Научная статья на тему 'TOLUENE ALKYLATION WITH ISOPROPANOL ON ZEOLITE TYPE ZSM-5 MODIFIED WITH MAGNESIUM AND PHOSPHORUS'

TOLUENE ALKYLATION WITH ISOPROPANOL ON ZEOLITE TYPE ZSM-5 MODIFIED WITH MAGNESIUM AND PHOSPHORUS Текст научной статьи по специальности «Химические науки»

CC BY
24
12
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ALKYLATION / ISOPROPANOL / MAGNESIUM / PHOSPHORUS / TOLUENE / ZEOLITE ZSM-5 / PARA-SELECTIVITY

Аннотация научной статьи по химическим наукам, автор научной работы — Abdullaeva N.M., Mamedov S.E.

In the temperature range 250-350 оC, the effect of the nature and concentration of modifiers (Mg, P) on the textural, acidic and catalytic properties of a zeolite of the ZSM-5 type in the alkylation of toluene with isopropanol has been studied. On the unmodified HZSM-5 catalyst, the alkylation proceeds nonselectively. At 330-350 оC, the isopropyltoluene (4-IPT) content in the isopropyltoluene (IPT) mixture is 34.3-44.2 %. Magnesium oxide plays an important role in the selectivity of the reaction products and in the distribution of isopropyltoluene isomers. Modification of the HZSM-5 zeolite with magnesium increases the selectivity for IPT to 69.6 wt % and a sharp increase in the content of 4-IPT in the IPT mixture to 70.8%. Additional modification of the catalyst with 5% Mg-НZSМ-5 with ammonium hydrogen phosphate significantly affects its catalytic properties. The distribution of isopropyltoluenes depends on the content and concentration of phosphorus in the catalyst. An increase in the phosphorus concentration in the composition of 5% Mg-HZSM-5 to 3.0 wt.% Leads to a significant decrease in by-products, an increase in IPT selectivity (73.5-76.0 %), as well as an increase in the content of 4-IPT in the mixture. IPT up to 76.2%. A further increase in the phosphorus content in 5% Mg-HZSM-5 significantly reduces the selectivity for IPT.69.6-72.1 decisive influence on the selectivity of the reaction products and the selectivity for p-isopropyltoluene ( p-IPT). The maximum selectivity for p-IPT (76.2%) is achieved on a zeolite containing 5.0 wt% Mg and 3.0 wt% P.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «TOLUENE ALKYLATION WITH ISOPROPANOL ON ZEOLITE TYPE ZSM-5 MODIFIED WITH MAGNESIUM AND PHOSPHORUS»

Раздел 02.00.13

Нефтехимия

УДК 66.095.253 DOI: 10.17122/bcj-2021-3-47-52

Н. M. Абдуллаева (н.с), С. Э. Мамедов (д.х.н., проф.)

АЛКИЛИРОВАНИЕ ТОЛУОЛА ИЗОПРОПАНОЛОМ НА ЦЕОЛИТЕ ТИПА ZSM-5, МОДИФИЦИРОВАННОМ

МАГНИЕМ И ФОСФОРОМ

Бакинский государственный университет, кафедра физической и коллоидной химии AZ1148, Республика Азербайджан, г. Баку, ул. З. Халилова, 23; e-mail: nigaramirova@yandex.ru

N. M. Abdullaeva, S. E. Mamedov

TOLUENE ALKYLATION WITH ISOPROPANOL ON ZEOLITE TYPE ZSM-5 MODIFIED WITH MAGNESIUM AND PHOSPHORUS

Baku State University

23, Z. Khalilova Str., Baku, AZ1148, Azerbaijan Republic; e-mail: nigaramirova@yandex.ru

В интервале температур 250—350 0С изучено влияние природы и концентрации модификаторов (М^, Р) на текстурные, кислотные и каталитические свойства цеолита типа 75М-5 в реакции алки-лирования толуола изопропанолом. На немоди-фицированном катализаторе Н75М-5 алкилиро-вание протекает неселективно. При 330—350 оС содержание изопропилтолуола (4-ИПТ) в смеси изопропилтолуолов (ИПТ) составляет 34.3—44.2 %. Оксид магния играет важную роль в селективности продуктов реакции и в распределении изомеров ИПТ. Модифицирование цеолита Н75М-5 магнием способствует увеличению селективности по ИПТ до 69.6% мас. и резкому увеличению содержания 4-ИПТ в смеси ИПТ до 70.8%. Дополнительное модифицирование катализатора 5% Mg-НZSМ-5 гидрофосфатом аммония существенно влияет на его каталитические свойства. Распределение изопропилтолуолов зависит от содержания и от концентрации фосфора в катализаторе. Увеличение концентрации фосфора в составе 5% Mg-HZSM-5 до 3.0% мас. приводит к значительному снижению побочных продуктов, увеличению селективности по ИПТ (73.5—76.0 %), а также увеличению содержания 4-ИПТ в смеси ИПТ до 76.2%. Дальнейшее увеличение содержания фосфора в 5% Mg-HZSM-5 заметно снижает селективность по ИПТ (69.6—72.1 %). Установлено, что с увеличением содержания модификаторов происходит уменьшение удельной поверхности, объема пор и концентрации сильных кислотных центров цеолита, что оказывает решающее влияние на селективность реакции и селективность по и-ИПТ .Максимальная селективность по и-ИПТ (76.2%) достигается на цеолите, содержащем 5.0% мас. Mg и 3.0% мас. Р.

Ключевые слова: алкилирование; изопропа-нол, магний; иара-селективность; толуол; фосфор; цеолит ZSM-5.

In the temperature range 250—350 0C, the effect of the nature and concentration of modifiers (Mg, P) on the textural, acidic and catalytic properties of a zeolite of the ZSM-5 type in the alkylation of toluene with isopropanol has been studied. On the unmodified HZSM-5 catalyst, the alkylation proceeds nonselectively. At 330—350 0C, the isopropyltoluene (4-IPT) content in the isopropyltoluene (IPT) mixture is 34.3—44.2 %. Magnesium oxide plays an important role in the selectivity of the reaction products and in the distribution of isopropyltoluene isomers. Modification of the HZSM-5 zeolite with magnesium increases the selectivity for IPT to 69.6 wt % and a sharp increase in the content of 4-IPT in the IPT mixture to 70.8%. Additional modification of the catalyst with 5% Mg-HZSM-5 with ammonium hydrogen phosphate significantly affects its catalytic properties. The distribution of isopropyltoluenes depends on the content and concentration of phosphorus in the catalyst. An increase in the phosphorus concentration in the composition of 5% Mg-HZSM-5 to 3.0 wt.% Leads to a significant decrease in by-products, an increase in IPT selectivity (73.5—76.0 %), as well as an increase in the content of 4-IPT in the mixture. IPT up to 76.2%. A further increase in the phosphorus content in 5% Mg-HZSM-5 significantly reduces the selectivity for IPT. 69.6— 72.1 decisive influence on the selectivity of the reaction products and the selectivity for p-isopropyltoluene (p-IPT). The maximum selectivity for p-IPT (76.2%) is achieved on a zeolite containing 5.0 wt% Mg and 3.0 wt% P.

Key words: alkylation; isopropanol; magnesium, para-selectivity; phosphorus; toluene; zeolite ZSM-5.

Дата поступления 04.06.21

Башкирский химический журнал. 2021. Том 28. Жо 3

Aromatic hydrocarbons are widely used in the chemical and petrochemical industries Among aromatic hydrocarbons, ^-substituted alkylaromatic hydrocarbons occupy a special place 2. The products of toluene alkylation with isopropanol, m-and p-isopropyltoluenes (IPT) are technically important products of organic synthesis 3-5. Currently, there is no perfect technology for producing isopropyltoluene (IPT). Complexes based on AlCl3, TiCl4, BF3 and phosphoric acid have been proposed as catalysts 4' 5 on kieselguhr, which do not provide a high yield of IPT, in particular, 4-IPT in industrial production. Most catalysts give a mixture of IPT containing all isomers. The nature of the catalyst significantly affects the isomeric composition of IPT obtained by alkylation of toluene 4' 5. H2SO4, BF3-H3PO4 and H+, a mixture of 2-IPT, 3-IPT and 4-IPT is obtained 4' 5, where the content of 2-IPT is 13-40 % wt. The use of phosphoric acid on kieselguhr leads to a mixture enriched with 2-IPT (59% wt), and the use of AlCl3 gives a mixture enriched with 3-IPT (86% wt) and practically free of 2-IPT. The acid catalysts used in industry do not allow obtaining a mixture of IPT enriched with the p-isomer (4-IPT). In addition, the alkylation processes carried out in the presence of Friedel-Crafts catalysts have significant disadvantages: environmental pollution with acid waste, corrosion of equipment, high consumption and unregenerability of the catalyst 6. These disadvantages have led to the need for the search for heterogeneous catalysts based on zeolites that exhibit high activity and selectivity in the reactions of alkylation, isomerization, disproportionation, oligomerization of various organic compounds due to their molecular sieve and acidic properties 7-11 on zeolites of the X, Y type; beta and mordenite with large pores required for the synthesis of p-IPT 12,13. Recently, high-silica zeolites of the ZSM-5 type, due to their unique structure with intersecting straight and sinusoidal channels, size of input windows ~55nm and adsorption properties, are everywhere replacing traditional Friedel-Crafts catalysts 14' 15.

One of the possible ways to change the catalytic and molecular sieve properties of zeolites in order to obtain para-selective catalysts for the alkylation of alkylaromatic hydrocarbons with monoatomic saturated alcohols C1-C4 is their chemical modification 2'7'16-18. The nature of the modifying metal (Mg, La, Ho, Yb, Pr) significantly affects the para-selectivity of a catalyst based on a zeolite of the

ZSM-5 type in the alkylation of toluene with isopropanol.

In this regard, the goal of this work is to study the effect of the combined modification of high-silica zeolite ZSM-5 with magnesium and phosphorus on its physicochemical and catalytic properties in the alkylation of toluene with isopropanol.

Experimental part

The initial H-form of zeolite ZSM-5 was obtained by ion exchange ZSM-5 (ZAO Nizhnenovgorodskie sorbents, Russia, SiO2/ Al2O3 = 33) with NH4Cl: 5.0 g of ZSM-5 was refluxed twice in 100 ml of 1.0 M NH4Cl solution for 6 hours, washed with distilled water, dried at 110 0C and calcined at 550 0C, respectively, for 4 hours 19' 20. Modification of HZSM-5 with magnesium was carried out by impregnation using an aqueous solution of magnesium acetate. Samples of Mg-P-HZSM-5 were obtained by impregnation of zeolite, Mg-HZSM-5 with an aqueous solution of ammonium hydrogen phosphate. The content of Mg and P in the catalysts was 5.0% wt and 1.0-3.0 % wt, respectively.After impregnation, the samples were dried for 4h at 110 0C and finally pierced for 4 h in a muffle furnace at 550 0C.

The acidic properties of the modified zeolites were studied by the method of thermogrammed thermal desorption of ammonia 19.

The study of the porous structure of the samples was carried out by the method of low-temperature adsorption of nitrogen at 77K on an ASAP-2010 setup from Micromeritics. Before measurement, samples (about 220 mg) were degassed at 250 oC and 1 • 10-3 Pa for 4 hours. The specific surface area was calculated using the BET method.

Catalytic experiments were carried out in a quartz reactor (inner diameter 1.0 cm and length 10 cm), which was placed in a microprocessor controlled furnace. The loading of the catalyst was 2.0 g. Before the start of the experiments, the catalysts were activated in an air atmosphere at 500 0C for an hour. The reaction was carried out at atmospheric pressure in the presence of hydrogen in the temperature range 300-400 0C with a volumetric feed rate of 1 h-1 and a molar ratio of C7H8 : i-C3H7OH : H2 = 2 : 1 : 1 7.

The reaction products were analyzed on an Agilent HP gas chromatograph using a capillary column (100 m x 250 mm) with flame ionization detector (FID). The analysis was carried out in the temperature programming mode from 500 to

250 oC with a heating rate of 10 0C per minute. The selectivity and product yield were calculated from the results of gas chromatographic analysis.

Results and its discussion

Unmodified HZSM-5 zeolite catalyst

Table 1 show the effect of reaction temperature on catalytic performance of HZSM-5 catalyst for alkylation of toluene with isopropanol. From table 1, it can be seen that the product, contains benzene, isopropyltoluene (IPT) mixture, propyltoluene mixture, liquid aliphatic hydrocarbons C5+ and alkylaromatic hydrocarbons C8+.With an increase in the reaction temperature to 330 0C, the yield of byproducts increases and the content of 4-IPT in the mixture of IPT decreases from 44.2% to 34.3%,isomerization of p-cymene to m- and o-IPT occurs.

Modified HZSM-5 zeolite catalyst

1.Magnesium modified HZSM-5 zeolite catalyst.

The results of the alkylation of toluene with isopropanol using 5% Mg- HZSM-5 as a catalyst are presented in Table 1. As can be seen from

Table 1, the introduction of magnesium with HZSM-5 impregnation with a solution of Mg(CH3COO)2, followed by decomposition of the salt at 550 0C leads to a significant change in the catalytic properties of the catalysts. The magnesium oxide has an essential on the selectivity of the reaction products and the distribution of isopropyltoluene isomers.

Modification of zeolite HZSM-5 with magnesium promotes an increase in the selectivity for IPT to 69.6% wt and a sharp increase in the content of p-IPT in the IPT mixture up to 70.8%.

2. Phosphorous and magnesium modified HZSM-5 zeolite catalyst.

The effect of temperature and phosphorus concentration on the catalytic properties of the 5% Mg-HZSM-5 catalyst is shown in Table 2. From the data obtained, it can be seen that the introduction of 1.0% wt phosphorus into the 5% Mg-H-ZSM-5 composition significantly affects on its catalytic properties. For example, at 300 0C, the conversion of toluene decreases from 17.4 to 15.2 %, and the selectivity to 4-IPT increases from 70.8 to 72.3 %. An increase in the phosphorus concentration in the composition of 5% Mg-HZSM-5 to 3.0% wt leads to a signifi-

Table 1

The composition of the alkylation products of toluene with isopropanol on HZSM-5 and 5% Mg-НZSМ-5

Catalyst t, 0C Conversion, % wt Selectivity for products in catalyst, % Isomeric composition of IPT, %

toluene isopropanol benzene IPT propytolu-ene C5+ alip. carbohyd. ARC С 8 and higher 3-IPT 4-IPT 2-IPT

HZSM-5 250 9.2 94.5 0.4 52.4 33.6 12.2 1.4 50.6 44.2 5.2

300 19.8 99.4 2.2 54.0 30.4 8.6 4.8 23.6 40.1 6.3

330 27.7 99.9 2.7 55.8 29.8 6.1 5.6 57.3 34.3 7.9

5% Mg-HZSM-5 300 14.1 94.1 1.4 66.8 23.8 6.4 1.6 24.2 70.8 -

330 21.8 98.0 1.7 67.9 21.5 5.7 3.2 32.7 67.3 -

350 24.7 98.8 1.9 69.6 19.4 5.3 3.4 38.0 61.2 0.8

Table 2

The effect of temperature and phosphorous content in the composition of 5% Mg-HZSM-5 on the composition of the products of alkylation of toluene with isopropanol

Content at P, % wt t, 0C Conversion % Benzene IPT Propyltoluene C5+ aliph. hydro carbons ARH С8 and higher 3-IPT 4-IPT 2-IPT

toluene alcohol

1.0 300 15.6 91.2 1.2 68.4 22.9 6.1 1.4 27.7 72.3 -

330 19.5 95.4 1.5 69.4 20.7 5.5 2.9 30.9 69.1 -

350 23.1 97.1 1.7 71.3 18.8 5.1 3.1 36.2 63.2 0.6

2.0 300 13.8 89.6 0.9 69.9 21.1 5.4 1.1 25.8 74.2 -

330 17.7 93.7 1.1 71.7 19.9 4.9 2.4 29.4 70.6 -

350 21.6 95.1 1.4 73.1 17.9 4.7 2.8 34.6 65.4 -

3.0 300 12.4 86.8 0.3 73.5 20.6 4.8 0.8 23.8 76.2 -

330 15.6 90.7 0.5 74.3 19.3 4.4 1.5 27.9 72.1 -

350 20.1 93.6 0.9 76.0 17.1 4.0 2.0 22.2 67.8 -

4.0 300 7.4 79.8 0.2 69.6 21.4 6.9 0.9 22.9 77.1 -

330 10.9 84.6 0.6 71.1 20.7 6.3 1.3 28.2 71.8 -

350 14.8 88.3 0.8 72.1 19.8 5.6 1.7 22.7 67.3 -

cant decrease in by-products, an increase in IPT selectivity (73.5—76.0 %), as well as an increase in the content of 4-IPT in the mixture IPT up to 76.2%. A further increase in the phosphorus content in 5% Mg-HZSM-5 significantly decreases the selectivity for IPT (69.6—72.1 %) and slightly increases the selectivity for 4-IPT (77.1%). A sharp decrease in conversion is observed on a catalyst containing 4% phosphorus toluene. For example, at 300 0C, the conversion of toluene is reduced to 7.4%.

The manifestation of the para-selectivity of catalysts, depending on the nature and concentration of modifiers in the HZSM-5, can be due to a change in the acidic and textural properties of the catalysts as a result of chemical modification.

As can be seen from Table 3, when modifying the HZSM-5 zeolite with magnesium in an amount of 5.0% wt, the concentration of strong acid sites decreases from 542 ^mol/g to 227542 ^mol/g. An increase in the phosphorus concentration in the 5% Mg-HZSM-5 catalyst from 1.0% wt to 4.0% wt leads to a gradual decrease in the concentration of strong acid sites. The greatest decrease in the concentration of strong acid sites is achieved on a sample containing 4.0% wt phosphorus and is 89 ^mol/ g. Apparently for this reason, a decrease in the conversion of toluene with an increase in the phosphorus content in the catalysts is associated.

Table 3

Acid characteristics of modified catalysts

Catalyst Ттах, иС of the Concentration

maximum peak of of acid sites,

ammonia desorption ^mol/g

I II С1 С2

HZSM-5 198 418 628 542

5%Mg-H ZSM-5 188 314 347 227

5%Mg-1 %P-H ZSM-5 187 286 324 192

5%Mg-2%P-H ZSM-5 185 274 282 164

5%Mg-3%P-H ZSM-5 183 261 228 127

5%Mg-4%P-H ZSM-5 180 242 197 89

C1 and C2 and (II).

concentration of acid sites in forms (I)

Table 4 shows the effect of modification on the textural characteristics of the catalysts. It is seen. that with an increase in the concentration of the modifier, the specific surface area and pore volume of the zeolite decrease, which indicates a partial blocking of the zeolite channels by modifiers, which leads to a change in the size of the channels and the entrance windows from them.

Thus, the para-selectivity of the modified catalysts in the alkylation of toluene with isopropanol with respect to 4-IPT is due to a significant decrease in the concentration of strong acid sites and a decrease in the pore volume of the zeolite as a result of modification.

Table 4

Textural characteristics of modified catalysts

Catalyst Sbet, (m2/g) Vpore, (sm3/g)

H ZSM -5 288 0.24

5%Mg- H-ZSM-5 253 0.20

5%Mg-1%P-HZSM-5 238 0.20

5%Mg-2%P-HZSM-5 238 0.19

5%Mg-3%P-HZSM-5 221 0.17

5%Mg-4%P-HZSM-5 194 0.17

SBET — BET specific surface area; Vpore — total pore volume

The introduction of magnesium and phosphorus by impregnation of HZSM-5 with a solution of magnesium acetate and ammonium hydrogen phosphate, followed by calcination at 500 0C leads to a significant change in the acidic, textural and catalytic properties of the catalysts. Modification and calcination of the zeolite leads to the localization of modifiers in micropores and their distribution on the surface of the zeolite, where, when interacting with surface OH groups, they reduce the strength and concentration of strong acid sites, and also increase the concentration of acid sites of a more moderate strength. Catalyst 5% Mg-2% P-HZSM-5 demonstrates high selectivity for 4-IPT (76.2%). Apparently the modifying effect of Mg and P is associated with a decrease in the concentration of strong acid sites and the formation of acid sites of moderate strength on the catalyst surface and a change in its porous structure.

Литература

1. Clark J.H., Monks G.L., Nightingale D.J., Prince P.M., White J.F. A new solid acid-based route to linear alkylbenzenes // J. Catal.-2000.- V.193, №2.- Pp.348-350.

2. Janardhan H.L., Shanbhag G., Halgeri A.B. Shape-selective catalysis by phosphate modified

References

1. Clark J.H., Monks G.L., Nightingale D.J., Prince P.M., White J.F. [A new solid acid-based route to linear alkylbenzenes]. J. Catal., 2000, vol.193, no.2, pp.348-350.

2. Janardhan H.L., Shanbhag G., Halgeri A.B. [Shape-selective catalysis by phosphate modified

ZSM-5: Generation of new acid sites with pore narrowing // Appl. Catal. A: General.— 2014.— V.471.— Pp.12-18.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3. Кошель Г.Н., Нестерова Т.Н., Румянцева Ю.Б., Курганова Е.А., Иванова А.А. Цимолы. 4. Получение крезолов и их применение // Вестник МИТХТ им. М. В. Ломоносова.- 2012.-Т.7, №6.- С.56-59.

4. Нестерова Т.Н., Кошель Г.Н., Румянцева Ю.Б., Курганова Е.А., Востриков С.В., Шакун В.А. Цимолы. 1. Современное состояние процессов получения цимолов // Вестник МИТХТ им. М. В. Ломоносова.- 2012.- Т.7, №4.- С.49-53.

5. Румянцева Ю.Б., Курганова Е.А., Кошель Г.Н., Нестерова Т.Н., Иванова А.А. Синтез и окислительные превращения мета- и пара-изомеров изопропилтолуола // Известия высших учебных заведений. Серия: Химия и химическая технология.- 2013.- Т.56, №2.- С.99-101.

6. Yadav G.D., Kamble S.B. Friedel-Grafts green alkylation of xylenes with tert-butanol over mezoporous superacid UDCaT-S // Chem. Eng. Res.- 2012.- Т.90.- С.1322-1334.

7. Mamedov S.E., Iskenderova A.H., Akhmetova N.F., Mamedov E.S. The influence on the properties of high-silica HZSM-5 zeolite in the benzene alkylation reaction with ethanol // Petroleum chemistry.- 2020.- Т.60, №8.-С.950-956.

8. Керимли Ф.Ш., Мамедов Ф.Ш. Селективное диспропорционирование толуола на модифицированных пентасилах // Баш. хим. ж.- 2020.-Т.27, №2.- С.64-68.

9. Салаева З.Ч., Мустафаева Р.М., Мамедова Э.С., Гусейнова А.Э., Мамедалиев Г.А. Оценка вклада модифицирующих элементов в активность цеолитных катализаторов в процессе алки-лирования толуола метанолом // Журнал прикладной химии.- 2019.- Т.92, №1.- С.81-86.

10. Трапезникова Е.Ф., Смольникова Т.В., Хафи-зова С. Р., Николаева Т. В., Нурисламова Р. Р. Перспектива применения цеолитсодержащих катализаторов в процессе алкилирования // Электронный научный журнал «Нефтегазовое дело».- 2018.- №4.- С.117-143.

11. Ogunbadego B.A., Osman M.S., Arudra P., Aitani A.M, Al-Khattaf S.S. Alkylation of toluene with ethanol to para-ethyltoluene over MFI zeolites // Catal. Today.- 2015.- V.243.-Pp.109-117.

12. Barman S., Pradhan N.C., Maity S.K. Alkylation of toluene with isopropyl alcohol catalyzed by Ce-exchanged NaX zeolite // Chem. Eng. J.-2005.- V. 114 (1).- Pp.39-45.

13. Upadhyayula S. Gas phase toluene isopropylation over high silica mordenite // J. Chem. Sciences.- 2010.- V.122, №4.- Pp.613-619.

14. Хаджиев С.Н., Герзелиев И.М., Ведерников О.С., Клейменов А.В., Кондрашев Д.О., Окни-на Н.В., Кузнецов С.Е., Саитов З.А., Басхано-ва М.Н. Новый процесс производства алкилата // Катализ в промышленности.- 2016.- №6.-С.42-47.

15. Perego C., Jngalinno R. Resent advances in the industrial alkylation of aromatics: new catalysts

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

ZSM-5: Generation of new acid sites with pore narrowing]. Appl. Catal. A: General, 2014, vol.471, pp.12-18.

Koshel' G.N., Nesterova T.N., Rumyantseva Yu.B., Kurganova E.A., Ivanova A.A. Tsymoly. 4. Poluchenie krezolov i ih primenenie [Cymols.

4. Obtaining cresols and their application]. Vestnik MITKhT im. M. V. Lomonosova [Bulletin of the Moscow Institute of Fine Chemical Technology named after M.V. Lomonosov], 2012, vol.7, no.6, pp.56-59. Nesterova T.N., Koshel' G.N., Rumyantseva Yu.B., Kurganova E.A., Vostrikov S.V., Shakun V.A. Tsymoly. 1. Sovremennoe sostoyanie protsessov polucheniya tsimolov [Cymols. 1. The current state of the processes of obtaining cymens] Vestnik MITKhT im. M.V. Lomonosova [Bulletin of the Moscow Institute of Fine Chemical Technology named after M.V. Lomonosov], 2012, vol.7, no.4, pp.49-53. Rumyantseva Yu.B., Kurganova E.A., Koshel' G.N., Nesterova T.N., Ivanova A.A. Sintez i okislitel'nye prevrashheniya meta- i para-izomerov izopropiltoluola [Synthesis and oxidative transformations of meta- and para-isomers of isopropyltoluene]. Izv. vysshikh ucheb. zav. Seryja: Khimiya i khimicheskaya tekhnologiya [ Proceedings of higher educational institutions. Series: Chemistry and Chemical Technology], 2013, vol.56, no.2, pp.99-101.

Yadav G.D., Kamble S.B. [Friedel-Grafts green alkylation of xylenes with tert-butanol over mezoporous superacid UDCaT-S]. Chem. Eng. Res., 2012, vol.90, pp.1322-1334. Mamedov S.E., Iskenderova A.H., Akhmetova N.F., Mamedov E.S. [The influence on the properties of high-silica HZSM-5 zeolite in the benzene alkylation reaction with ethanol]. Petroleum chemistry, 2020, vol.60, no.8, pp.950-956. Kerimli F.Sh., Mamedov S.E. Selektivnoe disproporcionirovanie toluola na modifitsiro-vannykh pentasilakh [Selective disproportio-nation of toluene on modified pentasils]. Bashkirskii khimicheskii zhurnal [Bashkir Chemical Journal], 2020, vol.27, №2, pp.64-68. Salaeva Z.C., Mustafaeva R.M., Mamedova E.S., Guseinova A.E., Mamedaliev G.A. [Estimated Contribution Of Modifying Elements To The Activity Of Zeolite Catalysts In Alkylation Of Toluene With Methanol]. Russian Journal of Applied Chemistry, 2019, vol.92, no.1, pp.99-104. Trapeznikova E.F., Smol'nikova T.V., Khafizova

5.R., Nikolaeva T.V., Nurislamova R.R. Pers-pektivy primeneniya tseolitnykh katalizatorov v protsesse alkilirovaniya [Prospects for the use of zeolite catalysts in the process of alkylation]. Elektronnyy nauchnyy zhurnal «Neftegazovoye delo» [Electronic scientific journal «Oil and Gas Business»], 2018, no.4, pp.117-143. Ogunbadego B.A., Osman M.S., Arudra P., Aitani A.M, Al-Khattaf S.S. [Alkylation of toluene with ethanol to para-ethyltoluene over MFI zeolites]. Catal. Today, 2015, vol.243, pp.109-117.

Barman S., Pradhan N.C., Maity S.K. [Alkylation of toluene with isopropyl alcohol catalyzed by Ce-exchanged NaX zeolite]. Chem. Eng. J., 2005, vol.114 (1), pp.39-45.

and new processes // Catal. Today.— 2002.— V.73.— Pp.3-22.

16. Gakhramanov T.O., Mammadov S. E. Alkylation of ethylbenzene by ethanole on H-ultrasil zeolite catalysts, modified by lanthanum // Azerbaijan Chem. J.- 2018.- №3.- Pp.74-79.

17. Gao K., Li Sh., Wang L., Wang W. Study of the alkylation with metanol for the selective formation of toluene and xylene over Co3O4-La2O3/ZSM-5 // RSC Advances.- 2015.-V.5.- Pp.45098-45105.

18. Chiang T.C., Chan J.C. and Tan C.S. Alkylation of toluene with isopropyl alcohol over chemical liquid deposition modified HZSM-5 under atmospheric and supercritical operations // Ind. Eng. Chem. Res.- 2003.- V.42(7).- Pp.13341340.

19. Амирова H.M., Мамедов С.Э., Гахраманов Т.О. Эффект влияния концентрации оксида магния на физико-химические и каталитические свойства высококремнеземных цеолитов типа цвм в реакции алкилирования толуола изопро-панолом // Молодой ученый.- 2018.— №10(196).- С.8-12.

20. Abdullayeva N.M Alkylation of toluene with isopropanole on ZSM-5 type zeolite modified by rare-earth metals // Chemical problems.-2020.- №1(18).- Pp.49-54.

13. Upadhyayula. S. [Gas phase toluene isopropy-lation over high silica mordenite]. J. Chem. Sciences, 2010, vol.122, is.4, pp.613-619.

14. Khadzhiev S.N., Gerzeliev I.M., Vedernikov O.S., Kleymenov A.V., Kondrashov D.O., Oknina N.V., Kuznetsov S.E., Bashanova M.N. Novyi protscess proizvodstva alkilata [New process for the production of alkylate]. Kataliz v promyshlennosti [Catalysis in industry], 2016, vol.16, no.6, pp.42-47.

15. Perego C., Jngalinno R. [Resent advances in the industrial alkylation of aromatics: new catalysts and new processes]. Catal. Today, 2002, vol.73, pp.3-22.

16. Gakhramanov T.O., Mammadov S.E. [Alkylation of ethylbenzene by ethanole on H-ultrasil zeolite catalysts, modified by lanthanum]. Azerbaijan Chem. J., 2018, no.3, pp.74-79.

17. Gao K., Li Sh., Wang L., Wang W. [Study of the alkylation with metanol for the selective formation of toluene and xylene over Co3O4-La2O3/ZSM-5]. RSC Advances, 2015, vol.5, pp.45098-45105.

18. Chiang T.C., Chan J.C. and Tan C.S. [Alkylation of toluene with isopropyl alcohol over chemical liquid deposition modified HZSM-5 under atmospheric and supercritical operations]. Ind. Eng. Chem. Res., 2003, vol.42 (7), pp.1334-1340.

19. Amirova N.M., Mamedov S.E., Gakhramanov T.O. Effekt vliyaniya kontsentratsii oksida magniya na fiziko-khimicheskie i kataliticheskie svoistva vysokokremnezemnykh tseolitov tipa ZSM v reaktsii alkilirovaniya toluola izopropanolom [Effect of the influence of the concentration of magnesium oxide on the physicochemical and catalytic properties of high-silica zeolites of the TsVM type in the reaction of toluene alkylation with isopropanol]. Molodoy uchenyi [Young scientist], 2018, no.10 (196), pp.8-11.

20. Abdullayeva N.M. [Alkylation of toluene with isopropanole on ZSM-5 type zeolite modified by rare-earth metals]. Chemical problems, 2020, no. 1 (18), pp.49-54.

i Надоели баннеры? Вы всегда можете отключить рекламу.