.V., Bera A., Rameshan C., Rupprechter G. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies. Appl. Surface Sci. 2018. V. 440. P. 680-687. DOI: 10.1016/J.APSUSC.2018.01.148.

6. Ebadi S., Ghasemipanah K., Alaie E., Rashidi A., Kha-taee A. COD removal from gasfield produced water using photoelectrocatalysis process on coil type microreactor. J. Indust. Eng. Chem. 2021. V. 98. P. 262-269. DOI: 10.1016/J.JIEC.2021.03.045.

7. Abiev R.S., Pavlyukova Y.N., Nesterova O.M., Svetlov S.D., Ostrovskii V.A. Mass transfer intensification of 2-me-thyl-5-nitrotetrazole synthesis in two-phase liquid-liquid Taylor flow in microreactor. Chem. Eng. Res. Design. 2019. V. 144. P. 444-458. DOI: 10.1016/J.CHERD.2019.01.033.

8. Ismagilov Z.R., Matus E.V., Yakutova AM., Protasova L.N., Ismagilov I.Z., Kerzhentsev M.A., Schouten J.C. Design of Pt-Sn catalysts on mesoporous titania films for microre-actor application. Catalysis Today. 2009. V. 147. P. S81 -S86. DOI: 10.1016/J.CATTOD.2009.07.046.

9. Protasova L.N., Rebrov E.V., Glazneva T.S., Berenguer-Murcia A., Ismagilov Z.R., Schouten J.C. Control of the thickness of mesoporous titania films for application in multiphase catalytic microreactors. J. Catal. 2010. V. 271. N 2. P.161-169. DOI 10.1016/J.JCAT.2009.07.013.

10. Cherkasov N., Al-Rawashdeh M., Ibhadon A.O., Re-brov E.V. Scale up study of capillary microreactors in solvent-free semihydrogenation of 2-methyl-3-butyn-2-ol. Catal. Today. 2016. V. 273. P. 205-212. DOI: 10.1016/J.CATTOD.2016.03.028.

11. Phan X.K., Walmsley J.C., Bakhtiary-Davijany H., Myr-stad R., Pfeifer P., Venvik H., Holmen A. Pd/CeO2 catalysts as powder in a fixed-bed reactor and as coating in a stacked foil microreactor for the methanol synthesis. Catal. Today. 2016. V. 273. P. 25-33. DOI: 10.1016/J.CAT-TOD.2016.02.047.

12. Delattre C., Vijayalakshmi M.A. Monolith enzymatic microreactor at the frontier of glycomic toward a new route for the production of bioactive oligosaccharides. J. Molec. Catal. B: Enzym. 2009. V. 60. N 3-4. P. 97-105. DOI: 10.1016/J.MOLCATB.2009.04.016.

13. Domínguez M.I., Centeno M.A., Martínez T.M., Boba-dilla L.F., Laguna Ó.H., Odriozola J.A. Current scenario and prospects in manufacture strategies for glass, quartz, polymers and metallic microreactors: A comprehensive review. Chem. Eng. Res. Design. 2021. V. 171. P. 13-35. DOI: 10.1016/J.CHERD.2021.05.001.

14. Rumyantsev R.N., Batanov A.A., Tsymbalist I.N., Il'yin A.A., Gordina N.E., Grishin I.S. Study of properties of CuO-ZnO-AhO3 catalysts for methanol synthesis. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 10. P. 56-64. DOI: 10.6060/ivkkt.20216410.6441.

15. Doluda V.Yu., Bykov AV., Sulman M.G., Sidorov AI, Lakina N.V., Sulman E.M. Peculiarities of small strained ali-cycle compounds formation in catalytic transformation of methanol over zeolite H-ZSM-5. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 12. P. 74-80 (in Russian). DOI: 10.6060/ivkkt.20186112.5730.

16. Tsunoji N., Osuga R., Yasumoto M., Yokoi T. Controlling hydrocarbon oligomerization in phosphorus-modified CHA zeolite for a long-lived methanol-to-olefin catalyst. Appl. Catal. A: Gen. 2021. V. 620. P. 118176. DOI: 10.1016/J.APCATA.2021.118176.

17. Долуда В.Ю., Сульман М.Г., Матвеева В.Г., Лакина Н.В., Сульман Э.М. Модификация алюмосиликата H-ZSM-5 и исследование его каталитической активности в процессе трансформации метанола в углеводороды. Изв. вузов. Химия и хим. технология. 2016. Т. 59. Вып. 2. С. 79-82.

18. Zhang Z., Liu B., Liu F., Zhao Y., Xiao T. Effect of nickel loading on the performance of nano- and micro-sized ZSM-5 catalysts for methanol to hydrocarbon conversion. Catal. Today. 2018. V. 317. P. 21-28. DOI: 10.1016/J.CATT0D.2018.03.044.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

19. Lee S., Choi M. Unveiling coke formation mechanism in MFI zeolites during methanol-to-hydrocarbons conversion. J. Catal. 2019. V. 375. P. 183-192. DOI: 10.1016/J.JCAT.2019.05.030.

20. Wang J., Li J., Xu S., Zhi Y., Wei Y., He Y., Liu Z Methanol to hydrocarbons reaction over HZSM-22 and SAPO-11: Effect of catalyst acid strength on reaction and deactivation mechanism. Chinese J. Catal. 2015. V. 36. N 8. P. 1392-1402. DOI: 10.1016/S1872-2067(15)60953-6.

21. Hamzah A.B., Fukuda T., Ookawara S., Yoshikawa S., Matsumoto H. Process intensification of dry reforming of methane by structured catalytic wall-plate micro-reactor. Chem. Eng. J. 2021. V. 412. P. 128636. DOI: 10.1016/J.CEJ.2021.128636.

22. Tolley T.E., Fronk B.M. Investigation of the benefits of dia-batic microreactors for process intensification of the water-gas shift reaction within the steam reforming process. Internat. J. Hydrogen Energy. 2020. V. 45. N 56. P. 31507-31522. DOI: 10.1016/J.IJHYDENE.2020.08.282.

23. Wilhite B.A. Unconventional microreactor designs for process intensification in the distributed reforming of hydrocarbons: a review of recent developments at Texas A&M University. Current Opinion Chem. Eng. 2017. V. 17. P. 100-107. DOI: 10.1016/J.mCHE.2017.08.002.

16. Tsunoji N., Osuga R., Yasumoto M., Yokoi T. Controlling hydrocarbon oligomerization in phosphorus-modified CHA zeolite for a long-lived methanol-to-olefin catalyst. Appl. Catal. A: Gen. 2021. V. 620. P. 118176. DOI: 10.1016/J.APCATA.2021.118176.

17. Doluda V.Yu., Sulman M.G., Matveeva V.G., Lakina N.V., Sulman E.M. Modification of alumosilicate H-ZSM-5 and investigation of its catalytic activity in transformation process of methanol to hydrocarbons. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2016. V. 59. N 2. P. 79-82 (in Russian).

18. Zhang Z., Liu B., Liu F., Zhao Y., Xiao T. Effect of nickel loading on the performance of nano- and micro-sized ZSM-5 catalysts for methanol to hydrocarbon conversion. Catal. Today. 2018. V. 317. P. 21-28. DOI: 10.1016/J.CAT-T0D.2018.03.044.

19. Lee S., Choi M. Unveiling coke formation mechanism in MFI zeolites during methanol-to-hydrocarbons conversion. J. Catal. 2019. V. 375. P. 183-192. DOI: 10.1016/J.JCAT.2019.05.030.

20. Wang J., Li J., Xu S., Zhi Y., Wei Y., He Y., Liu Z. Methanol to hydrocarbons reaction over HZSM-22 and SAPO-11 : Effect of catalyst acid strength on reaction and deactivation mechanism. Chinese J. Catal. 2015. V. 36. N 8. P. 1392-1402. DOI: 10.1016/S1872-2067(15)60953-6.

21. Hamzah A.B., Fukuda T., Ookawara S., Yoshikawa S., Matsumoto H. Process intensification of dry reforming of methane by structured catalytic wall-plate micro-reactor. Chem. Eng. J. 2021. V. 412. P. 128636. DOI: 10.1016/J.CEJ.2021.128636.

22. Tolley T.E., Fronk B.M. Investigation of the benefits of dia-batic microreactors for process intensification of the water-gas shift reaction within the steam reforming process. Internat. J. Hydrogen Energy. 2020. V. 45. N 56. P. 31507-31522. DOI: 10.1016/J.IJHYDENE.2020.08.282.

23. Wilhite B.A. Unconventional microreactor designs for process intensification in the distributed reforming of hydrocarbons: a review of recent developments at Texas A&M University. Current Opinion Chem. Eng. 2017. V. 17. P. 100-107. DOI: 10.1016/J.œCHE.2017.08.002.

Поступила в редакцию 23.08.2021 Принята к опубликованию 13.01.2022

Received 23.08.2021 Accepted 13.01.2022

i Надоели баннеры? Вы всегда можете отключить рекламу.