Научная статья на тему 'Безынтерполяционный LBM на неравномерных сетках'

Безынтерполяционный LBM на неравномерных сетках Текст научной статьи по специальности «Математика»

CC BY
19
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Безынтерполяционный LBM на неравномерных сетках»

22

Методы вычислительной алгебры и решения уравнений математической физики

широкого класса, в том числе с несимметричными матрицами. Приводятся результаты численных экспериментов, иллюстрирующих эффективность исследуемых алгоритмов.

Безынтерполяционный LBM на неравномерных сетках

А. В. Березин1,2, А. В. Иванов1, A. Ю. Перепёлкина1 1Институт прикладной математики им. М. В. Келдыша РАН 2Национальный исследовательский ядерный университет "МИФИ" Email: [email protected] DOI: 10.24412/cl-35065-2022-1-00-03

Метод решеточных уравнений Больцмана (LBM) [1] - схема численного решения кинетического уравнения Больцмана, в основе которой лежит применение квадратурных формул для вычисления моментов функции распределения, и, как следствие, ее дискретизация в пространстве скоростей. Измельчение исходной пространственной решетки для LBM в некоторой области на данный момент влечет за собой необходимость интерполяции данных на границе сеток разного масштаба [2, 3], что может снизить порядок аппроксимации LBM и привести к нарушению законов сохранения. Нами разработан безынтерполяционный метод построения LBM на неравномерных сетках с единым шагом по времени для сеток разного масштаба, основанный на двухступенчатой процедуре перекалибровки популяций (дискретных значений функции распределения), включающей в себя масштабирование неравновесной части функции распределения [4] и перекалибровку моментами [5].

Работа выполнена при финансовой поддержке Российского научного фонда (код проекта 18-71-10004). Список литературы

1. Timm K. et al. The lattice Boltzmann method: principles and practice // Springer International Publishing AG Switzerland, ISSN. 2016. С. 1868-4521.

2. Rohde M. et al. A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes // International J. For Numerical Methods In Fluids. 2006. Т. 51. № 4. С. 439-468.

3. Fakhari A., Geier M., Lee T. A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows // J. of Computational Physics. 2016. Т. 315. С. 434-457.

4. Filippova O., Hanel D. Grid refinement for lattice-BGK models // J. of Computational Physics. 1998. Т. 147. № 1. С. 219-228.

5. Dorschner B., Bosch F., Karlin I. V. Particles on demand for kinetic theory // Physical Review Letters. 2018. Т. 121. № 13. С. 130602.

Применение непрерывного метода решения операторных уравнений к приближенному решению амплитудно-фазовой проблемы

И. В. Бойков1, А. А. Пивкина2

Пензенский государственный университет

Email: [email protected], [email protected]

DOI: 10.24412/cl-35065-2022-1-00-05

Работа посвящена приближенным методам восстановления сигналов по неполной информации. Рассматриваются задачи восстановления сигналов (в одномерном и многомерном случаях) по амплитуде их спектров, восстановления фазы сигнала по амплитуде спектра и ряд других задач. Общим при исследовании этих задач является характер математических моделей - они описываются нелинейными интегральными уравнениями Фредгольма первого рода. Вычислительные схемы строятся по технологии методов сплайн-коллокации и механических квадратур. Так как полученные системы нелинейных алгебраических

i Надоели баннеры? Вы всегда можете отключить рекламу.