HamoHa^bHHH rácoTexmuHHH ymBepcHTeT yKpaiHH
Solodkyy V.D., Zayachuk V. Y a. Preservation of genetic species of larch (Larix Mill.) in Bukovyna Carpathians and Precarpathians
On the basis of the field researches, analysis of materials of forest products and literary information, the features of growth of types of family are set Larch (Larix Mill.), certainly their role in forming of forest stands and naturally commandment and recreation territories.
Keywords: larch, methods of maintainance, balanced management forest resources, naturally commandment fund.
UDK 631.879 Prof. M. Gibczynska1, dr. hab.; senior lecturer G. Jurgiel-Malecka1, dr.;
adjunct U. Bashutska2, dr.
ASSESSMENT OF THE POSSIBILITY OF USING ASH FROM BIOMASS FOR SOIL FERTILISATION AND DEACIDIFICATION
Agricultural use of ash from wood biomass should become the dominant tendency, particularly because of the fact that the production of ash is the unavoidable consequence of energy production from alternative sources.
Fertilising soil with fly ash enhances their physical properties, increases the capacity of sorption complex, water absorbing power, decreases density and alkalises acid soil. Ash includes other vital components for plants, particularly magnesium, potassium and macronutrients. This fact is of significant importance since most of arable lands in Poland indicate not only over-acidification but also magnesium deficiency. Moreover, relatively high content of sulphur in fly ash is significant when it comes to the use of ash as the source of this element in agriculture.
The factor which hinders the use of ash for agricultural purposes is the diversity of its chemical composition resulting from different features of the incinerated material. This in turn makes it difficult to obtain the product of fixed quality. This issue can be solved by stabilising, partial hydratation or mixing with other materials - sewage sludge for example, or granulation. However, all must be done in accordance with the standards specified in the Regulation of the Minister of Economy on the ways on mineral fertilisers packing, labelling fertiliser component on the packaging, methods of mineral fertiliser testing and types of calcium fertilisers [1].
Only close cooperation between producers of ash, scientific-research and standardising facilities with government support gives reasonable grounds for solving the issue in connection to deacidification of large areas of acid soil in Poland.
Keywords: ash from biomass, major mineral elements, trace elements, neutralization of soils.
Introduction. The Directive 2009/28/WE of the European Parliament and the Council of 23 April 2009 on the promotion of use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/WE and 2003/30/WE [2] defines biomass as biodegradable fraction of products, waste and residues from biological origin from agriculture (including vegetal and animal substances), forestry and related industries including fisheries and aquaculture, as well as the biodegradable fraction of industrial and municipal waste. On the basis of the Regulation of the Minister of Environment of 22 April 2011 on emission standards for installations [3], biomass is to be understood as products comprising plant substances from agriculture or forestry origin incinerated in order to recover energy. Those wastes include as follows: a) plant waste from agriculture and forestry, b) plant waste from food processing industry if the thermal energy is recovered, c) fibrous plant
1 West Pomeranian University of Technology, Szczecin, Poland;
2 Ukrainian National Forestry University, Lviv, Ukraine
116
36ipHHK HayKOBO-TexHÍHHHX npa^
HayKOBMM KiinnK M.IT V yKpai'HM. - 2013. - Ban. 23.12
waste from primary wood pulp production and from paper production from pulp, if such waste is incinerated in the location of its origin and the produced energy is recovered, d) cork waste.
One method of further biomass processing is incineration in result of which energy is produced and the obtained ash can become a valuable raw material for example for fertilisation or soil recultivation purposes. Obtained ash is to be treated as mineral waste.
The Regulation of the Minister of Environment of 5 April 2011 on R102 [4] recovery process specifies the conditions of recovery by means of distribution on the surface of ground for soil fertilisation or enhancement. Ash originating from biomass includes fly ash from peat and untreated wood not subjected to chemical treatment, code: 10 01 30. The conditions specified in the regulation must be met in order to use the ash. Waste should be evenly distributed on the whole surface of soil, apart from vegetation season, and covered by or mixed with soil. The exception is its use on grassland or multiyear plantation where waste can be distributed only to depth of 30 cm. Waste is to be applied only to soils in which the admissible values of concentration of the substances as specified in the Regulation of the Minister of Environment of 9 September 2002 on soil and land quality standards [5] are not exceeded. It should be used in such a way and in such amount so as not to exceed the admissible values of heavy metals concentration (Cr, Pb, Cd, Hg, Ni, Zn, Cu) as specified in the Regulation of the Minister of Environment of 13 July 2010 on municipal sewage sludge [6], even in long term use. This must also meet the requirements concerning the admissible values of pollutants for calcium and calcium-magnesium fertilisers as specified in the Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on implementation of some provisions of the Act on fertilisers and fertilisation [7]. In order to determine the dosage of waste possible to be applied to soil, and congruent with the provisions of the Act, the research should be carried out by the producers in the laboratories which have the accreditation certificate or the certificate of the implementation of a quality management system within the meaning of the Act of 30 September 2002 on the system of assessment of compliance [8]. The dosage of waste for fertilising purposes is determined on the basis of their physical and chemical properties and in relation to the type of soil and plant nutritional needs.
Characteristics of chemical composition of ash from wood biomass. In terms of its chemical composition wood is a heterogeneous substance comprised mainly of cellulose, hemicellulose, lignin and water. As the tree ages the lignifications process increases: the content of lignin in the tree increases and the content of water decreases. The average content of the basic elements in wood is: carbon 50 %, oxygen 43 %, hydrogen 6 %, nitrogen 0.2 % and mineral compounds 0.5 %. The average content of ash from solid wood biofuels ranges from 0.3 to 5 % [9].
Ash obtained from incineration of wood biomass is the source of plant nutrients. However, the content of toxic substances, particularly heavy metals, cannot be disregarded. The content of the basic components of fly ash from wood biomass is presented in Table 1 [10].
2. EK0tt0riH aoKKiMH
117
HamoHa^bHHH McoTexHiHHHH ymBepcHTeT yKpaïHH
Table 1. The content of the basic components in fly ash from wood biomass [10]
Element Oxide % Pure Ingredient %
Calcium CaO 30.3 Ca 21.6
Potassium K2O 23.2 K 19.2
Magnesium MgO 5.7 Mg 3.4
Silicone SiO2 11.7 Si 5.5
Aluminium Al2O3 1.6 Al 0.8
Phosphorus P2O5 15.6 P 6.8
Sulphur SO3 3.7 S 2.0
Sodium Na2O 0.94 Na 0.69
Iron Fe2O3 0.27 Fe 0.19
Manganese Mn3O4 0.03 Mn 0.01
Titanium TiO2 0.02 Ti 0.01
Strontium SrO 0.07 Sr 0.06
Barium BaO 0.00 Ba 0.00
a) Characteristics of ash pH from wood biomass
In general, ash is characterised by alkaline pH values. The pH values obtained by Ciesielczuk et al. [11] in incineration of pine wood, spruce, beech wood and oak wood ranged from 10.78 to 11.71. Alkalisation of soil after the use of ash (pH increase by one unit) can affect the decrease of mobility of metals, including the decrease of the exchangeable aluminium activity, particularly in soils prone to acidification [12]. For many years the share of very acid and acid soils in Poland exceeds 50 % of the area of arable lands. However, there are areas where the most acidified soils constitute over 80 % [13]. In comparison with the neighbouring countries, Poland displays negative characteristics in terms of soil acidification. The acidification of soil in Poland and in its particular voivodeships has hardly changed for the past 20 years [14]. The only method used so far for regulating soil pH is using calcium fertilisers. The calculations taking into consideration the need for soil liming and recommended dosage of CaO show that the total demand for calcium fertilisers in Poland amounts to approximately 20 million tons of CaO [15]. In 2010 the sale of calcium fertilisers per pure ingredient (CaO) was 877066 tons and secured only 4.5 % of CaO demand [16].
Therefore it is justifiable to use other, often less expensive materials for soil deacidification - ash from biomass containing wood of clearly alkaline pH.
b) Content of macronutrients in fly ash from wood biomass
The element which is most abundant in ash from wood biomass is calcium, its content in ash was 30.3 % CaO (Tab.1). The increased amount of calcium compounds causes high alkalisation of ash. According to the Regulation of the Minister of Economy of 8 September 2010 on quality requirements for types of calcium for fertilisation, the content of CaO should range from 20 to 80 % [17].
As a consequence of a relatively high content of potassium in wood material, the ash from biomass incineration also contains high amount of potassium - 19 % calculated per pure ingredient (Tab. 1). In fly ash from wood biomass, magnesium amounts to 3 % (Tab.1). The content of potassium and magnesium in fly ash indicates the possibility of the use of ash for soil deacidification.
118
36ipHHK HayKOBO-TexmHHHX npa^
HayKOBMM KknnK M.IT V yKpaïHM. - 2013. - Ban. 23.12
Fly ash from wood biomass is characterised by lower amounts of silicon (5.5 % Si) and aluminium (0.8 % Al) in comparison with other ash. This is yet another factor justifying its agricultural use. Phosphorus amounts to 6.8 % P in fly ash (Tab.1). Due to biogenic character of this element, its higher amount in comparison to the average content in soils is another factor which argues in favour for the use of wood ash as fertiliser.
The research of the Institute of Soil Science and Plant Cultivation in Pulawy (IUNG-PIB) states that approximately 60 % of soil in Poland is sulphur-deficient. Total sulphur content in ash amounts to 2.0 % (Tab.1) and this amount is of significant importance due to the possibility of using ash as a source of sulphur in agriculture.
In a sample of fly ash the content of iron and manganese amounted to 0.19 % Fe and 0.01 % Mn respectively (Tab.1). The values were lower than the average amount of these elements in soil. For example, the content of sodium in ash was 0.69 % Na (Tab.1). The content of sodium in ash obtained from incineration of pine wood, spruce, beech wood and oak researched by Ciesielczuk et al. [11] ranged from 0.3 to 0.8 % Na. The literature on the subject does not specify in detail the amount of sodium in arable lands. The amount of titanium, strontium and barium in fly ash from wood biomass was lower than the values characteristic for soil and does not pose threat to natural environment (Tab.1).
c) Micronutrients content in fly ash from wood biomass
The share of macronutrients in combustion wastes has been studied for many years due to its significant influence on living organisms, both positive and negative. In the study on ash fertilisation from thermal biomass processing by Ciesielczuk et al. [11] the content of heavy metals in ash from deciduous and coniferous trees is given.
Table 2. Content of heavy metals in ash under investigation, mg -kg'1 d. m. [11/
Element Pine wood Spruce Beechwood Oak
Zinc 3937 1430.6 1284.2 1737.9
Copper 206.8 277.6 231.8 112.8
Nickel 36.98 26.31 187.2 13.98
Lead 186.6 60.77 52.40 25.64
Cadmium 25.55 2.59 1.30 1.38
Chromium 21.3 7.81 24.45 15.36
Manganese 30845 7630 45197 5462
The authors state that in ash under investigation the content of heavy metals was highly diversified. Particularly high contents of manganese, zinc and copper were recorded which can be the factor limiting the use of ash as the source of those elements for soil. However, in accordance with the current provisions of law, only ash derived from pine wood should be eliminated from agricultural use because of its excessive lead content.
Prospects for ash modification to meet fertilisation needs. One method of further ash processing is mixing with sewage sludge and using the resulting mixture for plant fertilisation. The obtained mixture is characterised by lower humidity and alkaline pH of ash causes favourable sewage sludge alkalisation. The comparison of the analysed values allows for stipulation that from the perspective of their agricultu-
2. EKOttoriH aoKKÎMH
119
Нащональний лкотехшчний унiверситет Украши
ral usage for plant fertilisation, adding ash from wood biomass to sewage sludge is more favourable than adding calcium oxide.
The dusty form of ash is one of its negative features, therefore granulation of ash with other components is justifiable. Fertiliser obtained with the use of ash includes not only the alkalising elements but also proper amount of other plant nutrients. The form of the ready to be used fertiliser should be granulate. The choice of proper components for fertilising granulate production with the use of ash from biomass can cause them to be included among the group of organic-mineral fertilisers of parameters specified in the Regulation of the Minister of Environment and Rural Development of 18 June 2008 on implementation of some provisions of the Act on fertilisers and fertilising [18].
The literature
1. Journal of Laws 2010 No. 138 item 1229 (Dziennik Ustaw 2010 nr 138 poz. 1229).
2. Journal of the European Union L140/16 5.6.2009. - P. 27.
3. Journal of Laws 2011 No. 95 item 558 (Dziennik Ustaw 2011 nr 95 poz. 558).
4. Journal of Laws 2011 No. 86 item 476 (Dziennik Ustaw 2011 nr 86 poz. 47б).
5. Jouranl of Laws 2011 No. 165 item 1359 (Dziennik Ustaw 2011 nr 165 poz. 1359).
6. Journal of Laws 2002 No. 137 item 924 (Dziennik Ustaw 2011 nr 137 poz. 924).
7. Journal of Laws 2010 No. 0 item 745 (Dziennik Ustaw 2011 nr 0 poz. 745).
8. Journal of Laws 2004 No. 204 item 2087 (Dziennik Ustaw 2004 nr 204 poz. 2087).
9. Technical Specification PKN-CEN/TS 14961:2007. - Pp. 21-27.
10. Przewodnik Metodyczny, Procedury bilansowania i rozliczania energii wytwarzanej w proce-sie wspolspalania. Wyd. Instytut Chemicznej Przerobki W^gla i Towarzystwa Gospodarczego Polskie Elektrownie, Zabrze-Warszawa 2007.
11. Ciesielczuk T. Nawozenie popiolami z termicznego przeksztalcania biomasy zrodlem pierwi-astkow sladowych dla gleb. Ochrona Srodowiska i Zasobow Naturalnych / T. Ciesielczuk, G. Kusza, A. Nems. - 2011. - Vol. 49. - Pp. 219-227.
12. Ciba J. Wplyw wybranych substancji chemicznych na zawartosc glinu wymiennego i pH gleb lesnych - przegl^d literaturowy. Ochrona Srodowiska i Zasobow Naturalnych / J. Ciba, M. Skwira, M. Zolotajkin. - 2007. - Vol. 31. - Pp. 63-67.
13. Holubowicz-Kliza G. Wapnowanie gleb w Polsce / G. Holubowicz-Kliza // Instrukcja upowszechnieniowa, Nr 128 Wyd. IUNG-PIB, Pulawy, 2006. - Pp. 56-63.
14. Filipek T. Stan, przyczyny i skutki zakwaszenia gleb gruntow ornych w Polsce, Nawozy i Na-wozenie / T. Filipek, M. Fotyma, W. Lipinski. - 2006. - Vol. 2(27) . - Pp. 7-38.
15. Wujec M. Mozliwosci wsparcia finansowego narodowego programu wapnowania gleb w Polsce Nawozy i Nawozenie / M. Wujec. - 2006. - Vol. 2(27) . - Pp. 39-57.
16. Srodki produkcji w rolnictwie w roku gospodarczym 2010/2011, GUS, Warszawa 2011.
17. Journal of Laws No. 138 item 1229.2010 (Dz. U. Nr 138 poz. 1229. 2010).
18. Journal of Laws 2008 No. 138 item 1229 (Dziennik Ustaw 2008 Nr 138 poz. 1229).
Пбчиньска М., Юргель-Малецка Г., Башуцька У.Б. Ощнка можливос-Ti використання золи з бюмаси для удобрення та нейтралiзащí трунив
Удобрения грунпв леткою золою покращуе ix фiзичнi властивост шляхом збшь-шення Mid^cri сорбцшного комплексу, полшшуе параметри поглинання води, знижуе щшьшсть та шдлужуе киап грунти. До складу золи входять також iншi компоненти, не-обхщш для життя рослин, зокрема магнш, калш та мшроелементи. Кр1м того, щ^вня-но високий вмют срки в леткш золi дае тдстави розглядати ii як джерело цього еле-мента в сшьському господарств^ Чинником, який ускладнюе використання золи в сшьськогосподарських цшях, е диференндацш хiмiчного складу, що пов'язано з рiзними властивостями спалюваного матерiалу. Це не сприяе виробництву продукцii' стабiльноi' якостi. Цю проблему можна подолати шляхом стабшзацн, частковоi' гiдратацii', змгшу-вання з гншими матерiалами, наприклад осадами стiчних вод, та грануляцн.
Ключовi слова: зола з бюмаси, макроелементи, мiкроелементи, нейтралiзацiя грунтов.
120
Збiрник науково-технiчних праць
Науковий вкпик НЛТУ Украши. - 2013. - Вип. 23.12
Гибчиньска М, Юргель-Малэцка Г., Башуцкая У.Б. Оценка возможности использования золы из биомассы для удобрения и нейтрализации почв
Удобрение почв летучей золой улучшает их физические свойства за счет увеличения емкости сорбционного комплекса, а также параметры поглощения воды, уменьшает густоту и алкализирует кислые почвы. Зола содержит необходимые для жизни растений компоненты, в частности магний, калий и микроэлементы. Фактором, осложняющим использование золы в сельскохозяйственных целях, является дифференциация химического состава, что связано с различными свойствами сжигаемого материала. Это затрудняет создание продукта постоянного качества. Данная проблема может быть разрешена путем стабилизации, частичной гидратации, смешивания с другими материалами, например отстаиванием сточных вод, а также грануляции.
Ключевые слова: зола из биомассы, макроэлементы, микроэлементы, нейтрализация почв.
УДК 630*182.59 Асист. 1.О. Дуда; доц. А.К. Школьний, канд. фЬ.-мат, наук -
ПВНЗ "Галицька академш ", м. 1вано-Франшвськ
ВПЛИВ АТМОСФЕРНИХ ОПАД1В НА ПРОЦЕСИ САМООЧИЩЕННЯ В ПОВ1ТР1 1ВАНО-ФРАНК1ВСЬКО1 ОБЛАСТ1
Шдвищена кщьюсть полютанпв i газових домшок у повiтрi призводить до заб-руднення атмосферних опадiв. На аерозольних частинках сорбуються штрати i сульфа-ти, що утворюються внаслщок нейтралiзацil азотно! та срчано! кислот. Зроблений ана-лiз опадiв на територи 1вано-Франювсько! областi у 2011-2013 рр. та проведений аналiз самоочисно! здатностi атмосфери свiдчить про змшу процесш нагромадження шюдли-вих домшок у повiтрi процесами розсшвання та самоочищення.
Ключовi слова: атмосфера, забруднення, опади, процеси самоочищення, Бур-штинська ТЕС, карпатськi лiси.
Подальший розвиток на Прикарпатп екологiчно-небезпечних видш про-мисловостi i насичення автомобiльним транспортом призводять до забруднення атмосфери. Негативна дiя цих джерел посилюеться насамперед через штенсив-ну експлуатащю основних виробничих фондав i ресурсiв, що значно вичерпали свiй потенцiал, недосконалкть технологiчних процесш та низьку яккть до-рожнього покриття. Техногенне забруднення навколишнього середовища При-карпаття у 2012-2013 рр. обумовлено наявнктю рiзних джерел емiсiй полютан-тiв (Бурштинська ТЕС, ПАТ "Нафтохiмiк Прикарпаття", ПАТ "1вано-Фран-кiвський цементний завод", нафто-хiмiчна промисловiсть, розгалужена тран-спортна система). Шдвищена кшьккть аерозольних часток i газових домiшок у повiтрi призводить до забруднення атмосферних опадiв. Опади, водночас, заб-руднюють такi компоненти ландшафту, як грунт, поверхневi водойми та лiси.
Найбшьшим забруднювачем атмосферного пов^я на 1вано-Франтвщи-нi е Бурштинська ТЕС. Це один з найбшьших забруднювачш довкiлля Кар-патського регюну. Викиди електростанцií сягають 88,5 % вщ загально! юлькос-■п викидiв стацiонарних джерел Iвано-Франкiвськоí области За 2011 рiк Бур-штинською ТЕС в атмосферу викинуто 372,63 тис. т забруднювальних речовин [1]. Очищення димових газiв вiд золи здшснюеться в електрофшьтрах з проек-тним показником ефективностi очищення 90 %. Через фiзичну та моральну зас-тарiлiсть електрофiльтрiв !х ефектившсть становить 70-90 %. Оксид азоту та срки викидаються без очищення.
2. Екологя довкiлля
121